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On the Calculation of Deformations 
and Stresses During Axially 
Symmetric Solidification 
In this paper finite element modeling of the deformation and stress development in 
solidifying bodies is presented. Emphasis is given to axially symmetric problems and 
especially to the accurate implementation of thermal and mechanical phenomena 
occurring at the freezing front. More specifically, the interface velocity and location 
are treated as primary variables of the heat transfer analysis, and the isostatic stress 
condition at the front is utilized as an initial condition in the stress analysis. A 
hypoelastic-viscoplastic constitutive model and a rate form of the principle of virtual 
work are involved to model the stresses and deformation. The mechanical and 
thermal properties are allowed to vary with temperature and strain rate in a realistic 
manner. Several examples of calculated residual stresses are shown for pure alu­
minum under axially symmetric geometries and realistic boundary conditions. The 
effects on the evolving deformations and stresses of the melt pressure, geometry, 
and cooling conditions are examined and reported. 

Introduction 
Study of the thermal stress and strain development in so­

lidifying bodies can be an important tool for understanding 
the formation of cracks in the solid shell as well as geometrical 
distortions during solidification. It is the objective of this work 
to present a numerical methodology for the estimation of such 
stresses and strains for the solidification of pure aluminum in 
an ingot or continuous casting mold with axially symmetric 
geometry. Heat generated from inelastic deformation will be 
neglected so that the solution can be obtained in an uncoupled 
fashion, first involving the temperature field, and then the 
corresponding deformation and stresses. 

Heat conduction boundary value problems with phase change 
have been examined extensively. The most important element 
of the heat transfer analysis is the proper modeling of the 
solid/liquid freezing front where an appropriate energy balance 
has to be met. Numerical techniques have been developed 
which track the front motion by using either transformed co­
ordinates, a moving grid or the enthalpy transformation in a 
fixed domain (Crank, 1984). 

The deformation part of the problem is more complicated 
than the heat transfer part. It requires a proper modeling of 
the mechanical conditions at the freezing front, integration of 
stiff constitutive models prescribing the inelastic deformation, 
temperature-dependent material properties, and coupling with 

Presently at the Sibley School of Mechanical and Aerospace Engineering, 
Cornell University, Ithaca, NY 14853. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME­
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IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Oct. 25, 1989; final revision, Sept. 7, 1990. 

the heat transfer part of the problem. A few references ad­
dressing one or more of these issues include Richmond and 
Tien (1971), Kristiansson (1982), Richmond (1982), Thomas 
et al. (1987), Smelser and Richmond (1988), and Zabaras et 
al. (1990). 

The deformation of a solidifying material is very different 
from that of a standard fixed body. A solidifying body develops 
residual (initial) stresses immediately after solidification and 
is never in a state of zero stresses (stress-free state). It should 
be emphasized that this freezing interface condition is an initial 
rather than a boundary condition at the time of the solidifi­
cation of a material point. It was first discussed by Richmond 
(1982) and implemented in one-dimensional solidification 
problems by Tien and Richmond (1982), Heinlein et al. (1986), 
and in two-dimensional plane stress applications by the authors 
(Zabaras et al., 1990). 

This paper begins with a brief review of a front tracking 
analysis for the heat transfer part of the problem. A rate form 
of the principle of virtual work is then given, which together 
with a proper hypoelastic-viscoplastic constitutive model and 
a finite element implementation are used to calculate the de­
formation and stresses in an axially symmetric body. An ac­
curate consideration of the freezing interface conditions is 
presented. Several cases of calculation of residual stresses are 
shown for plane strain and axially symmetric casting condi­
tions. The effect of different cooling and melt pressure rates 
on the development of residual stresses are reported. 

Thermal Analysis 
Governing Equations. Consider liquid metal in an axially 

symmetric container (mold) at a uniform temperature Tin(r, 
z) equal to or above the melting temperature Tm. Solidification 
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n 2 

.a. 

u,=0 T„(0 

Fig. 1 Model section for the solidification problem 

is assumed to start at time t = 0 when part of the boundary 
of the body is cooled down in an axially symmetric way to a 
temperature equal to or below Tm. Figure 1 shows, on the 
r-z plane, at time t, the two-dimensional model section 00 with 
boundary dfi0. Let dQ,(t) be the isothermal freezing interface 
at time t, and %(t) and Q,L(t) the regions occupied by the 
solid and liquid phases, respectively. In the absence of heat 
sources, the governing heat conduction equation for an axially 
symmetric solidification problem is given by Carslaw and Jae­
ger (1959) as 

pc-
dT(r,z,t) 1 a 

67 r dr 
Kr 

dT(r,z,t) 

dr 

i d (K dT(r'z4) 

dz\ dz 
(r,z)ZQ0 (1) 

where p, c, and K are the density, specific heat, and conduc­
tivity, respectively, of the solid or liquid phase depending on 
(r, z) € tys(0 or (/-, z) € A L ( 0 where the subscripts S and L 
are used to show quantities referred to the solid and liquid 
phases, respectively. Let also T0(r, z, t) be the prescribed 
temperature history on boundary dfi0l and q0(r, z, t) the pre­
scribed normal heat flux on boundary dflo2 with dfi0l U dUo2 

= 900. Finally, the Stefan condition takes the form 

Ks^^_KJ_M^l^pLV.n {r>z)€dQ[{t) (2) 
dn dn 

where n is a unit normal to the interface dQ,(t) at a point (r, 
z) € d$l,(t) pointing away from the solid region, V is the 
interface velocity vector at the same point, and L denotes the 
latent heat of fusion. 

Finite Element Modeling. Consider that the solid and liq­
uid regions are discretized into a number of finite elements in 
such a way that no element crosses the solid/liquid interface. 
One way to account for the freezing front motion is to allow 
the element nodes to continuously move with time and update 
their positions according to the front motion. In this case, the 
temperature interpolation will take the form 

T(r,z,t) = Te
i(tWi(r,z,t) i = l , 2 , ,Me 

(3) 
where summation on / is implied over the number of nodes in 
anelementM6, T"(t) denote the nodal temperatures, and $f(r, 
z, t) the element shape functions. Moving finite element for­
mulations based on such an interpolation have been proposed 

earlier by Lynch (1982) and Zabaras and Ruan (1989, 1990). 
Each mesh point {r,z), at time t, is moving with nodal velocity 
V{r, z, t) = (Vn Vz) with Vr and Vz denoting the components 
of the velocity vector. This velocity can be easily calculated 
by using the isoparametric interpolation functions and assum­
ing that the nodal velocities (Rf, Zf) are known. Usually these 
nodal velocities are calculated based on the velocities of the 
nodes at the freezing front and a rearrangement of the position 
of the internal nodes which preserves a uniform mesh (Zabaras 
and Ruan, (1990)). Applying a Galerkin type of weak for­
mulation to Eq. (1), the following assembled system of equa­
tions is obtained 

Cu^+(BIj+Ku)Tj = FI 

I,J= 1,2, . . . , M (sum on J) (4) 

where C, K, and F are the familiar heat capacity matrix, stiff­
ness matrix, and load vector, respectively, and the matrix B 
is resulting from the motion of the finite element nodal points 
and is given as 

E E 

« ^ ) + « K , ( W ) dr dz 
dil (5) 

where / and / denote the global nodal number corresponding 
to element nodes i andy, respectively, (i,j= 1 , 2 , . . . , M"). 

Denoting the nodal temperature vector at time t = tn_\ + 
At with T", n = 1, 2, . . . , where At is a time step, a stable 
integration scheme can be derived as 

At 
+ 7(B„ -i+7 + K„_ i + T ) ) T 

p M - l + y -
C„. 1+7 

At 
( l - 7 ) ( B „ „ 1 + 7 + K„_1+7) T (6) 

where the subscript (w — 1 + 7) indicates the reference time 
t where t = (1 - 7)/„_i + yt„, for the calculation of the 
temperatures and material properties as well as of the freezing 
interface position and velocity. 

To compute the front nodal velocities, Zabaras and Ruan 
(1990) have proposed a Galerkin type of weak formulation of 
the interface energy equation (2). In their approach, the ve­
locity at the solid/liquid interface is approximated as 

V=V?*?(r,z,t) /=1,2 ,Mbi (7) 

for each segment b of the interface where ^f(r, z, t) and Vf 
= (/-,-, zi) are shape functions and interface nodal velocities 
at segment b, respectively, M / are number of nodes in the 
segment b, and / is a number of boundary segments at the 
solid/liquid interface. The Galerkin type of weak formulation 
of Eq. (2) takes the form 

E' f 
Y\ PLNb^b

hdY'Vb
h 

6=1 Jsab 

E' P 

4 = 1 J ' 

*iTr*/-

dUbj 
[KsVTs-KL-VTL].ND*?dT 

i,h= 1,2 M"i (sum on/;) (8) 

where Ej and Mj are the number of boundary segments and 
boundary nodes at the solid/liquid interface, respectively, TV* 
is the unit normal to the boundary segment b at the solid/ 
liquid interface and points away from the solid region. In order 
to obtain a system of equations for the components of the 
nodal velocities, the tangential nodal interface velocities are 
taken as zero. This constraint, together with Eq. (8), provide 
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a system of algebraic equations for the components of the 
interface velocities in terms of the interface flux jump. The 
term on the right-hand side of Eq. (8) includes the normal flux 
jump at the solid/liquid interface 30/ and can be found directly 
using Eq. (6), after the temperature distribution is obtained. 
Indeed, these terms are the elements of the vector F„_1+7 
corresponding to the freezing front nodal points. 

Here cases with Tin(r, z) = Tm are considered for which one 
must analyze only the solid phase since the temperature in the 
liquid phase remains at all times at the melting point. For this 
work, only the solid elements connected to the solid/liquid 
interface are continuously moving, while the rest of the ele­
ments in the solid phase remain fixed. In other words, the 
solid region is partitioned into a fixed region and a moving 
region. The number of elements is changing with time since 
more elements are generated when the sizes of the deforming 
elements in the moving region become larger than prescribed 
values. Even though the most of the nodes are fixed, due to 
the motion of the front nodal points, the matrix B in equation 
(5) will not vanish. This special treatment of the finite element 
mesh is generally less expensive than the method of a fixed 
number of elements (Zabaras and Ruan, 1990), and it is also 
convenient for stress analysis. 

To start the algorithm, a small initial finite solid region must 
be assumed. The initial interface velocities are arbitrary in 
general. In summary, by assuming initial front nodal velocities, 
one solves the system of Eqs. (6) to obtain the temperature 
distribution. Then the updated nodal velocities can be found 
by solving Eq. (8). Generally, an iterative procedure is required. 

Thermomechanical Analysis 
Governing Equations. A quasi-static thermal stress theory 

as discussed by Boley and Weiner (1960) is employed, and 
attention is given only to the solid phase. Body forces and 
inertia forces are neglected, and the equilibrium equations in 
terms of the Cauchy stress a have to be satisfied at any time 
t in a region which continuously changes (grows) with respect 
to time. As will be explained in the next section, the growth 
of the domain will be accounted for in the solution algorithm 
via a proper form of the constitutive equations. The shrinkage 
associated with the solid/liquid phase transformation, which 
can be substantial in metals like aluminum, is neglected. 

It is assumed that the total strain-rate tensor t = [err ezz 

tn e^]risadditively decomposed into an elastic, tE, athermal, 
eT, and an inelastic, tN, part, respectively, i.e., 

e = tE+iT+tN (9) 
where c can be expressed in terms of the rate of displacement 
field [iir, itz]

T. Dilatational thermal strains are assumed as 

£ m = £ ( D = e £ m = [ a(v)dr,£(T)=0 (10) 

where a(T) is the temperature-dependent coefficient of ther­
mal expansion and TR is a reference temperature at which the 
thermal strains are zero, i.e., TR = Tm. In addition to the 
above, one should specify proper traction t on dQ„(t) and/or 
displacement u on dQ„(0 where dQ„(/) U dQa(t) = ^o(t). 

Material Modeling. As already discussed in the Introduc­
tion, the static deformation problem in a solidifying body can 
be treated as an initial boundary value problem, since a solid­
ifying body is never in a stress-free state. More specifically, 
the stress state of a material particle before solidification is 
exactly the same as that of the particle just after solidification, 
i.e., the stress state at the solid/liquid interface must always 
be purely isostatic, i.e., 

<& = <& = <&= ~P(z)=-pg(h-zV)) <£ = 0 (11) 
wherep(z) is the melt pressure at location z and h is the height 

Table 1 Thermal properties of aluminum (after Heinlein et al., 1986) 

Heat conductivity in solid 

Heat conductivity in liquid 

Heat capacity in solid 

Heat capacity in liquid 

Latent heat 

Density 

Initial temperature 

Melting temperature 

K s 

K L 

CS 

CL 

L 

P 

T-1 i n 

T 

0.0548 

0.0548 

0.2526 

0.2526 

94.44 

2650 

660 

660 

kcal/m-s°C 

kcal/m-s-°C 

kcal/kg-°C 

kcal/kg-°C 

kcal/kg 

kg/m3 

°C 

°C 

Table 2 Mechanical properties of aluminum (after Heinlein et al., 1986) 

a. Coefficients of constitutive law [equation (15)]. 

Coefficients ] A B C n 

Values ' 0.382X1012 sec"1 0.037 1/MPa 18849 °K 3.84 

b. Thermal expansion coefficient a(T)\ 

Temperature °C | 25 300 400 660 

a(T) m/m-C ' 23.19X10"6 27.86xl0"6 30.23X10"6 38.355xl0"6 

c. Poisson's ratio v=0.37. 

d. Young's modulus E(T)=F-GT, where F=6.93xl04 MPa and 0=43.7152 MPa/°C 

§ The variation of a(T) is assumed to be piecewise linear within the temperature 

intervals 25 - 300 °C, 300 - 400 °C and 400 - 660 °C. 

of the melt. Note that to accurately account for such an in­
terface behavior, one should interpret Eq. (11) as an initial 
rather than a boundary condition on dQr(t). Apparently, a 
rate formulation of the involved equilibrium, kinematic, and 
constitutive equations must be involved. The evolution of 
stresses is prescribed with the following hypoelastic model: 

ir = DeE (12) 
where a = [brr azz arz bgg]T, D are the temperature-dependent 
elastic constants, and where the superimposed dot denotes a 
time derivative. The "initial" residual stresses can now be 
treated as an integration constant arising when Eq. (12) is 
integrated in time. 

The material used in this work is pure aluminum with thermal 
properties given in Table 1 and temperature-dependent me­
chanical properties reported by Heinlein et al. (1986) and given 
in Table 2. Finally, a viscoplastic constitutive model is needed 
to prescribe the inelastic deformation. Important effects such 
as rate sensitivity, strain hardening, and recovery should be 
included in a rather wide range of temperatures ranging from 
room temperature up to the melting point of the solidifying 
pure metal. The following unified form is usually assumed for 
such rate-dependent models 

t
N=f(o,qK,T) (13) 

where q* denote properly defined state variables, if any, for 
which evolution equations of the following form are given 

qK = g(a,qL,T). (14) 

Several viscoplastic constitutive models fall in the above 
category (for example, Anand, 1982). In the simulations re­
ported in this paper, a hyperbolic-sine constitutive law (Tien 
and Richmond, 1982; Heinlein et al., 1986) is used to prescribe 
the inelastic deformation. This constitutive law has the fol­
lowing form 

• N 3 „ - 77H [sinh BSi" n « 
e =-Ae ,+zli s (15) 

2 a 
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where A, B, C, and n are material constants given in Table 2 
for pure aluminum, a is the effective stress defined as a = 

/ - s-s, and s denotes deviatoric stresses. The temperature T 

is in degrees Celsius and C in degrees Kelvin. The above con­
stitutive model has been successfully used by Heinlein et al. 
(1986) for unidirectional solidification problems and by the 
authors (Zabaras et al., (1990)) for unidirectional and two-
dimensional plane-stress calculations of deformation and re­
sidual stresses in solidifying bodies. Note that constitutive 
models with state variables can also be used here, but this is 
considered unnecessary for the high temperatures treated here 
since microstructural changes should be insignificant. 

In summary, the major goal of this deformation analysis is 
to solve for the displacement field an initial-boundary value 
problem which is defined by the equilibrium equations, the 
kinematic strain-rate/displacement-rate relations, the mechan­
ical boundary conditions on dQ„(t), the assumption (9), the 
initial conditions (11), and the constitutive Eqs. (12) and (15). 

Finite Element Model. The finite element analysis of the 
stress problem is performed with the same discretization of 
the solid region as that used for the heat conduction analysis 
but the element type is different. In the stress analysis, eight-
noded elements are used in order to improve accuracy. Let 
ii denote the vector of the nodal displacement rates in the solid 
phase. Then the field of displacement rate d can be approx­
imated as d = Nil, where N is the matrix of shape functions 
and the corresponding strain and stress rates are e = Bu and 
b = DBii, respectively, where B is the standard matrix defined 
by differentiation of the shape functions in N. 

Assuming that time stepping is performed, one can write a 
weak statement of the equilibrium equation at time t„ as 

\ Br<r„c?Q= f NTTndT (16) 

where <r„ the stress tensor (a vector form) at time tn, the body 
forces have been neglected and T = f on dUa(t). 

Let us assume that the stress state, o„-\, at ?„_i is known, 
then the stress state, <r„, at current time t„ can be obtained 
using Euler's backward integration scheme as 

o„=ir„At* + <r„-i (17) 

where bn denotes the stress rate at time t„ and At* is the time 
step related to the arrival time of the freezing front at the 
material point under consideration. Note that the time inte­
gration of stresses is performed at material points and if the 
material point is solid at time t = t„-u At* is equal to At = 
t„ - t„-\, while if it is liquid at time t = f„_i, At* is defined 
as At* = t„ - #_! , where #_i denotes the arrival time of the 
freezing front at the corresponding material point. Therefore, 
if the front arrival time at a point is later than t„^u the stress 
<r„ _ i is equal to the melt hydrostatic stress state at arrival time 
and if the arrival time is earlier than f„_[, it is the stress cal­
culated at t = t„-\. 

Finally, using Eqs. (9), (12), (16), and (17), the following 
rate form of the principle of virtual work is obtained 

f BrDBAf*<«}u = f NTT„dT-\ Br<7„_,dQ 

•+ 1 BTD(kT+'eN)At*dQ. (18) 

After the nodal displacement rates are found from Eq. (18), 
they are used to calculate stress rates at element Gauss points. 
For the nonmoving region, the stress rates are integrated at 
the Gauss points. For the moving region, in order to perform 

stress integration at Gauss points using Eq. (17), the stresses 
at the Gauss points at time t„-U <r„-i, are transferred to the 
Gauss points at time /„ using a second-order polynomial ap­
proximation, i.e., 

a=c0 + clr + c2z + cirz + c^r2 + c5z
2 (19) 

where c, are coefficients calculated through a least squares 
method, using the stresses at the old Gauss points and the 
hydrostatic stresses at the front nodal points. 

The difference between the integrations of stress rates, b„, 
and the time derivatives of temperature, Tn, should be em­
phasized. In the stress problem, the primary unknowns are 
nodal displacement rates and the integration of stress rates is 
performed at material points. In the temperature problem, 
however, where the primary unknowns are nodal temperatures, 
the integration of the time derivative of temperature is per­
formed at nodal points rather than at material points due to 
the time-dependent shape functions. 

The solution procedure for the deformation part of the prob­
lem is as follows: (a) calculate the temperature field and front 
position as discussed in the section on thermal analysis and 
obtain the temperature distribution at Gauss integration points 
and (b) solve Eq. (18) iteratively to obtain displacement rates. 
Stresses can then be obtained using Eq. (17). 

Numerical Results 
The accuracy of the above algorithm was tested with a uni­

directional plane-strain solidification example (Zabaras and 
Richmond, 1990). The calculated lateral stress history near the 
boundary where the shell is cooled was found to be two percent 
different from an approximate semi-analytical solution given 
by the senior author and co-workers (Heinlein et al., 1986). 

In the examples reported here, solidification of a cylinder 
initially filled with liquid aluminum at melting temperature 
will be considered. The thermal and mechanical properties of 
aluminum are listed in Tables 1 and 2, respectively. Part of 
the boundary of the cylinder will be assumed to be cooled 
down as follows: 

T0{t) = Ta+(Tm-Ta)e~Q< (20) 

where Ta is its final steady-state temperature, Tm is the melting 
temperature, and Q is a cooling rate parameter. In the fol­
lowing examples, Ta = 500 °C, Q = 0.1 sec~' and Tm = 660 
°C. Four-noded elements were used for the temperature anal­
ysis, while eight-noded quadrilateral elements were employed 
in the deformation part of the problem. The integration pa­
rameter 7 in Eq. (6) is 0.85. 

In the first example, it is assumed that the cylindrical body 
is insulated at the top and bottom and that the rest of its 
surface (r = R) is cooled with the temperature history depicted 
in Eq. (20). Plane-strain conditions with a traction-free outer 
surface were assumed. The geometrical parameters are as­
sumed as h = 0.04 m and R = 0.018 m. 

The front position and the temperature history at various 
locations are shown in Figs. 2 and 3, respectively. These results 
were compared with a one-dimensional deforming finite ele­
ment implementation of the problem (Zabaras and Ruan, 1989), 
and they were found to coincide to within plotting accuracy. 
Figure 4 shows the residual stress distribution with the plane-
strain assumption on the plane z = 0.002113 m, at the end of 
solidification, t = 8.32 sees. The stress history at location r 
'= 0.017714 m and z = 0.002113 m (near the bottom and the 
surface r = R) is also shown in Fig. 5. As seen from these 
figures, the hoop stress at the outer surface r = R is com­
pressive, while near the center of the cylinder all the stresses 
are tensile. Generally, the residual stress in the axial direction 
is tensile, but it becomes slightly compressive in the region 
close to the surface r = R near the end of solidification. In 
this example, as expected, the stresses were found not to sig­
nificantly vary in the axial direction. 
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Fig. 4 Residual stress distribution in the radial direction at time 8.32 
sec using a plane-strain assumption 

In the second example, the geometry and the temperature 
boundary conditions are the same as those employed in the 
first example. It is assumed that the bottom is fixed in the axial 
direction, and traction-free conditions are applied to the top 

surface and to the outer surface, r = R. It was observed 
(Zabaras and Richmond, 1990) that the traction conditions at 
the top surface affect primarily the axial stress while leaving 
the radial and hoop stress almost the same for both free-top 
and plane-strain conditions. Large tensile residual axial stresses 
appear in the region close to the center of the cylinder. Figure 
6 shows the residual stress variation in the axial direction at 
time / = 8.3202 sec and the stress history at location r = 
0.0177145 m and z = 0.0010566 m (close to the bottom and 
r = R) is given in Fig. 7. The hoop and axial stress histories 
are almost the same, an assumption used before by Heinlein 
et al. (1986) to simplify a three-dimensional solidification prob­
lem to a unidirectional one. 

To demonstrate the effect of melt pressure, a longer cylinder 
is considered with h = 0.4 m and other conditions are kept 
the same as those in the first example. In this case, the pressure 
at the bottom of the cylinder is about 0.0101 MPa. The dis­
placements of three points at r = R are given in Fig. 8, where 
it is shown that the surface r = R near the bottom of the 
cylinder first expands before it starts contracting. Generally, 
the residual stress distribution is very close to that discussed 
in the first example; but at early time, the differences of the 
displacements at r = R and the stress distribution between this 
and the first example are observable. Also, the hoop stress was 
found to have higher values at early time (Zabaras and Rich­
mond, 1990). Therefore, as it is expected, one can conclude 
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that the melt pressure has a significant effect on the stresses 
at early time and it can play an important role in the location 
and time of formation of air-gaps in the solid shell/mold in­
terface. 

For cases with larger Q (high cooling rate), it was observed 
that the solidification process proceeds faster and that the 
calculated residual stresses obtained at the end of solidification 
are larger than those in the first example (Zabaras and Rich­
mond, 1990). 

In the final example, a cylinder with R = h = 0.018 m was 
cooled with the condition of Eq. (20) at both bottom surface 
and the surface r = R. The pattern of solidification is shown 
in Fig. 1. It is assumed that the outer surface, r = R, and the 
top surface are traction-free, while the bottom is fixed in the 
axial direction. The front position at various times is plotted 
in Fig. 9. Principle residual stresses in the r-z plane near the 
end of solidification are plotted in Fig. 10. Large tensile re­
sidual stresses appeared at the top around the center region, 
the stresses were small in the area close to the surface r = R, 
and the residual stresses were compressive at the bottom close 
to the center region. Further details on this example are also 
given by Zabaras and Richmond (1990). 

Concluding Remarks 
A general methodology has been presented for the calcu­

lation of realistic residual stresses and deformations in axially 
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Fig. 9 Interface position at various times for the solidification problem 
shown in Fig. 1 
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Fig. 10 Principle stresses in the r-z plane at time 7.3294 sec for the 
solidification problem shown in Fig. 1 

symmetric solidifying cylinders. For a cylinder cooled on its 
outer surface and insulated on the ends, the residual hoop 
stresses were compressive close to the outer surface, while 
tensile close to the axis of the cylinder. The radial stresses 
appear always tensile with their highest values close to the axis. 
Stress-free top conditions were found to affect primarily the 
axial residual stress. It was shown that for plane strain the 
axial stress is mostly tensile, while for stress-free top conditions 
the axial stress is tensile near the axis of the cylinder and 
compressive elsewhere. More involved residual stress patterns 
were obtained for more complex cooling conditions. 

The liquid pressure was shown to significantly alter the stress 
pattern at early times of solidification, while it kept almost 
the same later stress pattern. This point emphasizes the im­
portance of the melt pressure to the air-gap formation in the 
solid shell/mold interface. Finally, as expected, the residual 
stresses are very sensitive to the applied cooling rates. 

The results presented here should be useful in the design of 
casting processes so that cracking and other defects induced 
by thermal stresses are avoided. This work is considered as the 
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first step in studying more complex and challenging casting 
problems including the formation of air-gaps and their effect 
on heat transfer and use of mixture theories to analyze the 
thermomechanical behavior of mushy regions. 
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Steady Penetration of a Rigid Cone 
With a Rough Wall Into a Power-
Law Viscous Solid 
Singular strain rate and stress fields are examined at the tip of a rigid conical indentor 
penetrating an incompressible viscous solid. Attention is focused on friction effects 
induced by wall roughness. The problem is formulated within the usual framework 
of eigenvalue analysis of locally singular fields. Some special cases are investigated 
further with emphasis on a boundary layer expansion for the rigid/perfectly plastic 
solid sliding along the perfectly rough wall. It has been found that the level of 
singularity increases as the cone becomes sharper and the wall friction decreases. 
Numerical results, presented for a variety of cases, suggest a boundary layer build 
up for sharp cones with rough walls. 

1 Introduction 
It is expected that steady penetration of sharp rigid indentors 

into viscoplastic media will give rise to singular stress fields 
near the tip of the indentor. For certain types of constitutive 
response (e.g., the family of power-law relations) it is possible 
to examine local singular fields using the method of eigen-
function analysis introduced by Hutchinson (1968) and Rice 
and Rosengren (1968) for nonlinear plane crack problems. 

The present study has to do with a rigid cone, with a rough 
wall, that steadily penetrates an incompressible power-law vis­
cous solid. The singular near-tip field is investigated with the 
aid of the corresponding local eigensolutions for stresses and 
strain rates. The emphasis here is on friction effects induced 
by the wall roughness. A simple friction factor m is assumed 
to be imposed along the wall within the bounds of m = 0 for 
a frictionless wall, and m = 1 for a perfectly rough wall (when 
the shear stress attains its highest possible value). 

The framework of the analysis follows closely a recent paper 
by Fleck and Durban (1989)—henceforth referred to as (FD)— 
on asymptotic fields at tip of conical inhomogeneities embed­
ded in power-law plastic solids. Accordingly, we begin, in the 
next section, with a recapitulation of the governing mathe­
matical system derived in (FD). 

Some special cases are considered next in Section 3. We 
show that, with the exception of a perfectly plastic solid, the 
creeping material sticks to the cone when the wall is perfectly 
rough. The perfectly plastic solid will slide along smoother 
walls of the indentor but an extra logarithmic singularity of 
the stress field is then needed to maintain equilibrium. In the 
extreme case where the indentor is perfectly rough and the 
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medium is perfectly plastic, there is an intensive shear boundary 
layer near the wall. This is examined with the aid of a boundary 
layer expansion which is matched with the outer numerical 
solution. It is shown that the shear strain rate becomes un­
bounded as the wall is approached, and that the perfectly 
plastic solid does slide along the perfectly rough wall. Section 
3 concludes with a simple analytical solution for possible non-
singular strain-rate fields in a Newtonian fluid. 

Sample numerical results are presented in the last section. 
The governing equations are solved with an available numerical 
procedure, and the dependence of the singularity level upon 
wall friction, cone angle, and strain-rate hardening parameter 
are examined in detail. The main finding is that the strain-rate 
singularity decreases with increasing friction and increasing 
cone angle. Characteristic contours of the effective strain rate 
are plotted along with a representative mapping of the stress 
profiles. A near-wall boundary layer build-up is observed as 
the cone becomes sharper as well as for increasing wall friction. 

T T " ' " 

Fig. 1 Notation tor steady penetration by a rigid cone. Wall friction is 
described by the friction factor m. A spherical-polar system (r, e, <)>) is 
attached to the apex (meridional angle </> is not shown). 
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Fig. 2 Level of singularity s for different friction factors and for several 
values of the strain-rate hardening exponent. Also shown are the anal­
ogous crack singularities, s = 3 - nl(n + 1), for a power-law plastic 
solid. 

180° 

Our analysis aims at the investigation of slow steady pen­
etration where it is certainly permissible to neglect inertia ef­
fects. Indentation creep experiments (Atkins et al., 1966; 
Matthews, 1980) have shown that creep properties measure­
ments are beset by the influence of friction between the conical 
indentor and the material. The first step in analyzing inden­
tation creep of materials is outlined in this paper; we determine 
the asymptotic field at the tip of an indenting cone as a function 
of cone angle, creep exponent of material, and wall friction. 

2 Governing Equations 

Consider an incompressible isotropic power-law viscous solid 
undergoing steady-state penetration by a rigid cone with rough 
walls. Attention is focused here on the singular stress field 
which is expected to develop near the tip of the conical indentor 
(Fig. 1). 

Material behavior of the penetrated creeping medium is gov­
erned by the constitutive law 

H? _s_ 
Ceff 

where D is the Eulerian strain rate tensor, S is the Cauchy 

stress deviator tensor, aett = I - S • • S I is the effective stress, 

and (a0, n) are material constants. The Newtonian fluid is 
described by equation (1) with n = 1, while the rigid/perfectly 
plastic Mises solid is recovered at the limit of n = oo. 

Adopting an Eulerian frame of reference, with the origin of 
a spherical polar system (r, 0, 4>) attached to the apex (Fig. 1), 
we find by symmetry that the velocity components, v„ ve, 
depend only on (r, 8), while the circumferential component, 
V4, vanishes identically. The incompressibility constraint im­
plied by equation (1) is satisfied if the velocities are derived 
from a stream function \j/(r, 6) by 

Vr = r2smd ve = rsind' 
(2). 

Since the field equations are identical to those derived in 
(FD)—except the exchange of small strain displacements with 
finite velocities—we shall proceed with just a brief outline of 
the basic equations; the stream function is assumed to admit 
a separation of variables form, namely 

i/- = /-s(sin0)</>(0) (3) 

where the eigenvalue s determines the stress singularity level 

0.8 

0,4 

0 
*b/̂ -T- + 0 1 " ^ 

90° 120° 

Fig. 3 Level of logarithmic singularity D of hydrostatic stress ah for n 

150° - 180° 

and </>(0) is a function of 6. Inserting (3) in relations (2), we 
get the velocities in the form 

Vr = rs~2X ve=-srs~H 

(*) with 

(4) 

(5) x=<j>' + <t>cote 
where the prime denotes differentiation with respect to 0. 

The components of the Eulerian strain rate tensor D, as­
sociated with (4), depend on the radial coordinate like Di} ~ 
rs~3; of particular interest here is the shear strain rate given 
by 

where 

A*=/ - s - 3 r (0 ) 

Y=-[X'+s(3-s)4]. 

Similarly, the effective strain rate can be expressed as 

e - = -J D - - D = 7T*" 3 r w 

with the corresponding polar profile 

r 2 = (s2 - 3s + 3)X2 - ^(X- <j>cote)(l)Cotd + Y2. 

The stress deviator components behave like Sy ~ r(s~3)/" 
exemplified by the shear stress component 

1 s -3 1-n 
°o / 2 ) 

(6) 

(7) 

(8) 

(9) 

as 

/ o\-— — 
(10) 
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Fig. 4 Case of 0 = 135 deg; (a) variation of singularity level s with 
friction factor m for different values of n, (b) variation of singularity level 
s with strain-rate hardening for different values of m 
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Fig. 5 Ratio of radial velocity at the wall $ = 0 and at the pole 6 = 0, 
for /3 = 135 deg. The creeping solid sticks to the wall for any finite n 
with m = 1, but sliding occurs at $ = 0 when n = oo and m = 1. 

Likewise, the effective stress here takes the form 

2 
0-eff=ffo(eeff)" = 0-o | -^=l"/- (11) 

Turning to the equilibrium requirements, we have just two 
equations for the four active stress components (orn oeg, a^, 
Ort). Substituting the stresses from (1) in the equilibrium equa­
tions results in the two ordinary differential equations 

"— \Y^ -+YcoW + (s-2)ii + S—)X 

\Z+DY " r" = 0 (12a) 

l-M r ' 
Z' + (l-s)X' +s<j>'cotd + [Z + (l-s)X+s<j>coW] — 

n T 

+s<j>i.cot26-\)-sXcotd+ ( — + 3) 7=0 (12Z>) 

Fig. 6 Contours of constant e,„ for different values of m and rr, 0 
135 deg 

yS = l35° 

m = 0 

Fig. 7 Streamlines within the singular near-tip field; 0 = 135 deg 
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where Z(6) is a function of 0 (to be determined later) and D 
is a constant. As they stand, equations (12) present a restricted 
version of a more general form given in (FD equations (4.8)) 
which, however, will not be required in this study. The as­
sociated expression for the hydrostatic stress reads 

Oh •aW- r " Z + D l n -
r, 

(13) 

where r0 is a scaling factor. Constant D vanishes identically 
unless « = oo (the Mises solid) or s = 3 (/--independent strain 
rates and deviatoric stresses). For these cases, constant D forms 
an eigenvalue of the problem. 

To sum up, we have four coupled nonlinear differential 
equations (5), (7), and (12a)-(126) with four unknown func­
tions </>, X, Y, Z. That system is supplemented by two boundary 
conditions along the wall; we assume vg = 0 and a^ = -
m 
—p. <7eff at 6 = |S or, in terms of the dependent variables 
V3 

<m = 0 (14a) 
Y(&)=-mT(P) 0</w<l. (146) 

The friction factor m serves as a measure of surface roughness 
ranging from m = 0 (for a smooth wall) to m = 1 for a 
perfectly rough wall. These bounds on the friction factor follow 
from the definition of the effective stress 

^ = 2K^-<JA)2 + ((79-ff/,)
2 + (a<(,-(7A)2] + 3 (^. (14c) 

Additional "boundary" data can be extracted from sym­
metry requirements along the axis 0 = 0. Thus, with the same 
reasoning as in (FD) we obtain, for n ^ oo and 5 j± 3, the 
following expansions near the pole 

-0(0) = 0 + a20
3 + O(05) 

-X(0) = 2+( 4 a 2 - | 1^ + 0 ( 0 

(15a) 

(156) 
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-r(0) = 

- Z ( 0 ) = 

J ( 3 - J ) 1 
—-— + 4a2-T 

2 ^ 3 
L 

In 
3-5 

0 + O(03) 

4«2 — - + 
1 s(3-s) 

+ (s-2)[3 + e + o(fir), 

(15c) 

(15rf) 

3 On Some Special Cases 
I Case m = 1, n < oo. The wall is now perfectly rough 

and conditions (14a)-(146) imply that 

It follows, via the first of (4), that vr{6 

(16) 

where a2 is an unknown constant. Relations (15) are identical 
with (FD (4.13)) except for the minus sign on the left-hand 
side of (15), which is the appropriate form in the penetration 
problem since vr is negative along 0 = 0. Note that expansions 
(15) have been arbitrarily scaled by putting the 0 coefficient 
in (15a) as unity. 

By now we have four unknown boundary parameters: a2 
and s at 0 = 0 and X(/3), Z(ff) at the wall. The resulting two-
point boundary value problem consists, therefore, of four dif­
ferential equations along with the four unknown parameters. 
That system has been solved numerically by integration of the 
differential equations using the Runge-Kutta-Merson method. 
Results for the eigenvalue s are shown in Fig. 2. 

0) = 0 and the 
viscous solid sticks to the rigid cone. The solution of this 
particular case is identical to the "rigid cone" solution in (FD) 
with zero displacements at the wall. Curves for the eigenvalue 
s are included here in Fig. 2, but for a complete discussion the 
reader is referred to (FD). 

II Case m < l,n = co. The material is perfectly plastic 
and the equilibrium equations (12) take the reduced form 

Y' -Y^—+Ycote + 3(s-2)X+DT = 0 (11a) 

T' 
Z' +(1 -s)X' +s{4>cot0)' - [Z + (l -s)X+S(j)Cote]y 

-s(X-2<j>cot6)cotd + 3Y=0. (176) 
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A further simplification of (176), with the aid of (5) and (7), 
results in 

Z' -s(s-2)2<£-(2s- 5)Y- [Z 

+ (l-s)X+s<l>cot8]— = 0. (18) 

The governing system of equations consists now of (5), (7), 
(17a) and (18). Near the pole, expansions (15a)-(15c) remain 
valid but (15c?) is now replaced by 

-Z(6) = b3d
2 + . (19) 

where 63 is a constant. Expansion (19), which follows directly 
from equation (18), shows that both Z and Z ' vanish identically 
at 6 = 0. Inserting expansions (15a)-(15c) and (19) in equation 
(17a) we find a relation between constants D and a2 namely 

s ( 3 - 5 ) + 2 ( 4 a 2 - i ) + 6(s-2)-y/3(s-2)D = 0. (20) 

So again, we have a two-point boundary value problem with 
four unknown parameters: s, a2, X(fi), and Z(/3). This may 
be solved using the same numerical routine as for the case with 
finite n. Results for the eigenvalue s are shown in Fig. 2. The 
level of singularity D of the hydrostatic stress (13) depends on 
both /3 and m as displayed in Fig. 3. 

Ill Case m = 1, n = oo. The extreme case where the 
wall is perfectly rough and the medium is perfectly plastic 
requires special attention. In this limit we enforce a state of 
pure plastic shear, at 6 = fi, such that a^ = - a0/V3 where 
a0 is now identified with the uniaxial tension yield stress. A 
solution is obtained by assuming that the radial velocity vr(j3) 
at the wall is finite. That assumption is supported by near-
wall boundary layer expansions along the following lines: 

Introducing the local coordinate £ = /3 - 6 we seek a solution 
for small £, in the vicinity of the wall, such that 

<j>~Ai' + Bi (21) 

where A, B, and t remain to be found. Combining (21) with 
(5) and (7), we obtain 

X~-B-At%'~1+B(cotM + - • • (22) 

2Y~At(t-l)?-2-BcotP+. . . . (23) 

Since vr is to remain finite at the wall {£, — 0), while ve vanishes, 
we find from (4) and (21)-(22) that t > 1. On the other hand, 
the pure plastic shear field at the wall together with the coax-
iality of tensors S and D dictate an infinite shear strain rate 
at the wall. Thus, from (6) Y - oo as | -* 0 leading, via (23), 
to the restriction t < 2. 

A useful asymptotic expansion is now extracted from (9), 
with the aid of (21) and (22), in the form 

T2-Y2~(s2-3s + 3)(,B2 + 2ABt%'-[ + . . .). (24) 

It remains to consider the equilibrium equations (17). The 
radial equation (17a) can be rewritten as 

d 

di 
f sin(/3-|) D + 3(s-2)^ sin(/3 - £) (25) 

observing, however, from (22)-(24) that near the wall 

X 25 

r '+.. (26). 
At(t-l) 

we can write the integral of (25) for small values of £ as 

Y 
— sin/3 ~C+D£ sin/3 

where C is an integration constant. At the wall (£ = 0) we 
have Y = -T; hence, C = -sin/3 and (27) is reduced to 

Y ~ - r ( l -£>§). (28) 

(27) 

m = 0 

m = 0.5 

: ^ ^ 

Fig. 9 Contours of constant t,„ for different values of m and n; /3 
16S deg 

Combining this with (23) gives 

T2-Y ~2D 
A 

t{t-\) f~l+. . (29) 

This should agree at the limit of small J with (24). Thus, 

3 

and 

/ = 

— DA2=(sl-3s+3)B2. 
32 

(30a) 

(306) 

Proceeding in a similar way, we obtain from equation (176) 
the following expansion for Z(£) 

Z~Kf2 + {\-s)B+ ( ^ — — W + . (31) 

where K is an integration constant. 
All dependent variables have now been expanded in the 

vicinity of the wall. Both Y and Y exhibit singular behavior 
of order £~1/2 as £ -~ 0. This implies, by (6), an unbounded 
shear strain rate due to the "shear shock" at the wall. A similar 
solution cannot exist for n < oo as unbounded stresses at 6 
= /3 would give rise to an infinite force on the conical indentor. 
The present analysis also settles the question that was left open 
in (FD) in regard to the "rigid cone" with m = 1, n = oo. 

The numerical solution scheme is here straightforward with 
the unknown parameters s, a2, B, Z(£0) where £0 is a fixed 
small value. Constant D is related to (a2, s) by (20), and 
constant B is determined by (306). Results for the eigenvalue 
s are included in Fig. 2, and the level of the logarithmic sin­
gularity of ah is shown in Fig. 3. The limit of integration was 
chosen to be £„ = 1 deg for /3 < 160 deg; for 0 > 160 deg 
convergence problems were lessened by choosing £0 = 5 deg. 

IV Case n - 1, s = 3. A simple analytical solution exists 
for a Newtonian fluid when the deviatoric stresses depend only 
on 6. This is a rather trivial case, but it serves, nevertheless, 
as further support to the numerical findings. The expression 
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Fig. 10(a) Stress components oH ($) within the singular near-tip field; /3 
= 165, n = 1, 3 

for <$> is identical with the corresponding linear elastic solution 
(FD), namely 

<A = C1sin20+C2tan-. (32) 

Inserting (32) in (5), (7), (9), and substituting in the boundary 
conditions (14) gives 

- / V 3 \ sin2/3 
2 /cos2/3-cos)3' VT •m 

(33) 

This relation determines the locus of pairs (m, /?) for which 5 
= 3. For a smooth wall (m = 0) we have /3 = 90 deg, while 
for a perfectly rough wall (m = 1), /3 = 120 deg. Numerical 
results (Fig. 2) are in complete agreement with (33). It is worth 
mentioning that while deviatoric stresses are /--independent, 
the hydrostatic stress admits a logarithmic singularity (13) given 
by 

o/i= - 2 C 2 f f 0 

for all {m, 0) of (33). 

21n (co.f)+ln£ (34) 

Equations (5), (7), and (12a)-(126) remain well behaved for 
5 = 3 with any value of n. 

4 Numerical Results 
The strain rates Dy are of order rs~3 for small r near the tip 

of the cone. For all m and n, the near-tip field is singular (5 
< 3) for sufficiently large (3. It is clear from Fig. 2 that the 
level of singularity inverses (i.e., s decreases) with increasing 
P and decreasing m. This is in agreement with common ex­
perience that sharper and smoother cones penetrate more eas­
ily. For sufficiently sharp cones (/3 > 125 deg), the strain rates 
become more singular with increasing n. 

Consider the perfectly plastic case n = 00. The level of 
logarithmic singularity in hydrostatic stress, D, increases with 
increasing 0 (Fig. 3). The variation of parameter D with friction 
factor m is complex; for /3 > 130, D increases with increasing 
m, whereas for smaller values of/3, the dependence of D upon 
m is not monotonous. 

It is worth mentioning that earlier studies (Lockett, 1963; 
Shield, 1955; Spencer, 1984) on conical flow of rigid/perfectly 
plastic solids used the Tresca model. The associated equations 
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are then hyperbolic while here, by contrast, the governing 
system remains elliptic for all n. It follows that the nature of 
the asymptotic fields obtained in the present work is uninflu­
enced by the remote field. 

Typical results for B = 135 deg are shown in Figs. 4 and 5. 
For 0 < m < \, s decreases as n increases from n = 1 to n 
= oo, (see Figs. 4(a)-4(b)). The ratio of radial velocity vr at 
6 = B and at 6 = 0 is plotted in Fig. 5 against m. For n ^ 
oo, as m is increased to unity the radial velocity falls to zero 
at the wall and the power-law viscous material sticks to the 
stationary cone. For the rigid/perfectly plastic case n = oo, 
the deforming solid continues to slide past the cone along 6 
= B in the limit m = 1. This illustrates the special nature of 
the solution for n = oo, m = 1. 

Representative contours of constant eeff (normalized with 
respect to the magnitude at 0 = B) are shown in Fig. 6 for B 
= 135 deg. Samples of the associated streamline patterns are 
displayed in Fig. 7, and illustrative eigensolutions for the cor­
responding asymptotic stress fields are depicted in Figs. 8(a)-
8(b). Results are shown for both smooth (m = 0) and perfectly 
rough (m = 1) indentors, and also for an intermediate value 
of m = 0.5. 

For all m and n, the contour of constant eeff hugs the wall 
of the cone (Fig. 6). That contour projects ahead of the cone 
into the solid. Deepest penetration of the £eff contour occurs 
for m = 1. This is reflected in the shape of the streamlines, 
Fig. 7. Ahead of the cone tip the curvature of the streamlines 
increases with increasing m. There is also an obvious build-up 
of a boundary layer as both m and n increase (Fig. 6). 

The stress profile ~a y(6) in Figs. 8(«)-8(6) have been nor­
malized with respect to ae(B). These figures include also the 
hydrostatic component 07,; for the case n = oo (Fig. 8(6)) we 
have chosen to show the distribution of ah over the circle r = 
r0 so that the logarithmic term in (13) vanishes. A common 
feature, which may be concluded from these figures, is that 
the hoop strain rate D^ (which has the same sign as a^ -
Oh) is always positive except when it vanishes at the perfectly 
rough wall for n < oo. 

Similarly, the polar strain-rate Dee (which has the same sign 
as the deviatoric c% — ah) is always positive along the tearing 
line 6 = 0, but becomes negative beyond a certain value of 6. 

Analogous conclusions apply for the case of sharper cones 
with B = 165 deg. The contours of effective strain rate bear 
much resemblance to a boundary layer phenomenon (Fig. 9), 
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with relatively higher stress gradients near the wall (Figs. 10(a)-
10(6)). 
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An Invariant-Based Flow Rule 
for Anisotropic Plasticity Applied 
to Composite Materials 
In this paper we discuss some fundamental problems associated with incremental 
anisotropic plasticity theories when applied to unidirectional composite materials. 
In particular, we question the validity of an effective stress-strain relation for highly 
anisotropic materials of this nature. An effective stress-strain relation is conven­
tionally used to determine a flow rule for plastic strain increments. It is our view 
that such a relation generally does not exist for many high-performance unidirectional 
composites. To alleviate the problem associated with defining an effective stress-
strain curve we develop an anisotropic plasticity theory in which the flow rule does 
not requires such a relation. The proposed theory relies on developing an accurate 
expression for a scalar hardening parameter g(a). The general form of g(o) is 
substantially reduced by invoking invariance requirements based on material sym­
metry. The general invariant-based theory developed herein is specialized to case of 
transverse isotropy and applied to the analysis of a nonlinear elastic-plastic unidi­
rectional composite material. The invariant-based theory is shown to produce su­
perior results over the traditional approach for a series of uniaxial and biaxial load 
cases predicted using finite element micromechanics. 

Introduction 
The mathematical theory of plasticity is based on the exist­

ence of a plastic potential or yield function which demarcates 
the material behavior from elastic to plastic. The yield function 
is, in general, dependent on the stress state, and perhaps on 
an internal state vector which characterizes the plastic state of 
the material. The stress state must lie on the yield surface in 
order for plastic deformation to occur. Furthermore, one can 
show, using the energy arguments, that the increment in plastic 
strain must be normal to the yield surface. Therefore, a general 
form of an isotropic constitutive law for plastic strain incre­
ments assumes the form 

defi = dX--, (1) 

where $ is the yield function. The scalar d\ is normally de­
termined by assuming there exists a unique effective stress-
strain curve for the material such that the plastic work may 
be written as 

dWp = ade". (2) 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME­

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Mar. 3, 1989; final revision, June 30, 1990. 

One can show the value of d\ is a function of the tangent 
modulus of the effective stress-strain relation. The form of the 
effective stress-strain curve is determined experimentally using 
a specific load path and is then assumed to be valid for any 
multiaxial loading. This assumption is the foundation of iso­
tropic plasticity and has generally been observed to be true for 
a wide variety of metals. 

The constitutive law given by equation (1) has been extended 
to anisotropic materials by several investigators. Perhaps the 
most well known of these is attributable to Hill (1950) who 
developed an orthotropic plasticity theory for cold-rolled steels. 
The theory has its roots in the isotropic formulation and uses 
an effective stress-strain relation to determine the specific value 
of d\. This approach has been specialized to the case of trans­
versely isotropic materials to investigate the behavior of uni­
directional composite materials (Griffin et al., 1981). 

The theory developed by Hill (1950) is fundamentally sound 
and represents a major contribution to the theory of aniso­
tropic plasticity. However, application of this theory to high-
performance unidirectional composites must be questioned. In 
particular, we do not accept the concept of an effective stress-
strain relation for highly anisotropic materials of this nature. 
The problem lies in the fact that the tangent modulus of the 
effective stress-strain relation is generally load-path dependent 
for this type of material. For instance, the behavior of many 
high-performance composites may be either linear elastic to 
failure or highly inelastic depending on the type of loading. 
The difference in behavior may be attributed to a variety of 

Journal of Applied Mechanics DECEMBER 1991, Vol . 58 / 881 

Copyright © 1991 by ASME
Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



deformation mechanisms occurring on the microscale which 
are load-path dependent. Hence, the question arises as to what 
load path should be used to determine the tangent modulus, 
and hence d\, when the material is under multiaxial loads. 

The lack of a unique effective stress-strain relation for an­
isotropic materials has been noted by several previous inves­
tigators. Kenaga et al. (1987) developed a two-dimensional 
orthotropic plasticity theory to predict the plane stress behavior 
of unidirectional boron/aluminum composites. An optimum 
effective stress-strain relation was determined for the material 
using a trial and error analysis of off-axis tension test data. 
Sun and Chen (1988) extended the work of Kenaga et al. (1987) 
by reducing the number of coefficients needed for the effective 
stress-strain relation from three to one. A drawback to these 
works is that the parameters used to trial and error fit the 
effective stress-strain relation also directly influence the yield 
function. This is theoretically overly restrictive in the sense 
that the yield function should not be influenced by the effective 
stress-strain relation. Furthermore, the procedure for extend­
ing the theory to fully three-dimensional stress states is unclear. 

Gotoh (1977) assumed a yield function that is fourth order 
in stress in his investigation of cold-rolled steels. While not 
directly applicable, he makes an important observation noting 
the tangent modulus of the "effective stress-strain" curve is 
in fact dependent on the type of loading, even though the 
curves should be intrinsically unique for a given material. 

To alleviate problems associated with a flow rule for aniso­
tropic plasticity we develop a plasticity theory in which the 
flow rule does not require an effective stress-strain relation. 
The constitutive law is cast in a form which sheds considerably 
more light on the specific nature of the flow rule. In particular, 
we reduce the problem to developing an accurate expression 
for a scalar-hardening parameter g(a). One significant aspect 
of this theory is that the explicit value of the scalar g(a) varies 
depending on the specific location of the stress state on the 
yield surface. This approach is in sharp contrast with the tra­
ditional approach of Hill in which g(a) is a constant everywhere 
on the yield surface. This is an implicit result of assuming the 
existence of an effective stress-strain curve. 

The general form of g(<r) can be substantially simplified by 
invoking invariance requirements on the material based on 
material symmetry. This is accomplished through the use of 
representation theorems for tensor functions. These theorems 
place valuable restrictions on the possible functional forms of 
tensor functions and are particularly useful when modeling 
anisotropic materials. 

Two examples of the use of representation theorems for 
modeling anisotropic plasticity may be found in the work of 
Boehler (1987) and Spencer (1987). Boehler has developed an 
anisotropic-hardening theory for rolled sheet-steel whose mac­
roscopic behavior is orthotropic. The constitutive law devel­
oped assumes the form 

T = F(D, P, M) (3) 

where T, D, and P are the stress, kinematic, and prestrain 
tensors, respectively. M is a structural tensor which charac­
terizes the initial orthotropy of the material. Invariant-based 
yield criterion and hardening rules are then formulated based 
on an irreducible representation of equation (3) using repre­
sentation theorems for tensor functions. 

Spencer (1987) has also developed a plasticity theory for 
anisotropic materials based on representation theorems. In this 
work, plastic strain increments are defined in a manner anal­
ogous to equation (1). However, the current state of hardening 
is assumed to depend on the history of the strain rather than 
the current stress as proposed in this work. Hence, scalar 
invariants of the strain tensor are defined and general theories 
of "proportional hardening" and kinematic hardening are de­
veloped. 

Problems Associated with Anisotropic Incremental 
Theories 

Here we discuss some problems associated with incremental 
anisotropic theories when applied to unidirectional composite 
materials. We assume the composite may be modeled as a 
transversely isotropic material. In doing so, we specialize the 
orthotropic theory proposed by Hill (1950) to discuss these 
problems. However, these same problems associated with the 
Hill theory are present in many of the modified theories in 
which the yield surface is altered in some manner. 

Hill proposed that the simplest yield criterion for an aniso­
tropic material is one that reduces to the von Mises yield cri­
terion when the anisotropy is vanishingly small. In the spirit 
of Hill, a quadratic form of the six components of stress is 
chosen for a transversely isotropic yield function as 

3> = <£-0, (4) 
where 

4> = F{o21- a33)
2+ G(a33- ffn)2 + G(cn- a22)

2 

+ (G + 2F)(a2
2i + al1)+M(al

n + a
l
l + a\1 + a2

2X), (5) 
where the Xj-axis represents the axis of rotational symmetry. 
The value 4> Represents the largest recorded value of 0. For 
initial yield, <f> is taken to be unity. This approach represents 
an isotropic hardening theory. 

In the foregoing equations, F, G, and M are parameters 
characterizing the degree of anisotropy. These parameters re­
main unchanged during deformation, consistent with an iso­
tropic hardening theory. 

As is customary the yield function, *, defines the following 
material behavior: 

* < 0 - elastic behavior, 
$ = 0 - the stress state lies on the yield surface, and 
$ > 0 - inaccessible state. 

Let afj represent the initial yield stresses referenced to the or­
thogonal material coordinates. The parameters F, G, and M 
in equation (5) can be solved as 

2r 2 1 
(o&2 (tfi)2' 

2 M W (6) 
The yield stresses ofy must be known from experimental data 
or estimated analytically, e.g., using finite element microme-
chanics. 

In order for plastic deformation to occur, the state of stress 
must lie on the yield surface, i.e., * = 0. Following Martin 
(1975), the increment in plastic strain may be written as 

/ d $ \ d$ 
d<*j = g(o) — d a „ — , (7) 

\oors / ddij 

when 

— dars>Q and $(ff) = 0. (8) 
oars 

Comparing equations (1) and (7) we see that the scalar dh of 
equation (1) is given by 

/a* \ 
d\ = g{a)\—-dars\. (9) 

The significance of the latter term in the above becomes ap­
parent by noting that d$/dcrra is a vector normal to the yield 
surface in stress hyperspace. Hence, {d$/dors)dors is a measure 
of the component of the incremental stress normal to the yield 
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surface. The sign of this term determines the loading condition 
for the material as follows: 

(d$/dors)dors > 0 loading; 

(d$/dars)d0rs = 0 neutral loading; 

(d$/dors)dors<0 unloading. 

From equation (8), we see that plastic strain increments can 
only occur during loading. 

To complete the theory one must develop a functional form 
for the scalar-hardening coefficient g(<r). The simplest form 
of g{&) is to assume it has the same value at any point on a 
given yield surface. This is the approach taken in isotropic 
plasticity. For instance, for a von Mises yield surface we can 
write 

* = 3 ^ 2 - / 2 ) , (10) 

where J2 represents the second invariant of the deviatoric stress 
and J2 represents the highest recorded value of J2 beyond initial 
yield. A common form assumed for the scalar hardening pa­
rameter is given by 

g(o) = g(Ji)- (11) 

The fact that g is only a function of the isotropic stress in­
variants is consistent with the representation theorems for a 
scalar function of a second-order tensor. 

An experimental test for some particular load path is used 
to determine the specific functional form of g (J2). The normal 
convention is to determine g(J2) from a uniaxial tension test. 
For this case we arrive at a final form for g(J2) given by 

g(Ji)=-
27 1 

16 J2\E
J(J2) E 

(12) 

where E and ET are the elastic modulus and tangent modulus 
from the uniaxial stress strain curve. The assumption that the 
form of g(J2) as determined from a uniaxial test is valid for 
arbitrary load paths is central to the success of plasticity theory 
for isotropic materials. This in fact has been shown to be true 
for many materials; see, for example, Ivey's (1961) work on 
silicon-aluminum alloys. Furthermore, it is precisely this same 
assumption which leads to difficulties in modeling anisotropic 
material behavior. 

Development of a functional form for the scalar-hardening 
coefficient in anisotropic plasticity follows the isotropic ap­
proach. For instance, the simplest approach is to assume g(a) 
is a function of the current yield surface 4>. This is in fact the 
approach taken by Hill (1950). To demonstrate this we follow 
the work of Hill and write 

d* 
00, 

The increment in plastic work is then given by 

3$ 
dWp = aude?j = aud\;j 

00, 

(13) 

(14) 

Noting equations (4) and (5) and carrying out the required 
differentiation gives 

dWp = 2d\4>. (15) 

To determine the constant dk we introduce the concept of an 
effective stress for the material which satisfies 

dWp = odep. (16) 

Following the work of Hill (1950), the specific choice taken 
for a is 

_ •J$(F(o22-ox)2 + G(oii-on)
1 + G(on-o22)

1 

a = —— I 
V 2 \ F+2G 

2(G + 2F)o\i + 2Mo\y+2Mo\2\
 m 

+ F+2G ) ' 

Comparing equations (5) and (17) it follows that 

2 F + 2 G 

(17) 

(18) 

The plastic work, as defined by equation (16), may be rewritten 
as 

dep 1 
dwP=:- d- = -d- — 

da H 

(19) 

(20) 

where 

J de" 
H'~ do' 

Differentiating equation (18) and substituting into equation 
(19) it follows that 

3 1 9</> 
dW = - -dOrs 

A(F+2G) H' dar 

Comparing equation (21) with equation (15), we obtain 

3 1 30 
d\ = - -da,. 

(21) 

(22) 
8</>(F+2G) H' dars 

Finally, noting equation (9) we obtain a form for the scalar-
hardening coefficient as a function of the yield surface given 
by 

3 1 
gW)=; (23) 

(F+2G) H' 

The function (\/H') is determined by considering a specific 
load path. For instance, consider a uniaxial tension test in the 
X\ direction. For this case the effective stress is 

3G 

F + 2 G an. (24) 

The effective strain is defined such that the increment in plastic 
work is energetically consistent with equation (14). Hence, 

(F+2G\U2 

d^[-^G-) *»" (25) 

Noting equation (20), the function (l/H') is 

J _ / 1 1 \ F + 2 G 

H' EL 3G 
(26) 

where Et j and ET
n denote the modulus and the tangent modulus 

of the uniaxial stress-strain curve. Substituting equation (26) 
into equation (23), the scalar-hardening coefficient becomes 

g(4>) 
1 1 1 

8 0 G \ £ n ( 0 ) Ey 
(27) 

Again, the fundamental assumption behind this approach is 
that the form for g(4>), determined from the uniaxial tension 
test, is valid for any multiaxial stress state. Herein lies a prob­
lem with the use of such a theory when applied to unidirectional 

, composite materials in that the scalar-hardening coefficient is 
dependent on the specific location of the stress state on the 
yield surface. Hence, the assumption that the value of g(4>) 
is a constant for any given yield surface is overly restrictive. 
The specific behavior of the scalar-hardening coefficient for 
unidirectional composite materials will be examined using a 
finite element micromechanics analysis. 

Finite element micromechanics has been extensively used to 
characterize the material behavior of unidirectional composites 
(Miller and Adams, 1977; Adams and Crane, 1984). This rep-
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Fig. 1 Finite element mesh used for the fiber-matrix micromechanics 
model 
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Fig. 2 Uniaxial tension stress-strain plot of a ductile matrix material 

resents a viable alternative to extensive experimental charac­
terization of materials, particularly for multiaxial behavior. 
For instance, parametric studies involving different fiber vol­
umes and constituent properties are readily carried out, thereby 
allowing one to characterize a wide variety of materials under 
various loading conditions. 

The finite element micromechanics analysis used in this in­
vestigation is a generalized plane-strain analysis of a quarter 
fiber and surrounding matrix, representative of a continuous 
fiber unidirectional composite material, as shown in Fig. 1. 
The fiber direction is taken to be X\. A square packing array 
is assumed for the fibers. 

For example purposes, we choose to model the fiber as a 
stiff transversely isotropic material which is linear elastic to 
failure. The matrix material is softer than the fiber and is 
assumed to behave elastic plastically. The uniaxial stress-strain 
curve for the matrix constituent is taken to be bilinear as shown 
in Fig. 2. The specific elastic coefficients for the fiber are: 

£ n = 417.0 GPa, £22 = £33 = 208.5 GPa, 

Gi2 = G13 = G23 = 83.4GPa, vn = vn = 0.2, K23 = 0 . 2 5 . 

The constituent behavior described above is not intended to 
model any specific material. Rather, the intent is to demon-

Fig. 3 Micromechanics generated stress-strain curves for longitudinal 
tension, transverse tension, and longitudinal shear loadings 

en 

00000 gUl Longitudinal Shear 
g(#) Transverse Tension 

Yie ld V a l u e * 

Fig. 4 Scalar-hardening coefficient plotted as a function of the yield 
surface for transverse tension and longitudinal shear load paths 

strate the fundamental problems associated with modeling 
highly anisotropic materials of this nature. However, it should 
be noted that the ratios of the elastic moduli are typical of 
those found in many high performance composites such as 
boron/aluminum and silicon-carbide/titanium. 

Figure 3 represents the behavior of the composite material 
as predicted by a micromechanics finite element analysis. The 
figure shows longitudinal tension (an), transverse tension (022). 
and longitudinal shear (a12) loadings. Note in Fig. 3 the lon­
gitudinal tension curve is not shown in its entirety since it is 
elastic to failure. The data clearly indicate the value for the 
scalar-hardening coefficient is strongly dependent on which 
loading is used to define g(<£). For instance, the longitudinal 
tension stress-strain curve is essentially linear elastic to failure 
resulting in no plastic strain. Hence, a value of g(</>)=0 is 
indicated. In contrast, the behavior of the same composite 
material subjected to shear loads is highly nonlinear, indicating 
a value g((j>)>0. Furthermore, the value of g(4>) is different 
for various loadings which exhibit plastic deformation. For 
instance, consider the longitudinal shear and transverse tension 
curves. Noting equation (23) the value of g(</>) may be deter­
mined for each load case as: 

012: g(4>) = (l/Gj2-l/G12)/(8<l>M) 

a22:gW = (l/E^2-l/E22)/(4<t>(F+G)) 

(28) 

(29) 

where Gi2 denotes the shear modulus and E22 represents the 
elastic modulus in the x2-direction. 
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Figure 4 shows a plot of g(4>) for the transverse tension and 
longitudinal shear loadings as determined by equations (28) 
and (29). The figure clearly indicates a difference in the be­
havior of the scalar-hardening coefficient. This is also evi­
denced in Fig. 3 where it is seen that the longitudinal shear 
behavior is much more nonlinear than the transverse tension 
data. The question then arises as to what relation to use for 
g(0) under multiaxial load cases. 

An Invariant-Based Flow Rule 

In this section we develop an advanced anisotropic plasticity 
theory in which the scalar-hardening coefficient is allowed to 
be load-path dependent. For comparison purposes, we assume 
a yield function identical to the one specified in equations (4) 
and (5). Furthermore, the plastic strain increments are assumed 
to be governed by equations (7) and (8), repeated for conven­
ience as 

dfHj --g(")\-—dars\-—, 
\aars ) doij 

when 

a$ 
dars 

dars>0 and *(<r) = 0. 

(30) 

(31) 

At this point we turn our attention to the scalar-hardening 
coefficient g{a). We note that g is a scalar function of a second-
order tensor. The functional form of g(a) may be restricted 
by considering invariance properties of the material. For ex­
ample, in modeling a unidirectional composite material, the 
usual approach is to assume the material is transversely iso­
tropic. Under this assumption the functional form of g(o) must 
remain unchanged for arbitrary rotations about the axis of 
symmetry. Denoting this axis as X\, the five transversely iso­
tropic stress invariants for such coordinate rotations are given 
by Spencer (1971) as: 

ai=an, «2=<722 + ff33> «3 = "22 + (^3 + 2(723 

«4 = aT2 + <7l3. fl,5 = °'220r12+ff330i3 + 2ff12ffl3ff23- (32) 

A mathematically correct representation of g(o) must be of 
the form 

g(a) = g(au a2, a3, «4, a5). (33) 

In order to further reduce equation (33), we must make some 
additional assumptions about the material behavior. First, we 
require the value of g(&) to remain unchanged when the signs 
of Ojj are reversed. This implies that we must deal with quad­
ratic forms for ait a2, and a5 as these invariants are odd func­
tions of stress. We reject the fifth invariant for simplicity in 
that of is sixth order in stress. A further simplification is 
achieved by rejecting the second invariant a2. In doing so, we 
are restricting the nonlinear behavior of the model in the sense 
that the behavior of g(a) will be identical for both transverse 
tension and transverse shear load paths. The micromechanics 
analysis used in this paper was unable to verify this as a square 
packing geometry is not truly transversely isotropic. However, 
it should be noted that the invariant formulation is capable of 
modeling differences in these load paths simply by incorpo­
rating the second invariant in the function form of g. There­
fore, a reduced form for g(a) is 

g(o) = g(auai,ai). (34) 

Finally, one may be tempted to eliminate the first invariant ci\ 
as the material is linear elastic to failure under uniaxial tension 
in the fiber direction. However, longitudinal tensile stresses 
do influence the nonlinear behavior of the material under mul­
tiaxial loads. This can only be accounted for by retaining a\. 

To complete the theory a specific functional form for g{au 

«3, «4) must be developed using experimental and/or micro-
mechanics data. The specific form will be material dependent. 
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Fig. 5 Scalar-hardening coefficient plotted as a function of the stress 
invariants a3 and a, for transverse tension and longitudinal shear load 
paths, respectively 

To begin, we consider specific load paths in which the invar­
iants a3 and «4 may be isolated. To study the effects of a4 alone 
we consider a longitudinal shear test in which CT^O and all 
other ay = 0. Rewriting equation (28) as a function of the fourth 
invariant gives 

ffi2:g4(«4) = ( l /Gf 2 - l /G 1 2 ) / (16f l 4 M 2 ) . (35) 

The third invariant may be isolated by considering a transverse 
tension test in the .^-direction. For this we can rewrite equation 
(29) to obtain 

on' g(fl3) = ( l /£ f2 - l /£22) / (4a 3 (F+G)2). (36) 
The behavior of the scalar-hardening coefficient as a function 
of the third and fourth invariants is shown in Fig. 5. A linear 
regression analysis of the data yielded the following forms for 
ft and g4: 

g3 = 1.2 (1(T6) a3 - 1.2 (10"') MPa 

g4 = 3 .0 (10 _ 5 )« 4 -0 .5 MPa. 

(37) 

(38) 

At this point one must assume a functional relationship for 
the scalar-hardening coefficient under multiaxial loads. The 
form chosen must reduce to the specific forms defined by 
equations (37) and (38) for the corresponding loading condi­
tions. Furthermore, the influence of longitudinal stress on the 
nonlinear behavior must be incorporated. A negligible coupling 
effect between <ru and <J22 was observed in biaxial microme­
chanics analyses. However, there was significant coupling be­
tween on and <712 in biaxial runs. Therefore, the final form for 
the scalar-hardening coefficient was taken as 

S(«l> «3, « 4 ) = ^ g 3 ( t f 3 ) + ^ ( g 4 ( « 4 ) + g l ( a i ) ) ( 3 9) 
a3 a | 

where a* and a 4 are values of the stress invariants at the current 
yield surface as determined from a uniaxial transverse tension 
and a longitudinal shear load case, respectively. The influence 
of the first invariant was determined from a single biaxial 
micromechanics test in which an = \0an. The specific func­
tional form taken for gi(tfi) is 

ft (a,) =6.5 (lO"8) o f -0 .5 (10"14) a\. (40) 

It should be noted that the coefficients of equation (40) are 
several orders of magnitude smaller than those of equation 
(38). This is consistent with the notion that longitudinal tension 
stresses do not have a major influence on the yielding of the 
material. However, the work performed here indicates that 
these stresses cannot be totally neglected. 
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Fig. 6 Comparison of numerical micromechanics predictions with the 
invariant-based formulation and Hill's theory for a longitudinal shear 
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Fig. 8 Comparison of ff,r(n stress-strain predictions for a combined 
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Fig. 7 Comparison of numerical micromechanics predictions with the 
invariant-based formulation and Hill's theory for a transverse tension 
loading, a22 

The form of the scalar-hardening coefficients shown in equa­
tion (39) is now assumed to be valid for general three-dimen­
sional loadings. While the approach used to determine a form 
for the scalar-hardening coefficient is not general, it does in­
dicate the salient feature of the invariant based theory in that 
g(<r) is allowed to vary on the yield surface. This may be 
contrasted with the classical theory in which g( <r) is a constant 
everywhere on the yield surface. 

Results 
In this section we compare the invariant-based theory and 

the classical theory based on the work of Hill (1950) for a 
transversely isotropic material using a series of uniaxial and 
biaxial load cases predicted by finite element micromechanics. 
It should be noted that all shear stress-strain data is presented 
graphically using the engineering definition of strain as is cus­
tomary. However, the equations developed in the previous 
section are based on the tensorial definition of shear strain to 
take full advantage of indicial notation. 

To begin, one must choose a specific load path to determine 
the scalar-hardening coefficient g(4>) to be used in the Hill 
formulation. For example purposes, we shall determine g(<£) 
using the longitudinal shear data shown in Fig. 3. This is a 
reasonable approach in that <JI2 is the stress for which the most 
pronounced nonlinearity is observed. To choose the longitu­

dinal tension curve, as is traditional for isotropic plasticity 
theory, would indicate g(<j>) as zero. This would suppress all 
plastic strains for any applied load path. This fact alone should 
cause one to question the validity of an effective stress-strain 
curve for anisotropic materials of this type. Finally, because 
the longitudinal tension behavior of the material is linear elastic 
to failure, the yield stress is defined as the ultimate stress for 
this loading. 

One could argue that an optimum effective stress-strain curve 
could be chosen based on averaging all available data in order 
to minimize the error. This was the approach taken by Kenaga 
et al. (1987) for a biaxial test program. However, for fully 
multiaxial stress states such a procedure is unclear. Further­
more, as will be demonstrated, one can not totally eliminate 
the errors in this manner as the error is not consistent. 

Figures 6 and 7 compare the longitudinal shear (<7i2) and 
uniaxial transverse tension (022) numerical micromechanics 
predictions with the invariant-based theory and the classical 
formulation put forth by Hill. As expected, the two theories 
fall extremely close to the micromechanics prediction for lon­
gitudinal shear loading as shown in Fig. 6. However, the results 
are markedly different for transverse tension loading depicted 
in Fig. 7. For this case, the invariant-based theory tracks the 
micromechanics predictions while the Hill formulation predicts 
a much softer response. The discrepancy in the value predicted 
by the Hill formulation may be attributed to g(<j>) being a 
constant for the entire yield surface. 

A series of biaxial as opposed to uniaxial loadings were also 
modeled using finite element micromechanics to further com­
pare the two plasticity theories. In each case the loading was 
assumed to be proportional and monotonically increasing. Fig­
ure 8 presents a on-en stress-strain curve for a combined 
longitudinal tension (<jn) and longitudinal shear (ol2) loading 
where ou - IOCT .̂ The numerically predicted behavior of the 
material is near linear elastic. Both the invariant-based and 
Hill formulations agree quite well with the numerical results. 
The theory developed by Hill works well in predicting this 
behavior because the anisotropic yield parameter G is very 
small, tending to suppress incremental plastic strain values for 
this loading mode. Figure 9 shows the 0-12-712 response for 
the same biaxial loading (on = lOcr̂ ) case. Here, the invariant 
formulation performs slightly better than the Hill formulation 
although both theories are close to the micromechanics re­
sponse. However, it is worth noting that the Hill formulation 
is conservative for this case, which is in sharp contrast to other 
biaxial cases. This is especially interesting in that g(<t>) was 
determined from shear data showing the greatest degree of 
nonlinearity. 
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Fig. 14 Comparison of 1722-622 stress-strain predictions for a biaxial load­
ing given by <r22 = C33 

Figures 10 and 11 compare the plasticity theories for a biaxial 
loading combining longitudinal tension (on) and transverse 
tension (ff22) where an = 5a22- The longitudinal tension data 
shown in Fig. 10 again reflect a linear response for all three 
curves. However, the transverse tension stress-strain response, 
Fig. 11, shows the invariant formulation is superior to the 

classical theory in following the numerical micromechanics 
results. 

Similar results were found for biaxial analyses involving 
transverse tension (0-22) and longitudinal shear (a12) as shown 
in Figs. 12 and 13. The load path was taken to be CT22 = 2<TI2-
For the longitudinal shear results plotted in Fig. 12, the in-

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 / 887 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



variant-based formulation tracks the micromechanics analysis 
while the Hill formulation is significantly softer. The transverse 
tension results plotted in Fig. 13 are interesting in that both 
theories show a softer response than that predicted by micro-
mechanics. However, the invariant based theory represents a 
substantial improvement when compared to the Hill formu­
lation. 

Finally, Fig. 14 shows a comparison of the two theories with 
micromechanics for a biaxial plot where <T22 = 033- In this case 
both theories perform extremely well. 

In summary, the correlation of the invariant-based for­
mulation with the predicted micromechanics results is excel­
lent. In contrast, the Hill formulation worked well for some 
load paths while breaking down for others. The improved 
results of the invariant based theory may be attributed to 
allowing the value of the scalar-hardening coefficient to vary 
over the yield surface. The results are particularly pleasing in 
that a relatively simple form of the scalar-hardening function 
was assumed. 

Discussion 
In this paper we have developed a generalized anisotropic 

plasticity theory using an invariant-based flow rule. In partic­
ular, we allow the value of the scalar-hardening coefficient to 
vary depending on the specific location of the stress state on 
the yield surface. The functional form of the scalar-hardening 
function is developed in terms of the stress invariants and 
without the assumption of an effective stress-strain relation. 
The specific form of g(&) may be significantly reduced by 
invoking invariance requirements on g based on material sym­
metry. This formulation permits more accurate modeling of 
uniaxial and multiaxial load cases without imposing the overly 
restrictive requirement of an effective stress-strain relation. 

Development of an invariant-based flow rule has been slowed 
in the past by the specific requirement for an effective stress-
strain relation. As has been demonstrated, such a relation 
generally does not exist for high performance, unidirectional 
composite materials. The assumed existence of an effective 
stress-strain relation implies the scalar-hardening coefficient is 
constant everywhere on the yield surface. Mathematically, this 
is an overly restrictive assumption in that g (a) is in general a 
function of the stress state. However, this fact is not imme­

diately observable unless one casts the constitutive law in the 
form shown by equation (7). 

Finally, we note that the invariant based theory developed 
here is based on an isotropic hardening model. For structures 
subjected to cyclic loading or significantly varying load paths 
it may be necessary to develop a kinematic hardening model. 
We refer to the excellent experimental work on metal matrix 
composites conducted by Dvorak et al. (1988) as an example. 
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Acoustic Emission From Single-
Plate Martensitic Transformation 
Martensitic transformation occurs in a diffusionless manner at high velocity, with 
acoustic emission (AE) being generated during the process. The AE signal contains 
information about the dynamic process of martensitic transformation. In this anal­
ysis, a model is developed for the AE signal, or dynamic displacement, from the 
transformation strains and the growth process of martensitic transformation in an 
elastic half-space using Green's functions. The AE signal amplitude is found to be 
inversely proportional to the distance between the martensite source and the sensor, 
and to the duration of transformation. It also depends on the orientation of the 
martensite plate. The spectral bandwidth increases as the duration of plate formation 
decreases. In addition, raising the carbon content increases the fraction of plate 
martensite, and consequently the signal amplitude. 

Introduction 
Acoustic emission (AE) is defined as the high-frequency 

elastic waves from the rapid generation of strains (or stresses) 
in processes such as martensitic transformation, crack for­
mation, and plastic deformation. Martensite may form during 
the welding of some alloy and high-carbon steels, and since it 
is a potential cold-crack former, it is desirable to monitor its 
formation. Some amount of work has been done in this regard. 

Rice (1980) considered AE from damage processes such as 
slip microcracking. He gave general representation of the dis­
placement field of an AE event in terms of the double-couple 
response to a distribution of "moment density tensor" in the 
source region. Simmons and Wadley (1984) developed an in­
tegral equation for the acoustic emission displacement field 
due to the formation of inhomogeneous inclusions during phase 
transformation. Their solution is elegant and general, but the 
growth process of martensitic transformation is not explicitly 
considered, and the result cannot be interpreted in detail. Kan­
natey-Asibu and Dong (1986) subsequently developed a sim­
plified model for martensitic transformation using Gibbs free 
energy change, where a relationship between the RMS (root-
mean-square) voltage of the AE signal, the transformation 
temperature, the cooling rate, and the transformed volume 
was obtained. Liu and Kannatey-Asibu (1990) extended this 
model for athermal martensitic transformation and verified it 
experimentally using AISI 4340, 1045, 1060, and 1075 steels. 
The intensity of the AE signal generated during transformation 
was found to be proportional to the cooling rate and the volume 
of specimen. The AE signal was also found to be related to 
the carbon content of the steel and the fraction of martensite. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED M E ­

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Aug. 8, 1989; final revision, June 4, 1990. 

Journal of Applied Mechanics 

In this study, the stress-free transformation strains for mar­
tensitic transformation and Green's functions are used to ob­
tain the dynamic displacement at the epicenter. Solutions for 
the AE signal in the time and frequency domains for a double 
cone-shaped martensite plate are obtained. 

Analysis 
Let us define the martensite source as a region V inside an 

elastic isotropic and homogeneous medium D (Fig. 1); this 
region undergoes a spontaneous, uniform, nonelastic defor­
mation strain or stress-free transformation strain ef„„(x',t') at 
position x' and time / ' , while constrained by the surrounding 

Fig. 1 A martensite plate inside an elastic homogeneous half-space 
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material. If the boundary L of D is traction-free, then the 
resulting total displacement field at time t in the global co­
ordinate system x is given (Willis, 1965; Mura, 1983) as 

i/,-(x,0=-] j Cjlmnetm{x' ,t')GiU{x,x' ,t-t')dt'dV (1) 

where 
Uj(x,t) = displacement in the x-direction at position x and 

time /; 
Cjimn = elastic constant, v/ith j,I,m,n= 1,2,3; 
ej,„(x',t') = stress-free transformation strain or eigenstrain 

at position x ' and time t', with m,n= 1,2,3; 
Gjj(x,x',t-t') = Green's function or displacement com­

ponent in the ^-direction at sensor location x and time t due 
to a unit impulse force in the Xj -direction at x ' and time t'; 
and 

Gijji(x,x',t-t') = dGy(x,x',t-t')/dxi. 
The stress-free transformation strain or eigenstrain is the non-
elastic strain such as thermal expansion, phase transformation, 
plastic, or misfit strain (Mura, 1983). 

Considering the effect of martensite growth, we can write 
the stress-free transformation strain as 

£m«(x ' . t ') = e*„„H(t' - tM) (2) 

where 
e*m„ = magnitude of e*m„(x',t')\ 
H(t' -tM) = the Heaviside unit step function; and 
tM=the martensite front propagation time, 0<tM<r. 
The transformation front is considered to be at position x ' 

at time tM. Thus, the stress-free transformation strain can be 
written as a function of tM instead of x ' in equation (2). 

Since the stress-free transformation strain from the marten-
sitic transformation is usually defined in the local coordinate 
system X (which is parallel to the crystallographic directions 
of the austenite matrix in this analysis) and the local coordi­
nates Xu X2, X} of the martensite plate do not necessarily 
coincide with the global coordinates X\, x2, x3, a transformation 
matrix a has to be applied to the stress-free transformation 
strain (Boresi and Chong, 1987): 

(an an a\i\ 

«21 a22 «23 ) 

«31 «32 «33/ 

where a,y = cos(</>,y) denotes the cosine of the angle between the 
x,-axis and Xy-axis. 

The strain in the global coordinate system x is thus rewritten 
as 

em«(x' ,t') — aamapn6upH(t' - tM) (3) 

where ej^ is the strain magnitude in the coordinate system X, 
and a,|8 = 1,2,3. Substituting for e *mn(x' ,t') in equation (1) gives 

u,{x,t)=-Cj •jlmnaamaPneaP I I H{t' 

~tM)Gijj(x,x',t-t')dt'dV. (4) 

Further expressing equation (4) in terms of Green's function 
for a step force input (Johnson, 1973), we have 

J n + 00 

(dH(f 
H-oo 

-tM)/dt')G^,(x,x',t-t')dt'dV (5) 
where G"j is the spatial derivative of Green's function for a 
step force input. 

Since dH(t' - tM)/dt' =d(t' - tM), we now have 

Ui(x,t)=-Cj •jlmnOam
afin^a0 \ \ 8(t' 

-tM)G"tl(x,x',t-t')dt'dV (6) 

a 
XJ 

Fig. 2 Schematic of martensite growth 
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which further reduces to 

u,(x,t) - - Cjimnaamaf3nea^ I Gy,/(x,x' ,t— tM)dV. (7) 

Now consider a double cone-shaped martensite plate trans­
forming at a radial velocity of v\ and simultaneously thickening 
at velocity v2 (Fig. 2). The midrib area at time tM is 

A(tM) = *v\tl, 

and the amount of martensite transformed during the interval 
dtM is 
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Twin 1 

Fig. 5 Regions 1 and 2 for a twinned martensite plate (Porter and East-
erling, 1981) 

dV=2A(tt/j)v2dtM=2-Kv\v2t
1
MdtM. (8) 

Equation (7) can then be rewritten as 

Uj{x,t)= —2-KV\V2Cjimnaamai3„eap\ Gyj(x,x',t-tM)tMdtM 

(9) 

where T is the duration of transformation of a martensite plate. 
Applying the Taylor expansion to G^,/(x,x' ,t-tM) about the 

centroid of the martensite source Xo, we have 

G" ,(x,x ',t-tM) = G",(x,x0' ,t-tM) + G",k(x,Xo ,t - tM)Axi + ... 

where A X^ = X^-XQ. Considering a point source approxima­
tion, we can then neglect the higher-order terms: 

Ui(x,t) = - 2irViV2Cjim„aamap„e*p \ Gyj(x,Xo ,t— t^)tMdtM-

(10) 

The approximation is valid if the size of the source (mar­
tensite) is much smaller than the distance d between the source 
and the sensor and the signal frequency information considered 
is not too high. (The errors introduced by the point source 
approximation are discussed by Simmons and Clough, 1981.) 
The displacement along direction x3 (perpendicular to the sen­
sor mounting plane) at sensor location (0, 0, 0) can thus be 
approximated as 

u3(t) = - 2irv2iV2Cjim„aamae„e*0 G"t,(t - tM)tlfdtM (11) 

where G%j(0,Xo,t-tM) is simplified as G%j(t-tM). 
For a sensor located at the epicenter in an elastic half-space, 

all G%j = 0, except Gf,,, = G^,2 (see Fig. 3) and G33,3 (Fig. 4) 
(Sinclair, 1979). As a result, equation (11) becomes 

u-s(t) = - 2irv i v2Cjjmnaamafi, ne£p \ Gyj (t-tM)t2
MdtM. (12) 

For isotropic materials, the nonzero C" are given by 

Cl 111 = Cl222= C3333 = X + 2/i 

Cll22 = Q133 = C2233 = C2211 = C331J = C3322 = X 

C2323 = C3232 = C3131 = C i 3 1 3 = C1212 = C2121 = fl. 

For Cjj„,„, the only nonzero terms are Cu where 
j,m= 1,2,3. Therefore, the displacement can be written as 

"3(0 = - 2iryiU2Cji>lm«amapmeJfl I Gyj(t- tM)t2MdtM. (13) 

Figure 5 illustrates the twinned regions of a martensite plate. 
If the crystal lattice rearrangement is from f.c.c. to b.c.t. (as 
occurs in steels), then the stress-free transformation strains in 
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the local coordinate system X are given in regions 1 and 2, 
respectively, by the tensors (Mura, 1983) 

«*(!) = 

and 

Note that r/j 

«*(2) = 

\J2~a-a0 

vi 0 0 

0 1J2 0 

. 0 0 ij,_ 

V2 0 0" 

0 in 0 

0 0 in 

and t}2 = , where a and c are 
a0 '" a0 

lattice parameters of the body-centered tetragonal structure, 
and a0 is the lattice parameter of the face-centered cubic struc­
ture. 

The overall strain for the plate is then given by 

e* = r„€*(l) + (l-r„)€*(2) 

where rv is the volume ratio between regions 1 and 2 in a twinned 
martensite plate. 

The necessary conditions for the overall strain to be an 
invariant plane strain is that one of its diagonal elements must 

vanish, i.e., r„ij| + (1 -rv)r]2 = 0, giving / •„=-- Vi (Khacha-
11 \-1)1 

turyan, 1983). Substituting for rv in the preceding equation 
yields 

0 0 0 

0 m + m 0 
0 0 i|, 

(14) 

From equation (14), e*p = 0, if a^ /3 . Equation (13) can then 
be written as 

"3(0 = - 2Trv2v2Cjjmma2
am£*a \ G?jj{t-tM)t2MdtM. (15) 

To compare signals from different martensite plates, we will 
use the same-sized reference. The total volume of the marten­
site plate is given by 

2wv2v2t
2

MdtM=- TTVIV^3. (16) 

The signals amplitude per unit volume of martensite thus 
becomes 
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"3(0 
VM~ 

.3 Q / a1 <=* 
nu artifact r 

J0 

^ ijj (.t~tht)t Mdtfr (17) 

Figure 6 shows the displacement for different durations of the 
transformation T. The displacement signals increase from zero 
at the longitudinal wave arrival time t = t\ to a maximum at 
t = t\ + T, with another peak occurring at the shear wave arrival 
time t = 2tl. The first peak amplitude depends on the trans­
formation period T, increasing as the period decreases, while 
the second peak is nearly independent of the period. Both 
peaks, however, are delayed for longer transformations. The 
corresponding frequency responses obtained by the fast Four­
ier transform for different T are illustrated in Fig. 7. Note that 
the frequency response contains periodic oscillations that result 
from truncation of the waveform. 

As we can see from Figs. 3 and 4, there is an impulse at the 
longitudinal wave arrival time t=tt for Gf3,3, but not for 
G"iti and Gf2,2- The impulse has a dominant effect on the 

j 
displacement «3(0 if — « 1. This can be shown as follows: 

h 

\ (G^Mlfdt Jo 

T GnjtMdt 

b(t-ti-tM)tM<it^ 

\ [0.5?! 5(.t-h-tM) + 1.2]tl,dtM 

(t-hf 

{t-tx)
2 + A.?,T2[L 

where 0.55(t-ti-tM) is the impulse of the Green's function 
-4Tr/irf2Gf3]3 and 7.2 is its maximum amplitude. The above 
ratio is almost equal to unity, except when t is very close to 
t[ («3(0 = 0 when t=tx). Thus, the impulse has a dominant 
effect on u3(t). Similarly, we can show that the effects of 
Gf],i and Gf2,2 are also negligible. This is evident in Fig. 8 by 
comparing «3(0a and w3(0> where the w3(/)s curve is shifted by 
0.004 ms on the abscissa for clarity. 

rewrite equation (17) with G"iti(t-tM)d = We thus 
v2

s 

lirixVpd 
U~tM) (Sinclair, 1979), and the signal ampli­

tude per unit volume of martensite then becomes 
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Fig. 9 Frequency response of AE signal from martensitic transfor­
mation 

u3(t)s_ 3 

VM 2irnvp 

\VS 9 I 2 
vprd J0 

•Svl 
= Z —,Cnmmaime*M-hi, h<t<h + r (18) 
2-K\s.VpT a 

or 

where 

"s(0a, 3v 

VM 2irixVprd 
3 j *--33mw^am^aa (19) 

ti = d/vp, = the longitudinal wave arrival time; 
d = the distance between the sensor and martensite source; 

and 
H = the shear modulus. 

Since the frequency response of the AE signal provides ad­
ditional insight into the characteristics of the source, we also 
consider the analysis in the frequency domain. Taking the 
Fourier transform of equation (18), we get 

"3(^)5 «3(0« "dt 

3D; 

2-Kfir 

l j.q-1-T 
L T ^ C3immcramtaa \ (t~h)ew dt 
VpCt J,j 

K 
e-' '"< ' i + r)(2a)7+/a>V + 2/(e 'w-1)) (20) 
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3vj , 
where K=- j CiimmcQme*aa, and 

2irn.vp 

—21^°- = - T T - sj (2WT- 2sin(oT))2 + (<A2 - 2 + 2cos(or))2. 

(21) 

The corresponding response is shown in Fig. 9. For very small 
U>T, equation (21) can be further simplified by considering that 
eiwT- 1 « i u r - (O>T)2/2 - ico\3/6. Thus , 

and 

IM3(&))«I A : 

KM 3rf 

(22) 

(23) 

Discussion 
To obtain the AE signals detected by an AE transducer, we 

must consider the response of the transducer and the instru­
mentation in the analysis. Assuming we have a transducer 
monitoring the process at position x = (0, 0, 0), we specify the 
response of the transducer and the instrumentation as T^t - 1 ' ) . 
From equation (17), the voltage at time t due to martensite 
formation is then given by 

V(t)AE 3 „ , 
3 ^-^jjmmu artifact f f T# 

-t')G%j{t'-tM)t2
MdtMdt' (24) 

T~3 C/ym,„aJme*ar3(co)G3jj(a))e , U I , I + T,(2WT 
KM T V 

+ KoV + 2/(e""T-l)) (25) 

in the frequency domain. 
For r/t\ « 1, equation (18) becomes 

V{t)AE_ 3 " 2 

F M 27T^^P 

it^ 2 t f1+r 

3 3 j (^33mmaamecta \ * 1\* 
VPT a J, 

lath martensite has a much smaller velocity, the duration of 
formation being about 10~4 s (Liu, 1981). From Figs. 6 and 
7, it is evident that the AE signal amplitude decreases as the 
duration of transformation increases. Thus, the intensity of 
the AE signal from the lath martensite is expected to be much 
smaller than that from plate martensite. As the carbon content 
increases, the fraction of plate martensite increases. Therefore, 
the AE signal is expected to increase in intensity. This explains 
why higher carbon steels generate signals of greater amplitudes 
(Speich and Fisher, 1972; Liu and Kannatey-Asibu, 1990). 

Most commercial piezoelectric transducers have a frequency 
range of 50 KHz to 1 MHz, which cuts off the low and high-
frequency information. Plots of the spectral characteristics of 
AE signals from martensitic transformation in this frequency 
range, in Figs. 7 and 9 show that the bandwidth of the AE 
frequency response increases as the duration of formation T 
decreases. For the plate martensite in carbon steels, T is about 
10~6 to 10~7s, resulting in an almost constant frequency re­
sponse (Fig. 9). This means that the AE signal from plate 
martensitic transformation can be detected over a wider fre­
quency range than that for lath martensite. If the process noise 
exceeds a certain frequency range and amplitude, then a res­
onant sensor can be used to minimize noise problems. 

From the literature (Nishiyama, 1978) for tetragonal mar-
tensites in carbon steels, the lattice parameter 
a0=3.546 + 0.0467 percent C, c = 2.8625 + 0.1176 percent C, 
and the axial ratio c/a= 1.00 + 0.045 percent C. Thus, for 0.4 
percent C carbon steel, r/i = 0.134, r/2 = -0.184, and the non­
zero terms in the overall strain matrix (equation (14)) become 
^22= -0 .05 and £33 = 0.134, while for 0.8 percent C carbon 
steel, r)i = 0.126, ij2= -0 .175, e|2= -0.049, and e$3 = 0.126. 
The changes in eh and e|3 due to a 100 percent change in 
carbon content of the steel are less than 6 percent; conse­
quently, the effect of variations in the stress-free transfor­
mation strain variation is not significant. A more pronounced 
effect is attributed to the duration of formation of a martensite 
plate. Thus, the increase in the AE signal amplitude with car­
bon content is due primarily to a larger fraction of plate mar­
tensite, which has a much higher transformation velocity, i.e., 
a much shorter duration of formation T, than that of lath 
martensite. 

•t')(t' - hfdt' (26) Conclusions 

or 

V(O>)AE 

VM 

3vi 
2-KfiVpT dw 

+ /o)2T2 + 2i(e /a ,T-l)) (27) 

in the frequency domain. 
For an AE sensor sensitive only to displacement, the detected 

AE signal from martensitic transformation is a function of the 
resulting surface displacement. From equation (24), it is evident 
that the AE signal will depend on material properties such as 
Cjjmm or X, p. Thus, for a given set of conditions, different 
materials will result in different signal amplitudes. However, 
for a given material, say steel, these properties do not change 
very much; as a result, the AE signal will not be significantly 
affected. The results of the analysis further indicate that the 
amplitude of the AE displacement for a unit volume of material 
is inversely proportional to the distance between the source 
and sensor as well as the total time it takes to form a plate of 
martensite, as is evident from equation (19). 

In carbon steels, there are two types of martensite mor­
phology, i.e., lath martensite and plate martensite. Even though 
our analysis is based on a plate martensite we can make a 
qualitative comparison by first estimating the signals from both 
lath and plate martensites. Plate martensite in high-carbon 
steels transforms in about 10~6 to 10~7 s at a transformation 
velocity of about 1000 m/s (Bunshah and Mehl, 1953), while 

In this study, the dynamic displacement that is detected as 
acoustic emission is obtained by considering the stress-free 
transformation strains for martensitic transformation. The so­
lution is simplified by considering the martensite plate to be 
a point source with the sensor at the epicenter. Further sim­
plification can be made by considering the impulse of the 
spatial derivatives of Green's function for a step-force input 
G?3,3(/-?M)5- Because the duration of transformation of a 
plate martensite is much shorter than that of a lath martensite 
and the fraction of plate martensite increases as the carbon 
content increases, the AE signal amplitude is found to increase 
with rise in carbon content. The signal in the frequency domain 
is found to increase in bandwidth as the duration of trans­
formation for a single plate of martensite decreases. 
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Elastic-Plastic Deformation in 
Surface-Cracked Plates: 
Experiment and Numerical 
Analysis 
Detailed three-dimensional nonlinear finite element (FE) analyses and experimental 
moire studies are performed on a plate containing a moderately deep part-through 
surface crack to establish limits of HRR-dominance. The plate is subjected to pre­
dominantly far-field tensile loading. The material under investigation isASTMA710 
steel, which was constitutively modeled by large deformation J2 flow theory of 
plasticity. The FE mesh was carefully constructed to resolve both crack front fields 
(such as i-integral and CTOD) and global fields (such as surface displacements, 
strains). By comparing the i-integral and CTOD results with an earlier HRR-
dominance study using (small strain) deformation theory of plasticity, we found 
little effect of the different formulations on the crack front fields. The global 
deformation fields from the numerical simulation are in good agreement with our 
experimental results. The eventual loss of HRR-dominance is intimately related to 
the interaction of the global plastic flow fields with those of the crack front. 

Introduction 
One of the major tasks of fracture mechanics is to establish 

similarity of crack-front fields between laboratory specimens 
and a structural component. Under certain conditions, exist­
ence of crack-front similarity ensures existence of single pa­
rameter characterization. Among those single parameters which 
make fracture mechanics practically feasible are the stress in­
tensity factor K, of linear elastic fracture mechanics (LEFM) 
and the /-integral of nonlinear (elastic) fracture mechanics 
(NLEFM). 

A /-based approach has been found useful in correlating 
the initiation of ductile crack growth. Assuming that an elastic-
plastic material has a power-law stress-strain relation as fol­
lows: 

e/e0 = a/a0 + a(a/a0)", (1) 

where a0 is a reference stress (often chosen as the tensile yield 
stress, oy), e0 = a0/E, where E is the Young's modulus, and n 
and a are material constants, with n> 1, this relation can be 
simplified as 
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e/e0~a(a/a0)
n, (2) 

at any point near the crack tip by neglecting the elastic strain. 
Based on an isotropic, tensorial generalization of equation (2), 
Hutchinson (1968) and Rice and Rosengren (1968) defined the 
asymptotic field of a mathematically sharp crack under sym­
metrical loading (HRR fields). As r (local cylindrical coordi­
nates centered at the crack tip are r, 8) approaches zero, the 
HRR singularity fields have the following form: 

I 

OiAr, e)^ao-[J/(ae0a0I„r)]n + uaij(d, n)^o%RR; (3) 

I 

eij(r, e)-~ae<r[J/(aeo<TOr„r)]~i-~eu(0, n)=efR. (4) 

The normalizing factor I„(n) and the angular distribution of 
the dimensionless constants cry and e^ are functions of the 
strain-hardening exponent n, and of the state of stress, plane 
strain or plane stress. For certain material and loading con­
ditions (those under which the HRR fields dominate the com­
plete fields over regions large compared to fracture process 
zone size), / i s the single parameter characterizing the crack-
tip fields. 

Under HRR-dominance, a unique relation exists between / 
and <5„ the crack-tip opening displacement (CTOD). Using the 
±45 deg intercept definition of b, proposed by Rice (as dis­
cussed by Tracey, 1976), Shih (1981) obtained the explicit re­
lation 

8, = d„(ae0, n) • 
J_ 

(5) 
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Shih (1983) has provided extensive tabular values of dn, 
ajj, ejj, etc. for essentially a complete range of n and ae0 for 
both plane strain and plane stress. 

Two-dimensional study of HRR-dominance in plane strain 
is a relatively well-developed field. The pioneering work of 
McMeeking and Parks (1979) and Shih and German (1981) 
and, more recently, Shih (1985) and Al-Ani and Hancock (1991) 
are a few examples. However, understanding of crack-front 
HRR-dominance in a realistic three-dimensional crack config­
uration—for instance, a structure with a part-through surface 
crack—remains slight. The three-dimensional crack fields dif­
fer from those of either plane strain or plane stress in several 
aspects. The constraint at the crack tip of a surface crack is 
not only a function of loading and geometry, but is also varying 
along the crack front. Identifying critical points along the crack 
front and the stress and strain fields at these points is the basic, 
yet necessary condition for evaluating the fracture toughness 
of a surface-cracked plate. The line-spring model, first pro­
posed by Rice and Levy (1972) and further developed by Parks 
(1981), Parks and White (1982), Shawki et al. (1989), and 
others, has proven to be an effective means in accurately and 
economically evaluating the /-integral of some surface-cracked 
plates. It may also be used to certain extent in providing in­
dications of loss of HRR-dominance, as suggested by Parks 
(1981), Shawki et al. (1989), and our present research (Wang, 
1991). However, a three-dimensional full-field characterization 
is necessary in resolving HRR-dominance at the present time. 
It may also provide some insights in further developing a sim­
plified model, such as the line-spring model. Some three-di­
mensional finite element analyses have been performed with 
certain assessments of HRR-dominance; for instance, Brocks 
and Olschewski (1986), Delatte (1987), and Brocks and Noack 
(1988). The most comprehensive HRR-dominance study of 
plates with moderately deep surface cracks is by Parks and 
Wang (1988). 

To date, most HRR-dominance studies have been performed 
by comparing detailed numerical solutions near the crack tip 
with the HRR singularity fields. Very little is known about the 
global deformation fields when a cracked structure loses HRR-
dominance. Using a combination of surface replicating tech­
nique and surface interferometry, Francis, Davidson, and For-
man (1972) studied a variety of semi-elliptical surface-cracked 
plates with various aspect ratios and depths. At high load, 
dimples were observed on the back surface and at crack tips 
on the free surface. They also found that those features could 
not be characterized by a local Kt field, or by simple extensions 

of two-dimensional plane-strain models. The strong three-di­
mensional nature of the deformation fields requires full three-
dimensional analysis. Due to the complexity of the crack ge­
ometry and loading conditions, careful experimental verifi­
cation of the analysis is necessary. However, until very recently, 
experimental techniques have not been able to resolve the very 
small displacement gradient on the free surface of a surface-
cracked plate with sufficient precision (see, e.g., Rosakis et 
al., eds., 1988). The current joint project, combining extensive 
numerical analysis at M.I.T. and experimental study at 
I.N.E.L., is intended to investigate the HRR-constraints in this 
important class of engineering crack configurations, and hence, 
to begin assessment of parametric limits of applicability of J-
based fracture mechanics approaches in predicting their struc­
tural integrity. 

Back face topology would be a valuable source in evaluating 
the useful life of a component with a surface crack if the 
displacement fields could be related to the extent of crack 
penetration and the local loading conditions. Unfortunately, 
this relation is very difficult to establish for a general structure. 
However, valuable insights into the three-dimensional nature 
of plastic flow in a surface-cracked plate can be gained from 
the back face topology. Out-of-plane and in-plane displace­
ments and their gradients are good indicators of the transition 
of the constraints from elastic to fully plastic conditions. In 
this study, using shadow moire and amplitude moire methods, 
the displacement fields on the back face immediately behind 
the crack front were continuously monitored as the specimen 
was loaded. However, the global deformation fields alone can 
not assess the degree of crack-front HRR constraint. Numerical 
simulation has to be performed to relate the global fields back 
to the crack front. The comparison of the crack-tip fields with 
the HRR singularity fields then determines the degree of HRR 
constraint. In addition to the global deformation fields, ex­
perimentally determined CTOD by metallurgical sectioning 
and fracture surface topography provide some indication of 
local fields. These values can be used to further verify the 
numerical simulation. The experimental study and the nu­
merical simulation are mutually supportive, and the combined 
effort is essential for the assesment of HRR-dominance. 

Procedures 

Material. The material under study is an ASTM A710 
Grade A steel. At room temperature, the material has following 
properties: Young's modulus of £=206 GPa, tensile yield 

Fig. 1 Schematic of one-fourth of a surface-cracked plate. Back-face 
surface displacements are recorded in the cross-hatched region. The 
inset at left shows the local cartesian coordinate system (x-y-z system) 
with respect to global coordinate system (X-V-Zsystem) and description 
of crack-front location parameter <!>. NOTE: Drawing is not to scale. 
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stress of a,, = 480 MPa, and ultimate tensile strength of 635 
MPa. The experimental engineering stress-strain relation can 
be well characterized by equation (1) with material constants 
of do = 480 MPa, a =1.0, and«=12. 

Specimen Geometry and Finite Element Mesh. Figure 1 is 
a schematic of one-fourth of a surface-cracked plate. The 
experimental specimens were fabricated from as-rolled steel 
plates. The detailed specimen geometry can be found in Epstein 
et al. (1988). A triangular-crack starter notch was cut into the 
plate using EDM. The starter notch was then grown by bending 
fatigue cycling into the final configuration. The surface cracks 
had an aspect ratio a/c ranging from 0.20 to 0.24 and maximum 
penetration a/t ranging from 0.60 to 0.67. The variation in 
the aspect ratio and the penetration reflects natural variation 
in the pre-cracking process. 

Due to the symmetry conditions, only one quarter of the 
specimen (as shown in Fig. 1) was modeled in the numerical 
simulation. The geometric ratios were b/t= 8 and h/t= 16. In 
the FE input data deck, the specimen thickness was taken as 
unity. Subsequently, all the results were appropriately nor­
malized to the actual specimen thickness of t — 6.35 mm (0.25 
in.). The aspect ratio a/c was taken as 0.24, and the maximum 
penetration was a/t = 0.60. Due to the variation of the surface 
crack geometry, data from those specimens with crack ge­
ometry closest to that of the finite element mesh was chosen 
for comparison with numerical simulations whenever possible. 
The finite element mesh was generated by an automatic mesh 
generator (Wang, 1988). Each of the 12 segments along the 
crack front consists of six focused rings of elements. Reduced 
integration (2x2x2 Gaussian) 20-node isoparametric brick 
elements are used. In the data post-processing, a local coor­
dinate system {x-y-z system), as shown in Fig. 1 was used, to 
represent the local fields. Details of the mesh and the mesh 
generator (Wang, 1988). Each of the 12 segments along the 
crack front consisted of six focused rings of elements. Reduced 
integration (2x2x2 Gaussian) 20-node isoparametric brick 
elements were used. In the data post-processing, a local co­
ordinate system (x-y-z system), as shown in Fig. 1 was used, 
to represent the local fields. Details of the mesh and the mesh 
generation are referred to Wang (1988). Extra care was taken 
to refine the mesh in the rectangular region on the back face 
behind the crack as shown in Fig. 1 by the cross-hatched area. 
ticity. Eight degenerated singular elements with independent 
nodes at the same point along the crack front were wrapped 
around each of the 12 crack-front segments. The final mesh 
has 1026 elements and 15711 degrees-of-freedom. Later, in a 
large geometry change (LGC) analysis, a new mesh was gen­
erated. The new mesh was essentially the same as that for the 
SGC analysis, except that the nodes along the crack front were 
not collapsed into a line, but kept in a small circular ring in 
space, forming a keyhole-like tube around the crack front. 
The radius of the keyhole was 0.006(2'- a), or about 15 percent 
of the radial length of the first ring elements throughout the 
entire crack front. Subsequent analysis showed that the effect 
of the initial keyhole radius on both local and global quantities 
is slight. 

Numerical Procedures. In simulating the loading condition 
in the experiment, uniform displacement, UY, at the remote 
boundary, Y= h, is applied. The symmetry conditions of Ux=0 
on X=0 and UY=0 on the ligament portion of plane Y=0 
are also imposed. The model is considered under uniform 
remote tension, although a very small through-thickness stress 
gradient exists. The remote load is characterized by an average 
remote stress, o°°/<j(l = P/<jobt, where P is the Indirection ap­
plied force on one-half of the specimen required to impose the 
remote displacement boundary condition. 

The constitutive model used in the initial SGC formulation 
is 7rdeformation theory of plasticity based on the Ramberg-
Osgood power-law form of equation (1). The three-dimen­

sional generalized tensorial form was coded into a user-defined 
material subroutine UMAT of the ABAQUS (1987) finite ele­
ment program, along with the Jacobian matrix. The material 
constants were taken as those previously determined values, 
which best fit the engineering stress-strain curve. In the nu­
merical analysis, the Poisson's ratio, v, was set to 0.3, while 
experimental measurement gave ? = 0.256. This difference 
should be of only minor significance, especially at high loads. 

The constitutive model used for the final LGC formulation 
was J2 flow theory of plasticity with isotropic hypoelasticity 
based on the Jaumann rate of Kirchhoff stress. A true stress/ 
logarithmic plastic strain curve was derived from the experi­
mental engineering stress strain curve. This true stress/plastic 
strain curve was multilinearized for input into ABAQUS, along 
with the prior values of E and v. 

Computation was performed on an Alliant FX-8 multipro­
cessor computer using version 4-6-162 (1987) of the ABAQUS 
finite element program. One iteration took about 85 minutes 
on the single processor. For the SGC formulation with de­
formation theory plasticity, three iterations were generally re­
quired to reach convergence. It took nine load increments to 
reach about 95 percent of the limit load (P\imn = o0bt). The 
LGC formulation with flow theory plasticity required sub­
stantially more computation time. To reach the same level of 
remote load, it took 17 load increments with a total of 92 
iterations. 

Experimental Procedures. Tests of the surface-cracked 
specimens were performed on an Instron 1325 servohydraulic 
load frame (1000-kN capacity). The specimens were loaded 
through two 38.1-mm diameter pins. The amplitude (geomet­
ric) moire method was used to record the in-plane displace­
ments. Detailed description of the method can be found in 
Parks (1986). Specimen surfaces were carefully prepared for 
optical observation. The area of interest on the specimens was 
coated with white polyurethane paint (thinned 1:4 with pol-
yurethane thinner) using an air brush. The higher background 
reflectivity of the white paint, as compared with bare 
metal,improved contrast of the resultant experimental fringes. 
Linear amplitude gratings were replicated onto the front and 
back surfaces. These gratings were approximately 100-mm 
square with a pitch of 50.8 (un. A 20-power microscope was 
used to align the specimen grating, transfer side down, with 
either the crack plane or a reference line on the specimen 
surface. Cellulose tape was placed along one edge of the trans­
fer grating to maintain alignment. The grating was then folded 
back and a liberal amount of cyanoacrylate adhesive was placed 
at the joint between grating and the specimen where they were 
taped together. A rubber-coated print roller was then used to 
press the grating into the adhesive, making sure not to trap 
air bubbles under the grating. After two or three minutes, the 
acetate backing on the transfer was peeled away, leaving the 
grating bonded to the painted surface. The master amplitude 
gratings, on glass photographic plates, were used to make 
flexible reference gratings on sheet film by contact printing 
with collimated light. Correct exposure of the print to obtain 
a 50/50 grating was obtained by making multiple exposures 
of different durations, developing, and inspecting the resulting 
film under a microscope. The reference gratings were placed 
over the specimen grating to obtain a null field, and cellulose 
tape was applied at two points along one edge to maintain 
alignment during the test. 

High resolution (512x480 pixel) CCD video cameras were 
used to make real-time recordings of the optical data generated 
by geometric moire method. The video signals were recorded 
on Umatic format video recorders; a separate camera and 
recorder system were employed to record front and back sur­
face displacement fringe patterns simultaneously. In addition, 
two 35-mm cameras with 105-mm macro lenses and power 
winders were used to collect data at discrete times during the 
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test. Full-field (spatially continuous) moire patterns repre­
senting surface displacements, UY, were collected on both the 
front and back surfaces of the specimen over areas extending 
approximately one-half the plate width above and below the 
crack plane (where uniform remote strain was observed). The 
50.8-;um sensitivity proved ideal for measuring moderate plastic 
deformations at remote stress levels approaching yield; how­
ever, it became a limitation at stress levels below aa/a0 = 0.15. 

The shadow moire method was used to record the out-of-
plane displacement. Detailed description of the technique and 
the relevant equations can be found in Dykes (1971). Prepa­
ration of the specimens for shadow moire tests began by grit 
blasting the area of interest to produce a uniform matte surface. 
A small aluminum frame holding the reference grating with a 
50.8-^m pitch was mounted on the specimen using spring clips. 
Small screws through the frame allowed adjustment of the 
reference grating to be parallel to the specimen's surface. A 
collimated monochromatic source (arc lamp) was used for 
illumination. Both video and film were used to record the fringe 
patterns. Data were collected on the back surface of several 
replicate specimens. Sensitivities ranged from 13 to 50 /tim/ 
fringe. The higher sensitivity provided good data in the elastic 
to elastic-plastic regimes, while the 50 ttm/fringe sensitivity 
allowed data collection to extend well beyond net section yield­
ing. Reference displacement points (Uz = 0) were located at 
X= ±50 mm and Y= ±50 mm. 

Results 
A preliminary numerical analysis employed a SGC formu­

lation and deformation theory of plasticity. The displacement 
fields on the back face were compared with experimental re­
sults. Though the in-plane displacement (UY) from this sim­
ulation agreed well with the experimental results, the out-of-
phase displacement (Uz) was much larger than the experi­
mental values—by a factor of two. Careful examination of the 
displacement revealed that the remote plane (plane Y= h) had 
a quite significant through-thickness translation with respect 
to the cracked plane. At high load (CT°°/CTO-~1-0), the through-
thickness relative translation AUZ between the remote plane 
(Y=h) and the cracked plane (Y=0) was as large as half of 
the specimen thickness. The SGC formulation was thought to 
be inappropriate under these circumstances, since it did not 
take the global rotation into its global equilibrium calculation. 

The analysis was then performed with a LGC formulation. 
Little difference was found in the in-plane displacement pat­
terns at any load level, but the out-of-plane displacement was 
reduced to about half of the SGC result at high load. These 
results were in much better agreement with the experimental 
data. This formulation was considered more appropriate. 

In the following sections, the crack-tip fields of the large 
geometry change formulation will be critically examined, in 
comparison with an earlier HRR-dominance study using SGC 
formulation (Parks and Wang, 1988). The correlation of global 
deformation features and the transition of the crack-tip HRR 
constraints will be established through both numerical and 
experimental results. Finally, the development of the plastic 
zone through the remaining ligament shows how the crack 
front loses HRR-dominance through the relaxation of con­
straints by global plastic flow. 

/-integral. The /-integral was evaluated in six domains us­
ing the virtual crack extension (VCE) method provided in 
ABAQUS. The method was first developed by Parks (1977). 
A modified version is used in ABAQUS version 4-6 which is 
based on the work of Li, Shih, and Needleman (1985) and 
Nakamura, Shih, and Freund (1989). The /-integral is domain 
dependent because of the (locally) nonproportional loading; 
this being in conjunction with the use of flow theory. Mc-
Meeking (1977) showed that, in plane strain small-scale yield­
ing, the finite strain affects only a region not more than two 

Table 1 Mean radii of various domains and / from those 
domains at a°/an = 0.955 

domain level 

/*_o/(ooeo0 
R/(J6/a0) 

1 
8.776 
0.23 

2 
11.94 
0.68 

3 
13.17 

1.34 

4 
13.85 
2.52 

5 
14.32 

4.49 

6 

14.82 
7.73 

30 

20 

- solid line: LGC, flow t h e o r y 

d a s h e d lines: SGC, de fo rma t ion th 

(Pa rks and Wang, 1988) 
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Fig. 2 Calculated J at center plane (<j> = 0), using LGC formulation, com­
pared with the J of the SGC calculation, both as functions of applied 
load 
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Fig. 3 Calculated ./-distribution along the crack front using LGC for­
mulation, compared with the ./-distribution of SGC calculation 
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Fig. 4 CTOD from the numerical simulation and the estimated residual 
CTOD following Rice (1967). The HRR estimate is calculated from the 
local J using equation (5). The experimental CTOD is the residual CTOD 
after the specimen is unloaded from a peak load value of a"la0 = 0.95. 

to three CTODs from the crack tip. Recently, Moran, Ortiz, 
and Shih (1989) studied the effect of the crack-tip mesh on 
LGC solutions under small-scale yielding. Three crack-tip 
meshes, one with a finite radius notch, a second with crack-
tip nodes collapsed into a point, and a third with a key-hole 
like tip, were used. The stress fields outside about two CTODs 
were independent of the details of the crack-tip finite element 
mesh. Here, the values of /-integral at center plane (<£ = 0) 
from all six domains at highest load attained (which shows the 
most path dependence) are listed in Table L The mean ref­
erence configuration radius of each domain, R, normalized by 
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Fig. 5 Back-face in-plane displacement contours of numerical calcu­
lation at various load levels. The width of the areas shown is 34 mm. 
The gradient of the contours is 12.5/im. (a) a"la0 = 0.741; (b) a"h0 = 0.821; 
(c) ff°7ff0 = 0.870; (d) a"h0 = 0.955. 

the characteristic crack-tip opening displacement J(,/OQ, is also 
listed in Table 1. Here, J6 is the /-integral from the sixth (most 
remote) domain. The first three domains are clearly inside the 
finite deformation zone (the mean radius of domain three here 
corresponds to about three CTOD). The /-value varies sig­
nificantly throughout this region. The last three domains are 
more or less out of the finite deformation zone, and the relative 
variation of / is limited. This is consistent with results of 
McMeeking (1979) and Moran et al. (1990). In the following 
sections, all the reported /-values will be taken from the sixth 
domain, which is considered to be most accurate. 

Recalling that the numerical estimates of the global defor­
mation fields can be significantly affected by different for­
mulations, there is a need to check the effect of the formulations 
on the crack-tip fields, such as /-integral and CTOD. Figure 
2 shows the center plane (<£ = 0 deg) normalized / at various 
load levels. Also shown are the results of a previous SGC HRR-
dominance analysis (Parks and Wang, 1988). In normalizing 
the LGC data, the reference yield stress, a0, is taken as 480 
MPa, and the reference yield strain, e0, is taken as aa/E= .00233. 
Little difference is seen between the two formulations, except 
that the / from the LGC formulation is slightly smaller than 
the SGC values for n = 10 (which represents the current material 
behavior more closely than the high strain-hardening of n = 5) 
at high load. 

Another comparison of formulations is the / distribution 
along the crack front. Figure 3 shows /(<£), normalized by the 
/ value at the center plane, at various crack-front locations 
(for parameter 4>, see Fig. 1) at the highest load level. For 
comparison, the previous results (Parks and Wang, 1988) of 
SGC analysis are also shown. Again, very little difference is 
seen between the two formulations. The effect of the for­
mulation on the crack-front / variation is slight at all load 
levels up to this magnitude. 

CTOD. Figure 4 shows the crack-tip opening displacement 
(CTOD) along the crack front. The CTOD was obtained from 
the deformed crack-opening profiles using the 45 deg intercept 
definition. Also shown in Fig. 4 is the experimentally deter­
mined residual component of the CTOD along the crack front. 
These data were obtained by loading the specimen to a"7 
(To = 0.95, unloading, cooling the specimen in liquid nitrogen 
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Fig. 6 Comparison of center line (line X = 0, Z= t) normal strain (eVv) 
between the numerical and experimental results 

and loading to failure by cleavage. Using fracture surface to­
pography, the CTOD values are taken as the distance sepa­
rating the tip of the fatigue precrack after blunting. Details of 
the procedures are found in Reuter and Lloyd (1990). The 
calculated CTOD distribution is very similar to the / distri­
bution of Fig. 3, and it falls slightly below the HRR value of 
equation (5), which is also shown in Fig. 4. A tentative esti­
mation of the residual CTOD of the numerical simulation is 
given, following the spirit of Rice's (1967) formula to estimate 
the elastic part of CTOD. The elastic part of the CTOD is 
obtained as Ab, = dn(ae0, n)-Af/2a0. The equation is similar 
to equation (5), except that the effective flow strength is taken 
as twice the yield stress, since the effective elastic stress range 
required to initiate reversed plasticity is 2a0. The Af is cal­
culated as Af = ~(AA7)2/£" (£" is the plane-strain modulus) 
from the elastic Kj of the same surface crack, according to the 
results of Raju and Newman (1979). The residual CTOD shown 
in Fig. 4 is the difference between the total CTOD at a J 
<r0 = 0.955 and the unloading part, Aht. It is clear that the 
estimated residual CTOD is in good agreement with the ex­
perimental result. 

The CTOD results are consistent with an earlier HRR-dom-
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(a) (b) 

(c) (d) 

Fig. 7 Back-face out-of-plane displacement contours of numerical cal­
culation at various load levels. The width of the areas shown is 34 mm. 
The gradient of the contours is 25,(Vm. (a) a°la0 = 0.741; (b) or°7o0 = 0.821; 
(c) ff°7a0 = 0.870; (d) a"ia0 = 0.955. 

(»> (b) (c) 

Fig. 8 Back-face out-of-plane displacement fringes of experiments by 
Epstein et al. (1988) at various load levels. The width of the areas shown 
is 39 mm. (a) <r"Ar0 = 0.61, 14.1/«m/fringe; (b) o'ho = 0.65, 50.8^m/fringe; 
(c) a°la„ = 0.98, 50.8/im/fringe. 

inance study (Wang, 1988). Those SGC results showed that 
the CTOD versus the /-relation stays essentially unchanged 
from small-scale yielding to large-scale plastic yielding. Here, 
even at the highest load, the CTOD versus the /-relation is 
very close to that of a dominant HRR singular field, even 
though (as will be argued further below) no such dominant 
field exists at high loads. Delatte (1987) also found that the 
CTOD versus /-relation shows only slight deviation from equa­
tion (5) when a tensile-loaded plate with semi-circular surface 
crack loses HRR-dominance. All these surface crack results 
are in contrast with the early plane-strain study by McMeeking 
and Parks (1979), who noted appreciable differences in the 
terminal slope of CTOD versus / curves when comparing dif­
ferent specimen geometries. This implies that for a part-through 
surface crack, the closeness of the computed CTOD versus / 
relation to that of the HRR singularity field does not necessarily 
guarantee HRR-dominance. 

In-plane Displacement and Strain. Computed contours of 
the in-plane displacement (UY) on the back face are shown 
in Fig. 5 at various load levels. The original ABAQUS output 
showed only one-quarter of the figure. A program developed 
by Stringfellow (1988) was used to mirror image the original 
plot to a full picture. The contour gradient was set to 12.5jum/ 
contour for easy comparison with experimental results (see 
below). At stress levels, a°°/a0, below 0.741, the displacement 
gradients are very small. From the symmetry condition, the 
displacement on the symmetry plane Y=0 is zero (UY=0). 
Since the innermost contour shown is also a contour of zero 
displacement, the region bounded by 7=0 and the interior 

-160 

<r'/"<i .264 

dashed lines: FEM 
solid lines: exp. 

4 6 
Y (mm) 

10 12 

Fig.9 Comparison of back-face center line (line X=0,Z= fjout-of-plane 
displacement between the numerical calculation and the experimental 
results 

contour of UY=0 must have UY<0 (compressive strain) on 
the back face. At high loads, a large gradient is seen outside 
the compression zone. This high gradient is the surface man­
ifestation of shear zones (see also Fig. 10). The higher the load 
level, the sharper the shear zones. The compressive zone gen­
erally shrinks with increasing load. 

For a better examination of the quantitative agreement be­
tween the numerical and the experimental results, the in-plane 
normal strain, eYY, along the back-face center-line (line X=0, 
Z = t) is shown in Fig. 6 at the highest load level (ff°°/c7o = 0.955). 
Close agreement is seen in the overall pattern, although the 
numerical value is slightly smaller than the experimental value. 
The region with the highest strain is the zone of intense shear­
ing. The peak corresponds to the shear zones observed in the 
displacement contours of Fig. 5. This peak is about 2.3 mm 
off the cracked plane. Considering that the remaining ligament 
at the deepest crack penetration is about 2.6 mm 
( = 0.4x6.35mm), the shear zone occurs at roughly ±45 deg 
lines from the crack front. A small region of negative strain 
is seen in a region near the center (Y=0). This is the com­
pressive zone noted previously. Recent examination of moire 
patterns by Lloyd (1989) confirmed that there is a region of 
compression with a small strain of less than .002. 
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Fig. 10 Composite isometric contours of plastic strain on the center 
plane (plane x = 0, facing reader) and on the back face (plane Z~t, 
on the top). The gradient of the contours is .0025. The dimensions of 
the region shown are: AZ= t (f = 6.35 mm), AX=1.53f, AV=1.76f. 
(a) <r°7ff0 = 0.741; (b) a"\a„ = 0.870; (c) a°ia0 = 0.955. 

Out-of-Plane Displacement. The back-face out-of-plane 
displacement Uz was monitored in the same region as the in-
plane displacements throughout the loading. The computed 
out-of-plane displacement contours are shown in Fig. 7 at 
various load levels. The location of the reference (£/z = 0) 
displacement point was the same as the experiments. The dis­
placement gradient was 25 ^in/contour for easy comparison 
with experimental results. Again, at stress levels, a°°/aa, below 
about 0.74, the displacement gradients are almost uniform. 
At higher stresses, a high negative displacement zone encircled 
by some densely clustered contours is seen. This region is 
roughly similar to the compression zone seen in previous in-
plane displacement contours. Physically, the material on the 
back face is sucked in (relatively) towards the crack front as 
the specimen is stretched. This is the phenomenon of dimpling. 

N ., 

(7YY/°"HRR I SGC ; -» • " - . ^ 
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Fig. 11 Normalized near-tip crack-opening stress (oYY) at center plane 
(X= 0) (read left), and the calculated out-of-piane displacement (UJ at 
the back-face center point (X= 0, V= 0, Z= I) (read right), both versus 
load level. Local stress is calculated at a distance r= 6 d„J/a0 ahead of 
the crack front, and is normalized by the HRR stress at the same nor­
malized distance. Stress calculations are from SGC solutions (Parks and 
Wang, 1988), while displacement calculations are from the current LGC 
solution. 

Pronounced dimpling becomes apparent at the stress level <J°7 
ffo = 0.87. It has been shown that this is also the load level at 
which the center plane (</> = 0) crack fields lose HRR-dominance 
(Parks and Wang, 1988). Figure 8 shows the experimental out-
of-plane displacement moire pattern at various load levels. 
(Note: companion specimens were used to obtain back-face 
in-plane and out-of-plane moire data.) The close comparison 
we can make at high load level is between the oc"/a0 = 0.955 
contour of the numerical result and the o°°/oQ = 0.98 moire 
pattern. From the numerical results, there are eight contours 
between the center point and the outermost contour in the 
observed region, a 200-/xm displacement variation. Counting 
the size difference, the experimental moire pattern has roughly 
four contours, which also represents about 200 ftm. This com­
parison is admittedly crude. More accurate comparison is made 
in Fig. 9 for the lower load levels. In this figure, the out-of-
plane displacement along the center line (line X=0, Z=t in 
Fig. 1) is plotted at various stress levels. The available exper­
imental data at two close load levels are also drawn in the 
figure. The quantitative agreement is very good, although the 
numerical values are slightly smaller than those of the exper­
iments. 

Plastic Zone. Plastic zone is here defined as the region 
within which the equivalent plastic strain exceeds 0.25 percent. 
Plastic zone advance is monitored through the equivalent plas­
tic strain contour on the center plane (^=0) and back face 
(Z=f) as shown in Fig. 10. Up to a stress level o°°/o0 = 0,5, 
the plastic zone is small relative to the remaining ligament. 
The plastic zone then gradually grows along the two ± 45 deg 
lines (only one side is shown) to the back face with the increase 
of load. At a stress level of about 0.8 (near that of Fig. 10(a)), 
the plastic zone reaches the back face and then spreads to the 
neighboring region at higher loads, while sharpening at the 45 
deg location. At a load level of about 0.9 (near that of Fig. 
10(6)), the remaining ligament becomes fully plastic. Note that, 
on the back face at the highest loads, the high-strain zones 
show curvature away from the cracked plane (plane Y=0) 
(Fig. 10(c)). The increasing distance from the shear zone to 
the cracked plane, with increasing distance from the center 
plane (plane X=0), reflects the corresponding increase in dis­
tance from the back face to the curved crack front. 

Discussion 
The comprehensive nonlinear finite element analysis pre­

sented here establishes that our early HRR-dominance study 
based on SGC formulation and deformation theory of plas­
ticity is sound even though such formulation can not accurately 
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predict global out-of-plane deformation fields. Through a par­
ticular numerical analysis based on LGC formulation and using 
flow theory of plasticity, the limits of HRR dominance at the 
crack tip and the global deformation features associated with 
the loss of HRR-dominance are analyzed. The close agreement 
exhibited between the experimental results and the numerical 
simulation in the global deformation fields validates the nu­
merical analysis, which in turn indicates that an earlier HRR-
dominance study (Parks and Wang, 1988), using a different 
formulation, has its own merits. This joint experimental/com­
putational effort illustrates how the often separated ap­
proaches can be synthesized to provide deeper understanding 
of complex engineering problems. It also emphasizes that the 
"rightness" of a numerical formulation is dependent upon the 
very purpose of the calculation. 

Our LGC analysis shows that the load at which pronounced 
back-face dimpling in a tensile-loaded surface-cracked plate 
first appears roughly coincides with the load at which the crack-
tip field rapidly begins to lose HRR-dominance. Intensive 
shearing becomes apparent at the load levels o-<"/o-0>0.8. Fig­
ure 11 shows the variation of out-of-plane displacement at the 
center of the back face as the load increases (read right). The 
dimpling associated with the back-face penetration of the plas­
tic zone accelerates once the load level exceeds about 0.7. Also 
shown in Fig. 11 is the variation of center plane (0 = 0 deg) 
crack opening stress (aYY) at a distance r = 6x (d„J/a0) ahead 
of the crack front, normalized by the corresponding HRR 
stress, as the plate is loaded from small-scale yielding to fully 
plastic conditions (read left). By examining the trend of the 
stress deviation from HRR singularity field, it is obvious that 
the crack tip gradually (i.e., linearly with respect to the load 
level) loses HRR constraint below O-̂ /CFQ —0.78, and the stress 
rapidly deviates from the HRR stress once the load exceeds 
this value. Here we emphasize the trend of deviation from 
HRR field, rather than an absolute degree of agreement as 
used by some researchers (e.g., Shih and German, 1981), since 
the approach is less arbitrary. Recall the results of Fig. 10; it 
is apparent that there is an intrinsic correlation between the 
loss of crack-tip HRR-dominance and the growth of the global 
tensile plastic zone. It is seen that as long as some portion of 
the ligament remains elastic, the loss of HRR constraint is 
gradual. Once the ligament becomes fully plastic, the crack 
tip loses HRR constraint much more rapidly. This conclusion 
is likely applicable for a plate with a moderately deep crack 
(a/t> .25) under tension. Al-Ani and Hancock (1991) showed 
that in shallow plane-strain cracks (a/t<0.2), the fully plastic 
field first reaches the front face (plane Z = 0 in Fig. 1) as the 
crack tip first gradually, then abruptly, loses HRR-dominance. 

The calculated out-of-plane displacement and the in-plane 
strain are slightly smaller than those of the experimental values 
at the same load levels. One reason is that the cracked area of 
the numerical model is smaller than that of many of the ex­
perimental specimens. The experimental specimens generally 
have somewhat deeper (larger a/t) and longer (smaller a/c) 
surface cracks than the numerical model. The other reason 
could be that the remote boundary conditions applied in the 
experiments were slightly different from the mathematical 
model of the FE analysis. By any accounts, the differences are 
small, and the agreements should be considered satisfactory. 

A logical extension of the analysis would be a stable crack 
growth of this class of crack configuration. With present 
knowledge and computational power, detailed continuum 
modeling of crack growth seems unfeasible. A simplified model, 
such as the line-spring, could be used to grow a crack up to 
several multiples of CTOD. Although the results of Shawki, 
Nakamura, and Parks (1989) give some encouragement, the 
task remains formidable. 

Another remaining issue regarding the HRR-dominance in 
a surface-cracked plate is the effect of the ratio of bending to 
tension on HRR-dominance. This ratio affects the stress triax-

iality at the crack tip. In fully plastic plane-strain analyses, 
Shih (1985) showed that the ratio of bending to tension in the 
remaining ligament of a deep edge-cracked bar had a strong 
effect on the attainment of HRR-dominance at the crack tip. 
This subject remains for future investigation. 
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A Continuum Damage Model for 
Fracture of Brittle Solids Under 
Dynamic Loading 
A continuum damage mechanics description of elastic-brittle fracture provides an 
appropriate constitutive model for impact simulations involving ceramic, rock, or 
similar materials. For an orthotropically damaged solid, a complementary energy 
function may be derived from a mesomechanical description of three orthogonal 
arrays of coalescing cracks. Damage evolution equations suggested by dynamic 
fracture test measurements may be expressed in terms of tensor power functions 
which generalize classical one-dimensional analyses. Measured Weibull strength dis­
tributions may be employed to account for flaw size distribution effects on the 
damage accumulation rate. The resulting model avoids the introduction of effective 
stress assumptions or the use of specialized material property coefficients obtained 
from nonstandard mechanical tests. 

Introduction 
The effective use of general-purpose finite element codes in 

the dynamic analysis of fracture mechanics related problems, 
including for example impact dynamics simulations (Kawata 
and Shioiri, 1985; Anderson, 1987) and the design of wellbore 
fracturing treatments (Swenson and Taylor, 1983; Ang and 
Valliappan, 1988), is hindered by difficulties associated with 
continuum modeling of brittle fracture processes and resulting 
structural failures. Although materials science research has 
provided considerable insight into basic fracture mechanics 
mechanisms, incorporation of such knowledge into thermo-
dynamically consistent three-dimensional models presents un­
usual geometric complications. Many numerical models have 
been dimensionally limited (Seaman et al., 1985) or have 
adopted strong fracture geometry assumptions (Mendelsohn, 
1984a,b) which restrict their general utility. The continuum 
damage mechanics (Kachanov, 1986) approach to such prob­
lems aims at the development of intensive constitutive descrip­
tions of fracture which can be easily incorporated into existing 
numerical codes. This paper describes a continuum damage 
mechanics model of elastic-brittle materials based on a three-
dimensional mesomechanical (Haritos et al., 1988) description 
of elastic damage and a kinetic equation which accurately 
reflects the results of dynamic material property tests. The 
modeling methodology employs classical elasticity solutions to 
derive a complementary energy function for an orthotropically 
damaged elastic medium and a kinetic model (Murakami, 1987) 
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to describe dynamic evolution of a second-order damage ten­
sor. Weibull analysis of dynamic fracture tests provides a sta­
tistical description of flaw distributions which affect the damage 
accumulation rate under applied tensile loads. The resulting 
model incorporates a minimal number of measured material 
behavior coefficients, all of which may be determined using 
conventional test procedures. Implementation of the model as 
a constitutive augmentation of a structural finite element code 
provides for its application in impact dynamics simulations. 

Elastic Damage Model 
A thermodynamically consistent elastic damage model pre­

sumes the existence of a free energy function of a strain tensor 
E and a damage tensor D. The latter is assumed here to be of 
second order, allowing at most for orthotropic damage states 
but suitable for approximate analysis of many engineering 
applications. It is often found convenient to develop damage 
mechanics models in terms of a complementary energy function 
0(S, D), with S the stress tensor, an approach used in the 
discussion which follows. The complementary energy function 
yields the constitutive relations 

E = dfi/dSID, G = 9«/3Dls (la,*) 
where G is the intensive energy release rate tensor and only 
isothermal processes are considered. Equations (1) imply that 
the damage is in principle reversible, with thermally activated 
crack healing suggested by micromechanical thermodynamics 
(Krausz and Krausz, 1988). It is assumed here that a general 
state of orthotropic damage may be represented by three or­
thogonal arrays of penny-shaped cracks. The cracks may in­
teract and coalesce, but the effects of three planar arrays of 
interacting cracks will be superposed to quantify the comple­
mentary energy Q. This mesomechanical procedure (Atkinson, 
1987) is an alternative to beginning with a postulated form for 
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a damage effect tensor (Chow and Wang, 1987a,b) based on 
triaxial or other material property tests. It should be noted 
that in the present context (excluding, e.g., electromagnetic 
effects), the complementary energy function is defined ther-
modynamically by static equilibrium states. Hence, this section 
employs static stress intensity factors in deriving an expression 
for Q. Rate effects associated with dynamic crack propagation 
are imbedded in the formulation of the damage evolution equa­
tions discussed in the next section. 

The complementary energy per unit volume of a uniaxially 
stressed elastic body containing a single penny-shaped crack 
of radius " a " is (Sneddon, 1946) 

Q = o2/(2E) + [8(l-i>2)/(3E)]a2ai/V (2a) 

where E and v are Young's modulus and Poisson's ratio for 
the isotropic solid, a is the stress applied normal to the crack, 
and Kis the bulk volume, with V> >a3 . In terms of the crack 
area (A = xa2) and mode I stress intensity factor (K&), the 
associated extensive energy release rate (Hellan, 1984) is 

Gext = dQ/dA I „= (1 - v2)K2J( VE), K„ = 2a(a/ir)1 (2b,c) 

In the case of a uniaxially stressed sphere of radius "b" con­
taining the same crack, the stress intensity factor is increased 
to Kj (Tada, 1973), defined by 

KJ = cKl(l-DU2)/(l-D)2, 

D = A/(irb2)=(a/b)2, c = l (3a,b,c) 

where the damage (D) has been introduced and the only re­
striction on the characteristic dimensions is a-<b. The asso­
ciated intensive energy release rate is therefore 

Gint = dQ/dD I „ = (3/TT) [(1 - v2)<?/E\ (Dm- £>)/(l - D)2 (4a) 

where V=(A/3)irb3. Integration provides the complementary 
energy density 

Q = a2/(2E) + (3/vr)[(l - v2)a2/E\f(D) 

where 

/(£>) = (DV2-D)/(\-D) 

- l n ( l + £>1/2)-(l/2)ln(l - A ) . 

M = 

In terms of a six-dimensional stress vector expressed in the 
principal damage coordinate system (x, y, z), 

aT= {cr1a203<740'50r6) = ["laPyyOaPxyOyiPxz}' ( 5 ) 

the preceding results may be combined to obtain a general 
expression for fl(S,D) 

Q = (l/2E){Oi + oi + <%-2v(ol02 + o2o3 + Oio3) 

+ aioi + a2<J2 + otiaj +2(1 + v)[ol + 0] + ol + M04 + ob 

+ Mo14 + o2) + M4 + <4)]} (6a) 
where 

(6b) 

MD,) = (A" 

ai=(6/-K)(l-v')fi(Di) 

-A) /(l - A ) 
- l n ( l + A 1 / 2 ) - ( l /2 ) ln ( l - A ) (6c) 

A = (Trdf)/(wb2) = (a/b)2 (6d) 

ft. = (4/TT)[(1 - v)/(2 - K)1/K A ) (6e) 

with ;' = (1, 2, 3), no summation implied, and ( A . A , A ) the 
eigenvalues of the damage tensor. The stress-strain relations 
in the principal damage coordinate system are then 

ei=dWdat\Dj\ i=l, 2,... 6; y = l , 2, 3 

where 

e = jei€2e3£4e5e6) = f«xx^yyezz2^xy2tyz2exz J. 

In matrix form, Eq. (6a) is 

V = (\/2E)oTCo, C = C + M(D) 

where C represents the compliance of the undamaged solid 
and M is a damage effect matrix (Wang and Chow, 1989). In 
component form 

(7d) 

(7a) 

(lb) 

(7c) 

1\ 

V 

c= 
c) UJ 

0 , 0 0 
0 a2 0 
0 0 a3 

0 0 0 2(1 
0 0 0 
0 0 0 

1 
— v 
— v 
0 
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. 0 

0 
0 
0 

— v 
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— v 
0 
0 
0 

+ e)03, + i32) 
0 
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— v 
— v 
1 
0 
0 
0 

2(1 

0 
0 
0 

2(1 + 
0 
0 

0 
0 
0 
0 

+ 10(02 
0 

0 
0 
0 

v) 0 
2(1 + v) 

0 

+ ft) 
2(1 + 

0 
0 
0 
0 
0 

2(1 + v\ 

0 
0 
0 
0 
0 

»0G8i + ft) 

(le) 

The effect of crack coalescence is quantified by the variation 
of the stress intensity factor reflected i n / ( D ) . 

Similarly, Segedin's (1950) expression for the change in com­
plementary energy due to a penny-shaped crack in an elastic 
medium under a remote shearing stress r parallel to the crack 
may be written 

Q = (1 + V)T2/E+ (16(1 - e2)/[3(2 - „)£] J r
2 (a3/V). (Ad) 

Recognizing the principal importance of mode I fracture in 
most engineering applications (Broek, 1987), if finite size cor­
rections are neglected in considering shear stress effects, then 

Q = (1 + V)T2/E+ (4/TT) {(1 - v2)/\(2 - v)E]} T2DV1. (4e) 

Note that for small crack concentrations, Eqs. (2a) and (Ad) 
lead to the same D3/2 dependence of the added compliance on 
the damage for both normal and shear stress effects. Hence, 
the effect of finite crack concentrations on the added com­
pliance in shear is assumed here to have the same damage 
dependence as in (Ab), namely 

Q = (1 + V)T2/E+ (4/TT)((1 - v2)/[(2 - v)E]}r2f(D). (4/) 

Chow and Wang (1987a,b) have shown that such damage effect 
matrices can properly represent fourth-order tensor functions 
of a second-order damage tensor D and hence satisfy invariance 
requirements for the elastic constitutive relations. 

Application of the preceding elastic-damage model to prob­
lems of dynamic fracture in brittle materials requires that sev­
eral additional points be considered. In many finite element 
codes, convenient implementation of the derived constitutive 
model calls for use of the stress-strain relations (7a) in inverted 
form, namely 

a = Ke, K = C~ (V,g) 
where K is the elastic modulus matrix for the damaged material. 
In addition, in the case of brittle materials, the preceding 
analysis must be modified to account for the fact that not all 
of the accumulated damage is active under all states of stress 
and strain (Ortiz, 1985 and Ju, 1989). Consistent with previous 
work (Ortiz, 1985) and considering the constitutive relations 
(If), the components of the elastic modulus matrix K are mod­
ified to account for brittle material response using 
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a,-o:,«(<r,), (no sum); (3,->(3,«(ff,), (no sum); /= (1,2,3) 
Oh) 

where u is the unit step function. The effect of the substitutions 
(Ih) is to cause only that portion of the total damage activated 
by tensile normal stresses to affect the stiffness matrix of dam­
aged solid. Finally, a proper accounting for large rotation 
effects, important to impact modeling, requires that appro­
priate stress and strain measures be employed. Hence, the stress 
(S) and strain (E) tensors of the preceding discussion are de­
fined to be the second Piola-Kirchof f and Lagrangian measures 
(Malvern, 1969). 

S = (p0 /p)F-1TF-T ; E = (1/2)(C-I) , C = F r F (lij) 

where T is the Cauchy stress, F is the deformation gradient 
tensor, p is the density, and p0 is the density in the density in 
the reference (undeformed) configuration. These definitions 
imply that 

O = ,o0fl (7A:) 

where fi is the complementary energy density per unit mass. 

Damage Evolution Equations 
The damage evolution equations may be written in the gen­

eral form 

D = D(S,D) (8a) 

D = D - W D + DW; W = ( l / 2 ) ( L - l / ) ; L = FF~ ' (8b,c,d) 

where (8b) is the corotational rate of change of the damage. 
For example, one possible choice for the evolution relation, a 
special case of (8a) suggested by the infinitesimal deformation 
analysis of Ju (1989), is 

D = D(G). (8e) 

The evolution relation used in the present paper is motivated 
by the damage models of Cordebois and Sidoroff (1982) and 
reduces to Kachanov's classical evolution relation in one di­
mension (Kachanov, 1986). Here a power function of the ten­
sile normal stress (Leckie and Onat, 1981) is used to describe 
the evolution of damage, but with a quotient factor introduced 
to account for the acceleration of the damage accumulation 
rate with reduction in the effective area under load (Kausch, 
1987). The kinetic model proposed here 

B=A[Se+]k; S e = ( I - D ) - 1 / 2 S ( I - D ) ^ ' / 2 (8f,g) 

with A constant and k an integer, defines the corotational 
damage evolution rate as an objective isotropic function of 
the mesostress (S6) of Cordebois and Sidoroff (1982). The 
positive projection of the mesostress tensor (Se+) is that defined 
by Ortiz (1985) 

3 

Se+=P+Se=J]u(k,)s,®si; ls,-l=l (8h,i) 
i=l 

Sfj =PijklSkh Pijkl= QiaQjbQkaQlb (8j,k) 
3 3 

Q = XIs'®s,-; Q + = J]u(ki)s,®s,- (81,m) 

where the X,- and s,- are the eigenvalues and eigenvectors of Se 

and P+ is a fourth-order projection tensor. The positive pro­
jection operator is introduced in order to stipulate that damage 
growth occurs only under tensile loading conditions. 

The evolution Eqs. (8) may be evaluated by comparison with 
published experimental data (Davidge et al., 1973) describing 
the response of ceramic in constant load and constant loading 
rate tests. The cited three-point bending tests are analyzed here 
as uniaxial tension (Batdorf and Heinisch, 1978) applied to 
the reduced volume 

Vr=V/[2(m + l)2] (9a) 

where Fis the sample volume and "m" is a Weibull modulus 
(Batdorf and Crose, 1974), to be discussed later. In uniaxial 
tension, the evolution Eqs. (8) reduce to 

D=A[a/(l-D)]k. (9b) 

For a constant load test (a constant), Eq. (9b) reduces to 

l-(l-D)k+l=(k+l)A<jkt (10a) 

where D = 0 at time / = 0. If sample fracture is defined by D = Dc 

at t = r, the time to failure at any applied stress is 

T = [ 1 - ( 1 - A / + ' ] / [ ( £ + 1 M A (10*) 
The parameter Dc is the damage at fracture (see, e.g., Ju, 
1989), with 0<DC< 1. In general, results of a series of tests 
on identical samples would satisfy the similarity relation 

r , / r 2 = (a2/a1)* (10c) 

for different applied stress levels o\ and a2. Similarly, for con­
stant loading rate tests (a = E'et with e and E constant), Eq. 
(8) reduces to 

l-(l-D)k+l=A(Ee)ktk+1 (11a) 

with time to fracture 

T=[l-(l-Dc)
k+l]/[Aok]. (lib) 

The variation of the failure stress with loading rate for identical 
samples would then satisfy 

e 1 / e 2 = (ff,/ffJ)*
+1 (lie) 

for different strain rates e ( and e 2. Consistency of the pre­
ceding damage description of constant load and constant load­
ing rate tests requires that the time to failure (TCS) under a 
constant stress a and the time to failure (rcr) at the same value 
of a in a constant strain rate test be related by 

Tcs = Tcr/(k+l) (12) 

for identical samples. Equations (10c), (lie), and (12) were 
derived by Davidge et al. (1973) based on a fracture mechanics 
analysis, and verified experimentally for alumina. Assuming 
that the experimental results generally represent the behavior 
of the material under study, the stochastic distribution of the 
parameters A and k may be estimated and kinetic equations 
of the form (8) used to describe damage accumulation under 
arbitrary stress histories. For the case in which k is an absolute 
constant, for any two samples tested at the same loading rate, 
Eq. (lib) implies 

A1/A2 = (a2/al)
k+i. (I3a,b,c) 

For the referenced experiments on alumina, it was found that 
the measured bending strengths at various strain rates were 
described by two-parameter Weibull distributions incorporat­
ing identical Weibull moduli (m) and differing only in their 
mean strengths (am). A two-parameter Weibull model (Matsuo, 
1981) estimates the probability of failure (F) of a ceramic part 
of volume V in uniaxial tension <r due to internal flaws as 

F= 1 - exp{ - V\l/(m + l/2))(<j/a0)
m] (14a) 

where a0 and m are determined experimentally. Since the meas­
ured strengths at any strain rate were described by 

In ln[l/(l -F)\ = m In (a) - m In (<J0) 

+ \n{Vr[l/(m+l/2)]}, (Ub) 

which is written in terms of the mean strength (a,„) as 

In In [1/(1 -F)]-ln In (2) = m In (o)-m In (am), (14c) 

then if Eqs. (13) and (14c) hold for any given strain rate, in 
general 

A/Am= ( ln[l /( l-F)]/ ln(2)j [ ( A r + 1 ) / m I , (Ud) 

where A,„ is the value of A for the mean strength material 
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calculated using (lib). This provides a distribution of damage 
accumulation rate parameters A which lead to measured var­
iations in material strength. Since the variable F in Eq. (14d) 
is a measure of material quality, the appropriate value for an 
A to be used in continuum simulations is 

A= \A(F)dF=AmTl(k+\)/m+l]/{\n(2)Hk+i)/m]} (14e) 

where T is the gamma function. In summary, the measured 
Weibull parameters a0 and m serve to represent the effect of 
a distribution of flaws in the material on the continuum damage 
accumulation rate. Note that in finite element implementations 
of the preceding damage evolution model, Eqs. (9a) and (14a), 
can be used to correct (at the element level) experimentally 
measured material properties in order to account for sample 
volume effects. 

The quantities m, k, a0, and Am calculated from the exper­
iments of Davidge et al. (1973), with DC = Q39, provide ap­
propriate values for 95 percent A1203: 

m = 13.2; A: = 22; a0= 120 MPa (m3)1/ l32 (15«,Z>,c) 

A„ = 2.09xl0"5 7MPa"2 2sec^1 . (I5d) 

The cited experimental data used in calculating the preceding 
parameters was measured at strain rates between 
1.8x KT6sec~' and 1.8x 10~4sec~'. In general, the measured 
parameters of Eqs. (15) will reflect the rate dependence of 
fracture processes in the material of interest (Williams and 
Knauss, 1985), such as are conventionally discussed in terms 
of crack velocity, dependent stress intensity factors (Hellan, 
1984). 

Finite Element Implementation 
The material model described in the two preceding sections 

was implemented as a constitutive augmentation to the dy­
namic finite element code DYNA3D (Goudreau and Hallquist, 
1982) for use in impact dynamics simulations. The implemen­
tation follows general guidelines for such augmentations 
(Hallquist, 1982) and employs EISPACK routines (Smith et 
al., 1976) for required eigenvalue calculations. The augmen­
tation is vectorized consistent with the basic DYNA3D code, 
and incorporates as history (state) variables for each element 
the components of the symmetric damage tensor D. The kinetic 
equations and finite element implementation allow for inde­
pendent evolution of the damage state in each element, with 
respect to both orientation of the damage eigenvectors and 
magnitude of the damage eigenvalues. 

A one-step iteration procedure is used to integrate the ev­
olution equations and update the stress at each time step. This 
procedure is similar to that employed in the basic DYNA3D 
code to update the pressure in materials whose equation of 
state is nonlinear in internal energy. Given current values for 
the strain (ErJ-"+l)) and values of the damage and stress at the 
last time step (Drs

M, Srs
{n)), the components of the stress are 

first estimated as 

S^+l)* = Kijkl(Dj"\ Srs
M)Ek,<"+,\ (16a) 

These estimates are then used to update the damage and the 
stress in the form 

D^+V^D^ +Du(Dkl
w, Sj"+l)*)At (16b) 

S^" + l ) = ̂ / ( JD„<"+ 1 , ,5 r a
("+ 1 )*) i?w

<"+ 1 ) ' (16c) 

where At is the time step and the functions Z>,y are defined by 
Eqs. (8). If the trial damage state of Eq. (16Z?) is inadmissible, 
based on the fracture criterion discussed in the next paragraph, 
a radial return algorithm (Hughes, 1984) is used to locate the 
fractured state in principal damage space. As in the case of 
the equation of state relations just mentioned, the outlined 

integration procedure is motivated by the nonlinear depend­
ence of the stiffness matrix on the damage tensor and the 
relatively small time steps employed in the explicit DYNA3D 
code. 

The stress-strain relations must be augmented by a brittle 
fracture criterion. Consistent with the damaged-based contin­
uum approach used here, element fracture is defined by a 
minimum normal damage criterion 

Dt = Dc;i=l,2,or3. (I6d) 

That is, damage is accumulated until an eigenvalue £>, reaches 
the critical damage value Dc, at which time the element is 
assumed to fracture along a plane normal to the rth eigenvector 
of the damage tensor. The fractured material is assumed to be 
unable to support any tensile normal stress or any shear stress 
component on the plane of fracture. Alternative fracture cri­
teria could of course be adopted, but should be consistent with 
the evolutional equations employed, and be used in the ex­
perimental evaluation of damage accumulation coefficients. 
In order to avoid numerical instabilities associated with abrupt 
changes in element stiffness, evolution from the undamaged 
state to the fractured state is extended over a minimum of 
three time steps. This procedure is consistent with existing stress 
based element failure models included in the standard DYNA3D 
code. 

Impact Simulations 
The constitutive subroutine just described may be employed 

in the analysis of high-velocity impact experiments involving 
brittle solids. Tower et al. (1987) have used electromagnetic 
railguns to study the effect of low length to diameter ratio 
projectiles of various material types on steel plate targets at 
velocities as high as 7 km/sec. The behavior of ceramic pro­
jectiles in these experiments is anomalous, in that they exhibit 
a modest reduction in penetration efficiency with increased 
velocity, apparently due to "shattering" (Tower et al., 1987) 
of the projectile at sufficiently rapid loading rates. The con­
stitutive subroutine developed here was applied to simulate the 
impact of spherical projectiles on steel plate, in order to es­
timate the effects of damage accumulation and brittle fracture 
on the penetration performance of ceramic. The numerical 
modeling incorporated plate thickness to sphere diameter and 
plate width to sphere diameter ratios of 1.1 and 5.6, respec­
tively, and the following material properties: (1) for the alu­
mina sphere, Young's modulus = 276 GPa, Poisson's 
ratio = 0.22, reference density = 3600 kg/m3 , £ = 22, and 
A-= 0.99, for various values of A; (2) for the steel target, 
Young's modulus = 207 GPa, Poisson's ratio = 0.30, and ref­
erence density = 7860 kg/m3. The steel was assumed to be per­
fectly plastic, with a yield strength of 414 MPa, and to obey 
the Los Alamos equation of state (Reddy, 1976). Figures 1 and 
2 show an oblique sectioned view of a typical three-dimensional 
impact simulation and a corresponding contour plot of the 
von Mises effective stress (Hallquist, 1982) in the projectile, 
at ten microseconds after impact for an initial velocity of 1 
km/sec. Figure 3 shows the time variation of the depth of 
penetration (P, defined as the vertical displacement of the 
upper surface of the target centerline) for a damage accu-

Ficj. 1 Sectioned view of a 1 -km/sec impact of a ceramic sphere on a 
steel plate (f = 10 jisec) 
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CONTOUR VALUES 
(GPa) 

A 7 . 1 5 
B 1 4 . 0 5 
C 2 0 . 9 4 
D 2 7 . 8 4 
E 3 4 . 7 4 

Fig. 2 Contour plot of the von Mises effective stress in a ceramic sphere 
impacting a steel plate at 1-km/sec (f = 10 /isec) 

Time (microseconds) 

Fig. 3 Depth of penetration (cm) versus time (psec) for a 1-km/sec im­
pact of a ceramic sphere on a steel plate (k=22, A = 2.09x 1<T67 

M Pa-"sec"1) 

mulation parameter appropriate for mean strength ceramic. 
The dependence of the predicted dimensionless penetration 
depth (P/d, d = sphere diameter) on A is shown in Fig. 4 for 
impacts at 1 km/sec. The results are qualitatively as expected, 
with "weaker" ceramics, characterized by decreased mean 
fracture strength and increased values of A, leading to a re­
duction in predicted penetration depth at constant impact ve­
locity. The difference between predicted penetration depths 
for perfectly elastic spheres and spheres exhibiting strength 
properties comparable to those measured in the Davidge et al. 
(1973) experiments is approximately 26 percent. The predicted 
value of P/d=0A3 for high quality alumina, and a target 
thickness approximately equal to the sphere diameter, is gen­
erally consistent with the experimental data of Tower et al. 
(1987). 

Conclusion 
A complementary energy density-based approach to con­

stitutive modeling of damaged elastic solids provides a me-
somechanical description of the continuum stress-strain 
relations which need not invoke common effective stress as­
sumptions, even in the case of finite crack concentrations. The 
algebraic form of the resulting material compliance matrix is 
analogous to that derived in simple one-dimensional cases 
(Broek, 1987), and differs significantly from those developed 
on the basis of effective area models (Murakami, 1987). Com­
bining the complementary energy density function with tensor 
power function forms for the dissipative (evolutional) relations 
and an appropriate fracture criterion provides for the simu-

0.60-. 

0.30 

Elastic projectile 

J...., 

• — Simulation results 

Ceramic sphere (d=4.5 cm) 
Steel target, V=1 km/sec 

(1/k)log[A/A(mean)] 

Fig. 4 Dependence of the dimensionless depth of penetration (P/d) on 
the continuum damage accumulation rate (A) for 1-km/sec impact of a 
ceramic sphere on a steel plate (k = 22, Am = 2.09 x 10 " " M Pa ~ 22sec "') 

lation of brittle fracture processes under large-rotation con­
ditions characteristic of many impact dynamics problems. The 
use of measured Weibull strength parameters provides a simple 
accounting for flaw distribution effects described in tensorial 
form by Leckie and Onat (1981). Second-order tensor damage 
models of the type described here are the simplest of those 
used in three-dimensional analyses, and present few compli­
cations in finite element implementation beyond those asso­
ciated with modeling of composites and other anisotropic 
materials. Nonetheless, the state variable storage requirements 
for such models are considerable, emphasizing the value of 
modeling simplicity, already motivated by the difficulties of 
obtaining application specific model parameters for a variety 
of dynamic analysis tasks (Zukas et al., 1982). 
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E R R A T A 71 •o 

Errata on "Transient Thermal Stresses in Cylindrically Or-
thotropic Composite Tubes," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 56, June 1989, pp. 411-417, and on the 
follow-up paper, "The Initial Phase of Transient Thermal 
Stresses due to General Boundary Thermal Loads in Ortho-
tropic Hollow Cylinders," ASME JOURNAL OF APPLIED ME­
CHANICS, Vol. 57, Sept. 1990, pp. 719-724, both by G. A. 
Kardomateas. 

The term q2 was omitted in Eq. (14) of the 1989 paper and 
Eq. (11) of the 1990 paper, and this error carried through in 
the remaining of the equations, which otherwise are correct. 

To account for this error, replace e?4„ and dSn in these equa­
tions (e.g., Eq. (14) of the 1989 paper and all equations there­
after that involve dA„ or d5„) by d4„q2 and d5nq2, respectively, 
as well as replace q\ by q\/q2 and q3 by q^/q2. 
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Errata on "Transient Thermal Stresses in Cylindrically Or- 
thotropic Composite Tubes," ASME JOURNAL OF APPLIED 
MECHANICS, Vo1. 56,  June 1989, pp. 41 1-417, and on the 
follow-up paper, "The Initial Phase of Transient Thermal 
Stresses due to General Boundary Thermal Loads in Ortho- 
tropic Hollow Cylinders," ASME JOURNAL OF APPLIED ME- 
CHANICS, V01. 57, Sept. 1990, pp. 719-724, both by G. A. 
Kardomateas. 

The term q2 was omitted in Eq. (14) of the 1989 paper and 
Eq. (11) of the 1990 paper, and this error carried through in 
the remaining of the equations, which otherwise are correct. 

To account for this error, replace d4,, and d5,, in these equa- 
tions (e.g., Eq. (14) of the 1989 paper and all equations there- 
after that involve d4,, or dSn) by d4,1q2 and dsr,q2, respectively, 
as well as replace ql by q,/q2 and q3 by q3/q2. 
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Singular Fields in 
Plane-Strain Penetration 
Local singular fields are investigated in the vicinity of the vertex of a sharp wedge 
that penetrates a viscous solid. Material behavior is modeled by the usual power-
law constitutive relation. Wall friction is accounted for by imposing friction factors 
along the walls of the wedge. The case of a Newtonian fluid is investigated analyt­
ically, and sample numerical results are presented for nonlinear strain rate hardening. 
It is shown that the exponent of strain rate singularity increases as the wedge becomes 
sharper and smoother. Increasing the hardening parameter also results in a stronger 
strain rate singularity. High levels of wall friction induce an intensive shear boundary 
layer near the wall. 

1 Introduction 
Steady penetration of a rigid wedge into viscoplastic media 

will induce singular strain rate and stress fields in the neigh­
borhood of the wedge tip. A start of such penetration studies 
has been presented recently by Fleck and Durban (1991) for a 
rigid conical cone with a rough wall that penetrates a power-
law viscous solid. The present work addresses the plane-strain 
version of the penetration problem with the same material 
model, so that the near-tip singular field is governed by the 
HRR equation (Hutchinson, 1968; Rice and Rosengren, 1968). 
Frictional boundary conditions are accounted for along the 
walls of the wedge by assuming that wall roughness is measured 
by the friction factor. That factor determines the relative con­
tribution of the shear stress at the wall to the effective plastic 
stress. 

The study reveals the nature of the coupling between wall 
friction and the strain-rate hardening of the material within 
the singular zone. This could be helpful in analyzing experi­
mental data of creep indentation where difficulties arise in 
measuring creep properties due to wall friction (Atkins et al., 
1966; Matthews, 1980). 

The governing equations for the stress function are given in 
the next section. We show that the mixed boundary data at 
each wall, that supplements the HRR equation, can be ex­
pressed in terms of the circumferential profile of the stress 
function. In Section 3, we consider in detail the special case 
of a Newtonian fluid. The field equation admits an exact so­
lution which is used here for a simple illustration of the singular 
field characteristics for symmetric penetration modes. It is 
shown that the exponent of strain-rate singularity increases as 
the wedge becomes sharper and smoother. There is also a 
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noticeable build-up of a near-wall boundary layer at high levels 
of friction. An interesting comparison is made between steady 
penetration of a rigid, perfectly rough knife (a wedge of zero 
thickness) in a Newtonian fluid and a stationary crack in an 
Hookean solid (modes I and II). Both fields have the same 
exponent of the singularity but entirely different stress profiles 
within the singular zone. 

Finally, in Section 4 we show results of numerical calcula­
tions again for symmetric fields, but with different strain-rate 
hardening parameters. It is confirmed that the strain-rate com­
ponents become less singular with increasing wall friction and 
wedge angle. Similarly, increasing the strain-rate hardening 
parameter results in an increasing strain-rate singularity. These 
results are in agreement with the findings reported by Fleck 
and Durban (1991) for the conical indentor. The near-wall 
boundary layer build-up is demonstrated for a number of cases. 
A similar boundary layer has been observed experimentally by 
Roth and Oxley (1972) in orthogonal machining. Comparison 
with available results for the analogous free-notch problem 
shows that below a certain level of wall friction the penetrating 
wedge induces a stronger singularity than the free notch. 

The paper concludes with an example of asymmetric pen­
etration where the wedge has one smooth wall while the other 
wall is of considerable roughness. Again, an intensive shear 
boundary layer is observed near the rough wall. 

Fig. 1 Notation for steady penetration of a rigid wedge. A plane polar 
system (r,0) Is attached to the apex. 
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2 Stress Function Formulation 
A rigid wedge (Fig. 1) is steadily penetrating, under plane-

strain conditions, an incompressible nonlinear viscous solid. 
The problem addressed here is that of determining the essential 
features of the near-tip singular field for given geometry, wall 
friction, and material response. 

The rheological model of the medium is described by the 
pure power-law relation 

2\ff0 
(1) 

where (a0, ri) are material parameters, D is the Eulerian strain 
rate, S is the stress deviator, and ae is the Mises effective stress. 
For our problem 

0^ = - ( (T r - (Te ) 2 + 3 7 ^ (2) 

where (ar, ae, T^) denote, with the usual notation, the in-plane 
polar stress components. 

Equilibrium requirements are satisfied if the stresses are 
derived from an Airy stress function F(r, 6) by 

r r 

<Je = F,rr 

Tr6— - \~F,$ 

(3a) 

(3b) 

(3c) 

Assuming that the near-tip singular field is governed by a 
separation of variables form, viz. 

F=rs<j>(d), (4) 

we find that the stresses (3) may be rewritten as 

(5«) 

(5*) 

(5c) 

ar=rs-2(<t>"+s<j>)=rs~2dr 

oe = rs~2s(s- \)4> = rs'2Se 

Tre = r-
,s-2, • ( ! - * ) « ' = r » - 2 f r t 

where the prime denotes differentiation with respect to 6, and 
a tilde stands for the circumferential profile of the quantity. 
Similarly, the effective stress (2) becomes 

, 1/2 
V3 l<t>"-s(s-2)$)2 + 4(s-l)2(<t>')' 

(6) 

Inserting relations (5)-(6) in the constitutive law (1) results 
in the strain-rate components 

-«» = 
73 -n n(s-2)~n-\ drl[V -s(s-2)4>] 

= kr"{s~2)£r (la) 

tre = 

where 

73 
a"V ( , - 2 ) d? _ 1 [2( l ~s)<l>'} = krn{s~2)ire (lb) 

k = ( — I an (7c) 

is a suitable scaling coefficient. 
Substituting (la)-(lb) in the compatibility equation results 

in the /--independent equation, 

£? -n(s-2)[n(s-2) + 2]er-2[n(s-2)+l]^ = 0. (8) 

In terms of 4> we have, in (8), a fourth-order nonlinear dif­
ferential equation, due to Hutchinson (1968), 

-n(s-2)[n(s-2) + 2] 5, >"-s(s-2)4>]\ 

+ 4 ( j - l ) | « ( s - 2 ) + i p r V T = 0 (9) 

where the circumferential profile of the effective stress ae is 
defined by (6). 

Equation (9) is supplemented by four boundary conditions, 
two at each wall of the wedge. Assuming that wall friction is 
imposed through the friction factor m, and expecting that the 
shear stresses'along the wall oppose the direction of flow, we 
get, from (2), the boundary data 

73-Trf = oe at ' = ± (10a) 

6= ±13. (10b) 

+ w2 

or, with the aid of (5c)-(6), 

( + mC) 
It*] \ae = 0 at 

Employing the friction factor in viscoplastic flow problems is 
preferable to the use of the conventional Coulomb friction 
coefficient. This has been demonstrated in a number of studies 
by Durban (1979, 1980, 1983, 1984) on steady forming proc­
esses. The shear factor measures local surface roughness by 
stating the relative contribution of the shear stress along the 
wall to the total effective stress. This particular measure re­
mains physically valid even in the absence of normal pressure. 
The values of the friction factors (mlt m2) vary from zero for 
a smooth wall to unity for a perfectly rough wall. Conditions 
(10) may be expressed in terms of the circumferential profiles 
of the strain rates (la)-(lb) as 

mje^ + mier = 0 at 6 = /3 

•\jl^m\iri~m2tr = 0 at 6= - (3 . (lla) 

This, in turn, can be further reduced to a form involving linear 
combinations of <t> and its derivatives, namely 

2-\fl-m2
l(l-s)4>'+ml[<t>"-s(s-2)^]=0 at 0 = j3 

2s]\-m\(\ -s)<t>' -/n2W>" - 5 ( 5 - 2 ) 0 1 = 0 at 0 = - 0 ( 1 1 6 ) 

In passing, it is worth mentioning that while we have assumed 
so far that both friction factors (mx, m2) are positive, there 
exists the possibility of penetration eigenfields where one of 
the friction factors is negative. The near-tip velocity pattern 
would then resemble a local circulation as in classical hydro­
dynamics. No attempt has been made in this paper to inves­
tigate such rotational fields but their likelihood ought to be 
mentioned. Purely antisymmetric fields are not permissible for 
the penetration problem since normal pressure is expected to 
exist along both walls of the wedge. 

In addition to (11) we have the obvious requirement that 
the circumferential velocity component has to vanish at the 
boundaries. To this end we denote the polar velocities com­
ponents by (u, v) and integrate the radial kinematic relation 
er=u,r to obtain, with the aid of (7a), 

M _£ r " (s -2)+l_ 
n(s-2)+l 

Now, take the shear strain-rate definition 

l / l 
tre=2\ZU>S>+V>r- r 

(12) 

(13) 

and combine it with (lb) and (12) to obtain the expression 

v = kr' 
. n ( ^ 2 ) + i 2 [ « ( s - 2 ) + l ] 6 r f i - e ; 

n(s~2)[n(s-2)+l]' 

Thus, atfl= ± 0 , 

2[n(s-2)+l]~ere-~e;=0. 

(14) 

(15a) 
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Combining (15<J) v/ith (11a) gives, after some algebraic ma- (Ci = C3 = 0, mi = m2 = m) we obtain, from (lib) and (15b), 
nipulations, the alternative form of (15a) the homogeneous system 

[n-(n-l)m2][<l>'"-s(s-2)4>'] C2sm(s-2)(3 + C2sinsl3 = 0 (22a) 

- 2 ( l - s ) ]m i.VT^ m\ (77 - 1)0" + 2[n (s- 2) + l]</>' = 0 (s- 2)C2[\J 1 - m2 sin(s- 2)/S - mcos(s- 2)/3] 

•a t0 = /3 (15/3) +sC4(Vl-m2si i is le-mcoss/3) = 0. (22/j) 

The transcendental equation for the eigenvalues s follows as 

2sjl-m2 sins(3sm(s -2)fi + m[(s- 2)sinif3cos(.s - 2)0 - scoss|3sin(.s - 2)/3] = 0. (23) 

with a similar condition at 6= - /? except that mi is replaced 
by (-mi). 

The four homogeneous boundary conditions, (11) and (15), 
provide the necessary data on <f> and its derivatives along the 
walls. Equation (9), along with that boundary data, form an 
eigenvalue problem for the singularity measure s. Simple con­
siderations show that s should be bounded within the range 

2/2 
-<s<2 (16) 

n-f l 

where the upper bound assures a singular field and the lower 
bound guarantees finite power consumption near the wedge 
tip. 

When mi = m2 = m the flow pattern may be expected to be 
symmetric with respect to the axis 0 = 0. The conditions along 
the penetration line are then the same as for a smooth wall 
with T^ = 0 and v = 0 or, in terms of c/>, 

tf>'=0 and 4>"'=0 at 0 = 0. (17) 

At the other extreme, for a perfectly rough wall where the 
friction factor is equal to unity, we find from (11) that er = 0 
or, from (la), 

<t>K-s(s-2)<j> = 0. (18) 

This gives, via (12), that 

u = 0, (19) 

implying a sticking condition along the wall. It is also worth 
noting that at a perfectly rough wall, condition (15) admits 
the simplified form 

cj>'" - {4(1 -s)[n(s-2)+l] +s(s-2)}<j>' =0 . (20) 

3 The Newtonian Fluid (n = 1) 
It is instructive to consider first the case n = 1 (Newtonian 

fluid) where equation (9) admits the simple solution (Karal 
and Karp, 1964) 

4> = CisinC? - 2)6 + C2cos(s - 2)6 + C3sinsd + C4coss6. (21) 

The same solution has been given by Rayleigh (1920) in dis­
cussing steady motion near corners. Subsequently, Dean and 
Montagnon (1949), Taylor (1960), and Moffatt (1964), have 
applied this solution to a variety of problems related to flow 
fields near corners. Limiting the discussion to symmetric fields 

The dependence of s on m and /3, as evaluated from (23) is 
shown in Fig. 2. It can be clearly seen that the exponent of 
singularity increases, (i.e., 5 decreases) with decreasing friction 
and wedge angle; sharp and smooth wedges penetrate more 
easily. For frictionless walls (m = 0) we have, from (23), 

7T 
(24) 

7T 
1 + (25) 

Expanding the solution of (23) in powers of m gives, to the 
second order, 

\ 7r-2j3 + t a n 2 | 3 / m \ 2 1 

v2(3/ + tan2(3 \2fij 

This expansion does not converge for very small wedge angles 

(/3—7r), and for nearly flat wedges ((3—T ) . but is nevertheless 

an excellent approximation (Fig. 2) xo the exact results of (23) 
as long as m2«(2j3)21 tan2/31. 

At sufficiently large wedge angles and friction factors the 
near-tip field becomes nonsingular (Fig. 2). A simple yet fairly 
accurate estimation of those critical angles can be obtained at 

EXACT SOLUTION 

ASYMPTOTIC EXPANSION 

2.0 

I . 0 

Fig. 2 Singularity exponent for different wedge angles and friction 
factors. Newtonian fluid, n = 1. The corresponding free notch eigenvalue 
is indicated by an arrow. 

Fig. 3 Contours of constant effective stress for « = 30 deg and with 
different friction factors. Newtonian fluid, n = 1. A boundary layer build­
up is observed as m increases. 
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CRACK 2.0 

PERFECTLY 
ROUGH 
KNIFE 

Fig. 4 Contours of constant effective stress for a perfectly rough knife 
penetrating a Newtonian fluid, and for a crack in a Hookean solid. The 
singularity exponent in both cases is s = 3/2. 

low levels of friction, from the linear approximation of (25) 
along with the singularity requirement s < 2. This gives an upper 
bound on the wedge angle 

2a<w — m (26) 
ensuring singular near-tip behavior. 

Contours of constant effective stress (6), nondimensional-
ized with respect to their value at the wall, are here determined 
by the relation 

with 

B 

r = [ 1 - B(cos20 - cos2|3)P<2 - *> 

2s(s- 2)sinsffsin(,s' - 2)/3 

(27) 

(s - 2)2sin25(3 + s2sin2(s' - 2)0 - 2s (s - 2)sins/3sin(.s - 2)/3cos2|3' 
(28) 

For a smooth wedge B vanishes identically, by (24), and (27) 
becomes the circle r= 1, regardless of the wedge angle. 

Typical contours of constant effective stress are displayed 
in Fig. 3 with different values of the friction factor for a semi-
wedge angle of a = 30 deg. An obvious build-up of a friction 
boundary layer is clearly observed as the friction factor in­
creases. This is accompanied by the development of a bulb-
shaped singular zone ahead of the wedge. 

In steady penetration of a rigid knife with zero thickness 
(/3 = 7r) we find, from (23), 

1 m 
s=\+ — arctan 

ir V \-rrf 
with the associated contour, from (27)-(28), 

r=[l-s(2-s)smzd]2<-2-sl 

(29) 

(30) 

For a perfectly rough knife (m = 1, s = 3/2) the contour is given 
by r = (1 + 3cos20)/4, indicating again the formation of a near-
wall friction boundary layer (Fig. 4). The stresses admit here 
the same exponent of singularity (r~1/2) as the crack-tip field 
in a Hookean solid. Contours of constant effective stress for 
the crack (nondimensionalized with respect to their value at 
8 = TT/2) are given by r=sin20 and are shown for comparison 
in Fig. 4. It should be added that the hydrostatic stress in 
steady penetration of a rigid knife is negative 

Oh = -(V3/3)fcos|j/ -1/2 

while, in the near-tip field of a crack, the hydrostatic stress is 
in a state of tension 

a„ = 2 ( V 3 / 3 ) f c o s y r - 1 / 2 . 

The contour for a mode II crack in a Hookean solid is identical 
with that of the penetrating perfectly rough knife, but with a 
hydrostatic tension environment 

1.5 

n=3 

0 0 .5 1.0 

Fig. 5 Singularity exponent for different wedge angles 
factors, n = 3. The corresponding free-notch eigenvalue is 
an arrow. 

and friction 
indicated by 

Fig. 6 Influence of the strain-rate hardening exponent on the eigen­
value s, a = 30 deg. The corresponding free-notch eigenvalue is indicated 
by an arrow. 

CTA = ( V 3 / 3 ) sin-)/-"172 

4 Numerical Analysis for Nonlinear Strain-Rate Hard­
ening (n > 1) 

A special numerical scheme (Rand, 1988) has been employed 
to solve the differential equation (9) along with the associated 
boundary conditions (11) and (15). The function <j>(6) is rep­
resented by a stationary vector X, of dimension N, whose 
components are the corresponding coefficients of the truncated 
Fourier expansion 

m = X\+ 2 j*i_,cos 
; = 3 , 5 , . . 

( / -I); 

+ A'iSin ( / - I ) ; (3D 

Inserting (31) in equation (9) results in an expression which 
will be denoted by G(X,6). Similarly, substitution of (31) in 
the boundary conditions (1 lb) and (15b) will give four expres­
sions that will be referred to as Bj(X) withy'= 1,...,4, respec­
tively. 

Now, we define an error functional E(X) by 

E(X)=\ [G(X,6)]2de+J][Bj(X)]2. (32) 
-0 y=i 

The solution method used here is based on minimizing the 
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m = 0 . 6 8 8 

( a ) n=3 m = 0 . 0 9 4 4 ( b ) n = l3 

Fig. 7 Contours of constant effective stress, a = 30 deg; (a) n = 3; (b) n = 13 

m = O.S48 (a ) m=0.09Sf 

Fig. 8 Contours of constant effective stress for a sharp wedge with 
a = 5 deg, n = 3 

2 

0 

- I 

-? 

( b ) n = l3 

Se 

• ^ r e 

"̂"--̂  
s> _ ^ ~ 

-^s=r^^^x 
~^^~~-5?___—-

O 50 IOO „ „ I50 

Fig. 9 Stress components </,,• profiles within the singular zone for« = 30 
deg and m = 0.7; (a) n = 3, (b) n = 13 

error £(X) over the vector X. This is done through an iterative 
scheme whereby the Jacobian matrix is evaluated numerically 
at each step. The dimension TV of vector X depends of course 
on the required accuracy. Simple measures have been defined 
for the maximum error, induced by truncating X, in the dif­
ferential equation and in the boundary conditions. The di­
mension of vector X is increased until the convergence 
requirements are met. This procedure can be further simplified, 
for symmetric fields, by choosing s and evaluating the cor­
responding value of m. Once the eigenfunction <j>(ff) has been 
determined, along with the associated eigenvalue, it is possible 
to construct the entire stress and strain-rate fields within the 
singular zone. For simplicity, most of the results reported 
below are for symmetric eigenfields with m.\ = mi = m. 

20 „ 150 

Fig. 10 Stress components on profiles within the singular zone for 
a = 30 and n = 3; (a) m = 0.0965, (b) m = 0.09919 

n= I , m ^ O . 8 5 5 

n= 3 , m.= I 

Fig. 11 Contours of constant effective stress in asymmetric penetra­
tion 

Figure 5 illustrates the dependence of the singularity level 
on the friction factor m for n = 3 and with a few wedge angles. 
The variation of s with the strain-rate hardening parameter n 
is shown in Fig. 6, for a = 30 deg, indicating that 5 increases 
with increasing n. This implies that the stress components— 
behaving like a^-f'2—become less singular as n increases. 
On the other hand, the strain-rate components—behaving like 
e,;~r"(i-2)—become more singular as n increases; for example, 
with a = 30 deg and m = 0.7 we have the eigenvalues s = (1.20, 
1.72, 1.93) for « = (1, 3, 13), respectively. It follows that the 
corresponding levels of strain-rate singularity are 
n(2-s) = (0.80, 0.85, 0.92). It should be added that the sen-
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-120 - 6 0 • 0 60 „ „ 120 

Fig. 12 Stress components o(/ profiles in asymmetric penetration with 
a = 53 deg, m, = 1, m2 = 0, n = 3 

sitivity of s to a decreases considerably as n increases/Thus, 
the curve of Fig. 6 for n= 13 and a = 30 will remain almost 
unchanged over a wide range of wedge angles. This trend can 
be observed also by comparing Figs. 2 and 5. By the same 
token, the dependence of 5 on the friction factor m becomes 
weaker with increasing n. 

It is interesting to compare our results with those obtained 
by Kuang and Xu (1987) for HRR fields near the tip of sharp 
V-notches. Their results for the free-notch eigenvalues are in­
dicated in Figs. 2, 5, and 6. It can be seen that, for given a 
and n, there is always a critical value of the friction factor 
below which the penetrating wedge induces a stronger singu­
larity than the corresponding notch. That critical friction factor 
appears to decrease with a (Figs. 2, 5), but its dependence on 
n is more complex (Fig. 6). Other cases of plane-strain HRR 
fields with various boundary conditions have been considered 
recently by Alexandrov and Grishin (1987) and byDuva(1988). 
A review of available wedge III solutions for notches and 
wedges can be found in Ore and Durban (1988). 

Typical contours of constant effective stress are shown in 
Figs. l{a)-l(b) for a wedge with a semi-angle of 30 deg. These 
contours have been normalized with respect to their extent 
along the walls. An obvious boundary layer build-up can be 
observed as the friction factor m increases. It is also seen that 
for higher values of n the singular field becomes more tapered. 
Similar contours are shown in Fig. 8 for a sharper wedge with 
a = 5 deg. 

Representative stress profiles are shown in Figs. 9{a)-9(b) 
and 10(a)-10(6). All stress components are normalized with 
respect to the value of ae at the walls. The first pair (Figs. 
9(a)-9(b) illustrates the effect of n while the second pair (Figs. 
10(«)-10(Z?) reflects the influence of m. The circumferential 
deviatoric component (ae - ah) is always positive along the pen­
etration line (0 = 0 deg) implying, by (1), that the circumfer­
ential strain rate ee is also positive ahead of the crack. Above 
a certain value of 6 there is a sign reversal in ee, so that the 
circumferential strain rate becomes negative for higher values 
of 9. That change of sign happens along a radius where ar=a0 

with a state of simple radial shear at that particular angle. This 
further implies that the radial velocity u vanishes along that 
radius. 

Finally, we show some sample figures for asymmetric pen­
etration where each wall has a different friction factor. The 
lower wall (6= —ft) is smooth while the upper wall is very 
rough. Again, the boundary layer near the rough wall is clearly 
seen (Fig. 11). The associated stress profiles are shown in Fig. 
12 for the case where the upper wall is perfectly rough. The 
deviatoric (ag - ah) is here positive only within a limited range 
of angles bounded by two radii along which the radial velocity 
vanishes. 

Acknowledgment 
The research was supported by Technion V.P.R. Fund— 

Seniel Ostrow Research Fund. 

References 
Alexandrov, V. M., and Grishin, S. A., 1987, "State of Stress and Strain of 

a Small Neighbourhood of the Apex of a Wedge for a Physical Non-linearity 
and Different Boundary Conditions," PMM, Vol. 51, pp. 509-515 (English 
translation). 

Atkins, A. G., Silverio, A., and Tabor, D., 1966, "Indentation Hardness and 
the Creep of Solids," J. Inst. Metals, Vol. 94, pp. 369-378. 

Dean, W. R., andMontagnon.P. E., 1949, "On the Steady Motion of Viscous 
Liquid in a Corner," Proc. Camb. Phil. Soc, Vol. 45, pp. 389-394. 

Durban, D., 1979, "Axially Symmetric Radial Flow of Rigid/Linear-Hard­
ening Materials," ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 322-
328. 

Durban, D., 1980, "Drawing of Tubes," ASME JOURNAL OF APPLIED M E ­
CHANICS, Vol. 47, pp. 736-740. 

Durban, D., 1983, "Radial Flow Simulation of Drawing and Extrusion of 
Rigid/Hardening Materials," Int. J. Mech. Sci., Vol. 25, pp. 27-39. 

Durban, D., 1984, "Rate Effects in Steady Forming Processes of Plastic 
Materials," Int. J. Mech. Sci., Vol. 26, pp. 293-304. 

Duva, J. M., 1988, "The Singularity at the Apex of a Rigid Wedge Embedded 
in a Nonlinear Material," ASME JOURNAL OF APPLIED MECHANICS, Vol. 55, 
pp. 361-364. 

Fleck, N. A., and Durban, D., 1991, "Steady Penetration of a Rigid Cone 
with a Rough Wall into a Power-Law Viscous Solid," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 58, pp. 872-880. 

Hutchinson, J. W., 1968, "Singular Behavior at the End of a Tensile Crack 
in a Hardening Material," J. Mech. Phys. Solids, Vol. 16, pp. 13-31. 

Karal, F. C , and Karp, S. N., 1964, "Stress Behavior in the Neighbourhood 
of Sharp Corners," Geophysics, Vol. 29, pp. 360-369. 

Kuang, Z.-B., and Xu, X.-P., 1987, "Stress and Strain Fields at the Tip of 
a Sharp V-Notch in a Power-Hardening Material," Int. J. Fracture, Vol. 35, 
pp. 39-53. 

Matthews, J. R., 1980, "Indentation Hardness and Hot Pressing, "Acta Met., 
Vol. 28, pp. 311-318. 

Moffatt, H. K., 1964, "Viscous and Resistive Eddies Near a Sharp Corner," 
J. Fluid Mech., Vol. 18, pp. 1-18. 

Ore, E., and Durban, D., 1988, "Boundary Effects at a Notch Tip in Anti-
Plane Shear," Int. J. Fracture, Vol. 38, pp. 15-24. 

Rand, O., 1988, "Harmonic Variables—A New Approach to Nonlinear Pe­
riodic Problems," / . Comp. Math. Appl, Vol. 15, pp. 953-961. 

Rayleigh, Lord, 1920, Scientific Papers, Vol. VI, Cambridge University Press, 
pp. 18-21. 

Rice, J. R., and Rosengren, G. F., 1968, "Plane Strain Deformation Near a 
Crack Tip in a Power-Law Hardening Material," J. Mech. Phys. Solids, Vol. 
16, pp. 1-12. 

Roth, R. N„ and Oxley, P . L. B., 1972, "Slip-Line Field Analysis for Or­
thogonal Machining Based Upon Experimental Flow Fields," J. Mech. Engng. 
Sci., Vol. 14, pp. 85-97. 

Taylor, G. I., 1960, Aeronautics and Astronautics, Hoff and Vincenti, eds., 
Pergamon Press, pp. 21-28. 

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 / 915 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



W. N. Sharpe, Jr. 
Department of Mechanical Engineering, 

The Johns Hopkins University, 
Baltimore, MD 21218 

Fellow ASME 

Measurement of Monotonic Biaxial 
Elastoplastic Stresses at Notch 
Roots 
Biaxial principal strains were measured at the roots of notches in aluminum specimens 
with a laser-based interferometric technique. Interference patterns from three tiny 
indentations spaced 150 or 200 micrometers apart in an orthogonal pattern were 
monitored with a microcomputer-controlled system. Elastoplastic strains up to one 
percent were measured in real time with a resolution of 25 microstrain. Procedures 
were developed for computing the two principal stresses from the incremental strain 
data using l2-flow theory. The validity of the computations was checked by com­
puting the stresses in smooth tensile specimens. Anisotropy in the thin sheet material 
leads to errors in the computed lateral stresses (which should be zero), but the 
maximum deviation of the computed effective stress from the uniaxial stress is only 
five percent. Three kinds of double-notched specimens were prepared to vary the 
amount of constraint at the notch root. These were tested under monotonic tensile 
loading and the biaxial notch-root strains recorded. There is considerable variation 
among the strains once the elastic limit is passed. This is due primarily to the local 
inhomogeneity of plastic strain, since the gage length of the measurement is only a 
few times larger than the grain size of the material. Local biaxial stresses were 
computed from the measured strains for the three cases. The nature of the material's 
stress-strain curve tends to smooth out the variations among tests, particularly when 
the effective stress is computed. It is discovered that the local stress predicted by 
the Neuber relation agrees very closely with the measured local effective stress. 

1 Introduction 
The prediction and measurement of stresses and strains at 

"stress concentrations" is an important problem in the field 
of solid mechanics. Given the long history of research into the 
elastic problem and the availability of sophisticated finite ele­
ment codes, one can expect to get good agreement between 
predicted and measured elastic stresses and/or strains. How­
ever, the situation is not so favorable when the elastic limit of 
the materials has been exceeded—theories carry restrictive as­
sumptions, computer predictions are cumbersome, and meas­
urements can no longer be made on elastic models such as 
those used in photoelasticity. Local elastoplastic response at 
a discontinuity in a component or structure is still a rich area 
for research from an experimental, theoretical, and compu­
tational viewpoint. 

The ability to predict stresses (as opposed to strains) is im­
portant from design considerations; one is much more likely 
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to know the applied loads than the applied deformations. But 
of course one does not measure stress directly; one measures 
load on a simple geometry or measures strains on a complicated 
geometry. Conversion to stress occurs through the basic def­
inition if load is measured and through the constitutive equa­
tions if strains are measured. This latter process is 
straightforward for elastic behavior, but less well developed 
for elastoplastic behavior. A major reason is the difficulty of 
measuring the elastoplastic strains in situations that are truly 
meaningful. Plasticity tends to initiate at stress concentrations, 
and in most cases these are relatively small which inhibits the 
use of the ubiquitous foil gages. Another difficulty with the 
study of elastoplastic behavior is that one cannot scale up the 
problem because the material's grain size is so important. 

This paper reports the results of a series of experiments on 
.three geometries of double-notched specimens of 2024 alu­
minum. These three cases were chosen to vary the amount of 
lateral constraint at the notch root. Longitudinal and lateral 
strains, e\ and e2> were measured at the notch roots with a 
laser-based technique having a gage length of either 150 pm 
and 200 ^m—only a bit larger than the grain size of the ma­
terial. These measured principal strains are then converted into 
stresses using the incremental version of the J2 theory of plas­
ticity. The material tested is not isotropic which the theory 
assumes, and this contributes to errors in the computed stresses; 
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however, it is very important technologically because the sheet 
material is widely used in the skins of aircraft. 

The results reported here are part of a larger study of the 
elastoplastic behavior at notch roots under cyclic loading—the 
implications are obvious, one wants to be able to predict the 
initiation of cracks under low-cycle fatigue conditions. The 
discussion here focuses only the first monotonic part of the 
loading cycle. The Neuber relation (Neuber, 1961) 

KaxK( = K* (1) 

(where Ka is the stress concentration factor, Ke is the strain 
concentration factor, and K, is the elastic stress concentration 
factor) is widely used for predicting the stresses and strains at 
notch roots. It is generally regarded as satisfactory for plane 
stress loading, but not for loadings approaching plane strain. 
Another paper (Sharpe and Wang, 1991) explores this effect 
of constraint on the validity of a modified version of the Neuber 
relation for monotonic loading; the predicted strains were com­
pared with the measured ones. The conclusion there is that a 
modification of the Neuber relation which makes it look more 
like a linear relation (Ke = Kt) is an improvement when con­
straints are present. 

The development and application of the Neuber relation is 
reviewed in the Background section of Sharpe and Wang (1991) 
and will not be repeated here. Surprisingly, there have been 
few measurements of elastoplastic stresses in complicated ge­
ometries; those are reviewed in Section 2 of this paper. The 
local biaxial strains are measured with a laser-based interfer-
ometric technique that measures the relative displacements be­
tween three tiny indentations in the specimen surface. The 
computer-controlled version for measuring uniaxial strain has 
been described elsewhere (Guillot and Sharpe, 1983) but the 
important advance reported here is the extension of the system 
to biaxial measurements of the principal strains ei and e2. The 
technique is described only briefly since this paper focuses more 
on the results than on the details of the measurement system. 

The procedure for computing the stresses from the measured 
strains, which is a straightforward inversion of the equations 
of plasticity, is then presented. These procedures are applied 
to stress-strain data from smooth specimens (both ei and e2 
were measured) to validate the computational procedure and 
examine the effect of anisotropy. 

At this point, one should have confidence in the stress meas­
urements and can move on to the geometries in question. 
Measured biaxial notch-root strains room the three cases (ten 
different specimens were tested) are then presented; these serve 
as the input for the stress calculations. The measured stresses 
are presented as principal values a^ and CT2. These are used to 
compute the effective stress ae which is compared to the stress 
predicted by the Neuber relation. Finally, conclusions are drawn 
as to the significance of the results. 

2 Background 
Theocaris (1962) wrote a paper in 1962 entitled "Experi­

mental Solution of Elastic-Plastic Plane Problems" in which 
he presented procedures for computing stresses from strains 
measured by photoelastic coatings on specimens. He presents 
the equations for computing the change in stress components 
dax, day, and drxy from the measured strain increments dex, 
dty, and dyxy. The specimen was a thin steel sheet with large 
semicircular double notches to which a thin photoelastic coat­
ing was glued. The measurement of strains required analyses 
of patterns taken at normal and at oblique incidence and was 
tedious at best; however, it did give the strain field. The in­
cremental theory of plasticity based on J2 was used, but only 
seven increments were taken between the load corresponding 
to incipient plasticity at the notch root and the load corre­
sponding to the spread of plasticity across the net section. 
McClintock (1963) praised the paper in a later discussion and 

compared the measured stress and strain concentrations to 
those predicted by the Neuber relation—showing that the pre­
dictions were accurate in the early stages of plastic deformation 
at the notch root. 

A similar work was published shortly thereafter by Durelli 
and Sciammarella (1963) who measured strains by moire tech­
niques on a thin aluminum specimen with a central hole. Six 
load increments were used which required iteration of the stress 
increments to assure that the effective stress-strain curve was 
being followed. The stress field in the neighborhood of the 
hole was measured, and the stress and strain concentrations 
were compared to those from the classic experimental work 
by Griffith in 1948. Agreement was excellent, considering the 
slight difference in specimen materials. 

Photoplastic materials with nonlinear behavior similar to 
that of metals are quite useful in gaining an understanding of 
the development of plasticity in a given geometry and in eval­
uating theories. An example of such a study is the fine work 
by Johnson (1976) in which he studied the plastic deformation 
of a circumferentially notched shaft subjected to torsion load­
ing. He used a photoplastic material that has a stress-strain 
curve similar in shape to a medium-strength aluminum and 
the scattered light technique to measure the stresses on a plane 
down the center of the shaft. The material was calibrated in 
torsion, so he determined shear stresses directly from the fringe 
patterns. The stress and strain concentrations showed good 
agreement with the Neuber prediction for early stages of yield­
ing; indeed, this geometry is the same as analyzed by Neuber. 

One wonders why foil-resistance strain gages are not used 
to measure the necessary plastic strains; the larger post-yield 
ones have the capability of measuring strains to ten percent 
or more. One paper by Keil and Benning (1979) on their use 
appears in 1979. However, they use the deformation theory 
of plasticity instead of an incremental theory which, although 
requiring additional assumptions, is easier to apply. They work 
only with principal strains and provide nomographs from which 
one can obtain the stresses for a representative selection of 
materials. Given two strain measurements, one reads out the 
two principal stresses. 

It appears that the paucity of research papers describing 
measurements of elastoplastic stresses is due more to the dif­
ficulty in measuring the strains than anything else. In fact, the 
Handbook on Experimental Mechanics (1987) presents the 
equations relating strain increments to stress increments on 
page 10, but there is no later reference to their actual use. 
Precedents have been set with the works of Theocaris and of 
Durelli and Sciammarella, and similar studies would be con­
siderably easier with modern imaging and computational ca­
pabilities. However, these earlier works did not measure at the 
point of real interest—the root of the stress concentration 
where fatigue cracks initiate. 

3 Strain Measurement Technique 
The interferometric Strain/Displacement Gage (or ISDG) is 

a laser-based system that measures in-plane relative displace­
ment between tiny reflective indentations in a specimen surface. 
The pyramidal-shaped indentations are oriented so that the 
light rays diffracted from their sides overlap to form inter­
ference patterns in space. When the distance between the in­
dents changes, the fringe patterns move; in effect, one simply 
has an optical lever with a high ratio because of the interference 
phenomenon. A microcomputer-controlled system for meas­
uring fractional fringe motion has been developed that has 
suitable resolution for elastoplastic strain measurement over 
gage lengths as short as 100 /xm (Guillot and Sharpe, 1983). 
For more details about various applications of the technique, 
see Sharpe (1982). 

Strains in two orthogonal directions can be measured if three 
indentations are placed in the specimen surface as shown in 
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Fig. 1 Three Indentations at Ihe rool 01 a notch . The spacing Is 150
micrometers, and they are placed al the rool 01 a notch with a t -mrn
radius . The black areas on either side are palnl thal was applied to reduce
slray reflections.

Fig. 1. That photomicrograph shows indentations at the root
of a notch with a l-mm radius; the spacing between them is
150 !Lm. Longitudinal strain is measured in the direct of load­
ing, and lateral strain is measured in the perpendicular direc­
tion. The black areas at the sides of Fig. 1 are flat-black paint
that was applied to limit stray reflections from the polished
specimen surface.

Four fringe patterns are generated with the biaxial ISDG,
and one must use four fringe sensors (scanning mirrors and
photomultiplier tubes) to monitor the patterns and average out
the rigid body motion of the specimen. A microcomputer sys­
tem monitors the fringe motions, converts them to strains,
stores the load and strains, and increments the load control
signal to the test machine. The sampling rate is approximately
ten points per second, and the least count of strain is approx­
imately 35 microstrain for the I50-!Lm gage length. The relative
uncertainty associated with the measurement of the relative
displacement of the indentations is approximately ± three
percent.

The effect of the indentations on the local strain field, es­
pecially in the plastic region, is a matter of concern. Unfor­
tunately, there is no other experimental technique with a
suitably short gage length, resolution, and range to permit a
direct comparison at a notch root. The best that one can do
is compare the ISDG with other techniques on smooth spec­
imens, and this is quite good for longitudinal strains as will
be seen in Fig. 3. Further, the reproducibility and reasonable
behavior of the notch strain results that are presented here
indicate that the ISDG is measuring elastoplastic strains with
good fidelity.

4 Computation of Stresses
The computation of stresses from the measured strains are

based on the incremental Jrflow theory:

eij=Sij/2G+j(ue)aeSij (2)

where «,» denotes an increment in the applied stresses and
strains. The deviator stresses and strains are defined by Sij =
uij - 1/3 UkkOij and eij = Eij - 1/3 Ekk Dij. uij and Eij are the
stress and total strain components, respectively. The effective
stress, Ue, is given by (3/2 SijSij)lI2.

The function j(ue) describes the deviation of the material's
effective stress-strain behavior from linear elasticity, and is
equal to 3/2 (1IE,-1/E)/ue• The modulus of elasticity is of
course E, and E, is the slope, des/de, of the effective-stress
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versus total-strain, E, curve of the point of interest (this stress­
strain curve is obtained in a uniaxial stress test) .

Equation (2) can be contracted with. Sij to permit one to
solve for a; by noting that 2ueae = 3SijSij. The effective stress
increment, ae, can then be re-inserted into Eq. (2) to produce
an equation relating Sij to eij.

Sij = 2Geij-FSijSklekl (3)

where
. F= 6Gj(ue)

u/G+ 2c?J( ue)·

The total strain is made up of elastic and plastic components;
i.e., Eij = E'ij + E~. By noting that E~k = 0, one can finally
write

aij= ex Eij+ {3 Ek0ij - FSklE klkSij. (4)

01 = 2G, and {3 = K - 2G/3 where G and Khave the familiar
definitions from elasticity of E/2 (1 + v) and EI3(1- 2v), re­
spectively. Equation (4) relates the increments of stress to the
increments of strain and is the constitutive expression used to
compute the stresses from the measured strains.

The stress and strain state of interest here is one of plane
stress on the surface at the root of the notch. The measurements
are in the principal directions because of the symmetry at the
center of the notch root. The principal stresses and strains are
therefore labelled u), U2, E), E2, and E3, respectively. E, and E2
are the strains that are measured, and the three unknowns can
be solved from the three equations of (4). The final version
of the equations that is used becomes:

AE] = (FS,S] - (3)AEI+ (F~2S3 - (3)AE2
01+ {3 - FS

3
(5)

AUI = (ex+{3-FSI)AE, + ({3-FS,S2)AE2+ ({3-FSIS])AE3 (6)

AU2 = ({3 - FS1S2 ) AEI

+(ex+{3-FS~)AE2+ ({3-FS2S])AE]. (7)

The principal stress, u, and U2, are the sums of the stress
increments as computed from the above three equations.

Implementation of Eqs. (5)-(7) is straightforward. One has
the experimental record of applied load, P, E), and E2 stored
as discrete points in a data file. At a given Pm the strain
increments are taken as Ell + I - Ell' The two stress increments
are then computed and added to the stress values (computed
previously) corresponding to Pll . However, there are a couple
of points to be considered.

First, Ue appears in the denominator of F in Eq, (3) so the
computations have to be started in some manner. They are
started by computing elastic stresses directly from the measured
strains. Ue is computed at every increment, and when it exceeds
a present value, the program switches to the incremental cal­
culations of Eqs. (5)-(7). This present value must be below the
proportional limit of the material, and in practice, is taken as
approximately 25 percent of the yield stress.

Second, the computation ofj(ue) involves 1/EI which equals
de/do, Two kinds of 2024 aluminum were tested-T3 and
T35I. The Ramberg-Osgood representation of the stress-strain
curve, E = uelE + (ue! M)l/ll, fits the T35I stress-strain curve
quite well, and de/do; is easily computed. However, a much
better fit to the uniaxial stress-strain curve for the T3 material
is obtained with a polynomial, o; = g(E), where E = uelE +
ER. The effective plastic strain, EP, is the sum of the plastic
strain increments defined by

AEP = '-"2/3 [(AE)- AE~)2 + (AE~ - AE))2 + (AE)- AEf)2] ' 12 . (8)

After the stress increments have been computed for load Pm
they are used to compute increments of elastic strain which
are subtracted from the measured strain increments, AE, and
AE2, and the computed strain increment, AE3, to give the three
plastic strain increments needed in Eq. (8). The effective plastic
strain increment, AEP , is added to the previously computed EP
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Fig. 2 Montage of photomicrographs of 2024 aluminum sheet—cour­
tesy of Dr. J. C. Newman, Jr. The thickness of the grains in the S direction 
is approximately 25 micrometers. Grain boundaries have been high­
lighted. 
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Fig. 3 Biaxial stress-strain curves from smooth specimens for the T3 
and T351 materials. Measurements were made with the ISDG on the 
edge and with foil gages (RSG) on the flat side of the specimens. One 
lateral strain measurement was made on an edge with a RSG. The T3 
material was tested both parallel (L) and perpendicular (T) to the rolling 
direction. 

so that the proper value of e is used for the calculation of E, 
at P„+\-

These computations are implemented in a short FORTRAN 
program on the same IBM-compatible microcomputer that was 
used for control of the experiments. Noise in the data does 
not appear to cause difficulties as will be seen in the next 
sections. 

5 Material Response and Prediction for Smooth Spec­
imens 

This section presents the stresses and biaxial strains measured 
in uniaxial stress tests on smooth specimens. The purposes of 
these tests were to generate the constitutive equations needed 
for stress computation and to obtain biaxial strain data which 
could be used to check the computational procedures. One 
should be able to take the biaxial data, run it through the stress 
computation procedures, and get the result that a} = P/A and 
a2 = 0. As will be seen, the anisotropy of the material causes 
less than perfect agreement. 

Figure 2 is a photomicrograph of 2024 sheet material show­
ing the grain structure on the flat side of a sheet and on the 
edges; one edge parallel to the rolling direction, and one edge 
perpendicular to it. The nomenclature there is from ASTM E-
399; " L " refers to the rolling direction, " T " to the width 
direction, and " S " to the edge direction. The grains have, in 
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0.0 
0.000 0.002 0.004 0.006 0.008 0.010 

STRAIN - m / m 

Fig. 4 The negative ratio of lateral and longitudinal plastic strain versus 
longitudinal strain. The data presented are from two smooth specimens 
that were instrumented with the biaxial ISDG on an edge and a smooth 
specimen with a biaxial RSG on the flat side. 

general, the shape of elongated pancakes and are thinner in 
the direction perpendicular to the sheet. 

Figure 3 shows the results from tests on three smooth spec­
imens of 2024-T3 aluminum. One specimen was loaded in the 
L direction; it was instrumented with biaxial foil gages (RSGs) 
on the flat side and the biaxial ISDG on the edge. Another 
specimen was instrumented in the same way, but loaded in the 
T direction. A third specimen was loaded in the L direction, 
but used only the biaxial ISDG on the edge. In all cases, the 
agreement between the ISDG and the foil gage was excellent 
in the longitudinal direction (parallel to the load axis). But 
there is a significant difference between the lateral plastic strains 
measured on the flat side of a specimen with a foil gage and 
on the edge with the ISDG. That difference is greater when a 
specimen is loaded in the L direction than when one is loaded 
in the T direction. 

It appears that the anisotropy of the material accounts for 
these differences in the lateral strains measured on the flat 
sides and edges of the smooth specimens. One might also argue 
that the indentations of the ISDG are influencing the plastic 
flow of the smaller grains on the edge. An argument against 
that hypothesis is that the agreement between the ISDG and 
the RSG lateral strains for the T-loaded specimen is actually 
fairly good. Also, if the indentations harden the specimen 
locally, one would expect smaller strains—not larger. Another 
test was run with a 0.79-mm long foil gage on the 2.5-mm 
thick edge of an L-loaded specimen. That result (RSG edge) 
is seen in Fig. 3 to lie between the edge lateral strains measured 
with the ISDG and the flat-side lateral strains. It therefore 
appears that the lateral ISDG-measured strains are reasonably 
accurate. 

The 2024-T351 aluminum has the same general structure as 
the T3, but the grains are thicker in the S direction. The biaxial 
stress-strain curves, as measured with foil gages on the flat 
side and the edge of the smooth specimen, are nearly identical. 
One such curve is plotted in Fig. 3 and shows that this material 
is nearly elastic-perfectly plastic. 

A representation of the uniaxial material behavior (actually 
the effective stress ae versus the total strain) is needed in order 
to evaluate f(ae) in Eq. (3). The solid line through the " L " 
longitudinal strain data in Fig. 3 is a sixth-order polynomial 
fitted with the plotting package SIGMAPLOT from Jandel 
Scientific, Inc. Attempts to fit a Ramberg-Osgood equation 
to the data gave significant discrepancies either just after the 
proportional limit or at the maximum stress value and were 
abandoned. The equation describing the uniaxial stress-strain 
curve of 2024-T3 is: 

o-= -0.4569 + 7.5004 X l 0 4 e - 5.5733 Xl06e2 + 3.6417 x 10V 

1.0216 x l O ' V +1.0241 x l O ' V - 3.4879xl015e6 (9) 

where a is in MPa and e is in m/m. The solid line fitted to the 
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Fig. 5 Computed stresses for a smooth specimen versus the applied 
stress. The two principal stresses are computed from biaxial strains 
measured with foil gages on the flat side and the ISDG on the edge of 
the same specimen. The effective stress is computed only for the ISDG-
measured stresses. 

2024-T351 data is the Ramberg-Osgood equation with M = 
414 MPa and n = 0.0094. This equation is much better at 
fitting a curve that has a sharper transition to plasticity. 

The anisotropy considerations are important because /2-flow 
theory assumes isotropy and that the plastic Poisson's ratio is 
0.5. The anisotropy of the material is further illustrated in Fig. 
4 which is a plot of the negative ratio of lateral to longitudinal 
plastic strain for the two specimens loaded in the L direction. 
The plastic strain was obtained by subtracting the computed 
elastic strain using E = 71.8 x 103 MPa and v = 0.325. This 
subtraction and division generates noisy results at smaller 
strains, so the values are only plotted for longitudinal strains 
greater than 0.004 which corresponds roughly to the propor­
tional limit of the material. The Poisson's ratio on the flat 
side of the specimen generally adheres to the assumption of 
the theory, but the edge results do not until later in the plastic 
yielding. Therefore, one cannot expect the computed stresses 
on the edge of the specimen to be accurate. However, the 
inaccuracy can be evaluated by using the biaxial strains meas­
ured on the smooth specimens—the data in Fig. 3—to compute 
the stresses ax and a2. The result should of course be o2 = P/ 
A and a2 = 0. 

The stresses computed using the data from the T3 specimen 
that was tested in the L direction and instrumented with both 
the foil gages and the ISDG are plotted in Fig. 5. The agreement 
is nearly perfect for the strains measured on the flat side of 
the specimen where the behavior is more isotropic; <j\ is almost 
exactly equal to P/A, and a2 is nearly 0. Stresses computed 
from the edge data are noisier because of the coarser resolution 
of the ISDG, and a2 shows significant negative stresses. These 
clearly do not represent the physical situation; there are no 
compressive lateral forces in these long specimens to generate 
such a stress. The error in the computation comes from the 
deviation from isotropy in a direction perpendicular to the 
sheet material. Note that the computed edge stresses tend back 
toward perfect agreement at the higher stresses—the corre­
sponding plastic Poisson's ratio of Fig. 4 tends toward 0.5 
also. 

In other words, the stresses computed from strains on the 
edge of the specimen (which are of greatest interest here) are 
simply incorrect. But, what is the effect of this error? The 
effective stress in this two-dimensional stress field is given by 
(at - o\o2 + (f2)

ul which means that an error in a2 is sup­
pressed. The effective stress computed from the edge stresses 
is plotted in Fig. 5 and agrees reasonably well with P/A; the 
maximum error is about five percent. 

Based on these results, one can go ahead with the measure­
ment of stresses at notch roots in this material with the un­
derstanding that the lateral stresses will be inaccurate, but the 
computed longitudinal stresses and the effective stresses will 
be accurate within ± five percent. 

18.16—•< 90° 

U-notch V-notch 

Dimensions in millimeters 

Fig. 6 Dimensions of the two types of notches 
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Fig. 7 Measured biaxial strains at the notch roots—longitudinal on the 
right and lateral on the left—for the three cases tested. The ordinate is 
the net stress applied to the specimen. 

Notch Thickness 
Shape 

U-notch 2.5 mm 
V-notch 2.5 mm 
U-notch 25.4 mm 

SCF 
Peterson 

1.92 
3.50 
1.92 

Table 1 
SCF SCF 
FEM Measured 

2.02 1.97 
3.64 3.52 
2.09 1.85 

(-ejAx)e/ 

0.30 
0.21 
0.16 

Number 
of Tests 

5 
3 
2 

6 Biaxial Strain Results for Notched Specimens 
Double-notched specimens were prepared with three differ­

ent constraints at the notch root; i.e., three ratios of thickness 
to root radius. Two notch radii were used, and their dimensions 
are given in Fig. 6. Table 1 lists the three cases and their elastic 
stress concentration and constraint factors. 

The "SCF Peterson" is a two-dimensional value from his 
handbook (Peterson, 1974). The "SCF FEM" are the results 
of a three-dimensional finite element analysis of the three ge­
ometries. The initial linear regions of the load versus longi­
tudinal strain at the notch root were used to compute the "SCF 
Measured" value. Five tests were run for the thin U-notch 
geometry, and the variation of their initial slopes from the 
mean value was -2.4 percent + 5.7 percent which is an in­
dicator of the fidelity of the ISDG measurement system. 

The value ( - ex/ey)e/ in Table 1 is the negative ratio of lateral 
to longitudinal elastic strain as calculated at the notch root in 
the finite element analysis. It should be the elastic Poisson's 
ratio of 0.325 for plane stress, and one sees that it is close to 
that value for the thin U-notch specimens. The sharper the 
stress concentration and the thicker the specimen, the smaller 
this value. It would be 0.0 for plane strain, but that would be 
very difficult to achieve without biaxial loading. 

Figure 7 shows the results from ten different specimens for 
the three cases of Table 1. Each test was loaded in tension, 
and the testing program was set up so that when the longi-
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tudinal strain reached a value of 0.01, the loading reversed. 
This value was chosen because cyclic loading over a range of 
± 0.01 will produce microcracking at the notch root in a few 
hundred cycles. As mentioned earlier, the strain data used here 
is the monotonic part of a cyclic load sequence. The data sets 
ranged from 500 to 1000 points, but were reduced to around 
150 for ease in plotting. 

A notable feature of the data of Fig. 7 is the variation among 
the measured strains for a given case once the elastic limit has 
been passed. This is not at all surprising in view of the fact 
that the gage length is the same order of magnitude as the 
grain size of the aluminum. There is more variation among 
plastic strains for the V-notch specimens; the gage length there 
is 150 /jm as opposed to 200 /im for the U-notch specimens. 
Part of this variation may come from local rotation of an 
indentation in a single grain or from plastic deformation of 
one of the faces of an indent. No matter what technique is 
used, measurement of plastic deformation over a few grains 
is likely to be inhomogeneous. 

Figure 7 is the complete data set upon which the following 
stress computations are based. The variation among the plastic 
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strains measured for supposedly identical specimens will of 
course show up in the computed stresses. 

7 Computed Notch-Root Stresses 
Given the measured biaxial strains of Fig. 7 and Eqs. (5)-

(7), the computation of the stresses is straightforward. The 
following three figures present the computed stresses for the 
three cases; they are plotted on the same scales. The abscissa 
is the measured longitudinal strain, e^ its upper limit of .01 
was the same in all tests. 

Figure 8 shows the stresses for the five U-thin specimens. 
The variation among the computed, o\ and a2 is similar to the 
variation among the measured ei and measured e2, respectively. 
After all, et is the major contributor in the calculation of <j\. 
The lateral stresses, a2, should be nearly zero in this thin spec­
imen with a moderate stress concentration. They are negative— 
following the same pattern as the computed lateral stresses in 
the smooth specimens (see Fig. 5). This arises from the ani-
sotropy of the material and again illustrates the point that the 
computed stresses are not completely correct. 

The computed stresses for the V-thin specimens are shown 
in Fig. 9. The lateral stresses are approximately zero through­
out the loading, but one can speculate that they should be a 
bit positive. That would be consistent with the increased level 
of constraint for this geometry as shown in Table 1. 

The lateral stresses for the thick 2024-T351 specimens, as 
shown in Fig. 10, are always positive at the center of the notch 
root because of the greater constraint of the surrounding elastic 
material. The differences in the notch-root stresses for in­
creasing constraint are clearly demonstrated in Figs. 8-10. 

8 Comparison With the Neuber Prediction 
The Neuber relation was derived using the deformation the­

ory of plasticity for shear loading. Over the years, it has come 
to be used for cyclic loading of specimens or components 
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subjected to tensile or compressive loading. Certainly its sim­
plicity has contributed to its popularity, but it is generally 
regarded to give accurate predictions of local stresses and strains 
only for plane-stress loading. The overall objective of the larger 
cyclic testing program (of which these monotonic results are 
a part) is to evaluate the Neuber relation for notched specimens 
with various amounts of constraint. 

The computed stresses for the specimen with most constraint 
show significant positive lateral stresses at the notch root and 
lead one to use the effective stress, ae, as a measure of yielding. 
The Neuber relation does not recognize this; it predicts a single 
stress, ai, based on a uniaxial stress-strain curve (of course, 
this is ae if the stress at the notch root is truly uniaxial). It is 
therefore more appropriate to compare the measured effective 
stress with the Neuber-predicted stress, and this is done in Fig. 
11. 

Figure 11 is a plot of the local effective stress versus the 
product of the elastic stress concentration factor and the net 
stress; this latter quantity would be known by a designer seeking 
to predict the notch-root stresses. The Neuber prediction is a 
straightforward application of Eq. (1) and the appropriate 
constitutive equation. The experimental results shown were 
obtained by computing ae for each test at discrete values of 
K, x amt. Mean values were computed and are plotted as 
circles. The error bars represent the maximum and minimum 
values; not a statistical parameter. Where error bars are not 
visible, they were smaller than the size of the circle. 

Figure 11(a) shows near-perfect agreement between the pre­
dicted and measured effective stresses. This is for a moderate 
stress concentration factor and a thin specimen—nearly a purely 
plane-stress situation as shown in Table 1. Note that the agree­
ment would not be as good if one used the measured <j\. The 
average maximum value of a{ is 345 MPa (see Fig. 8), whereas 
the average maximum ae is 373 MPa—an eight percent dif­
ference. But, referring back to Fig. 5, ae is a better measure 
of the stress state in a smooth specimen. This result is nothing 
new; it was stated in the Introduction that the Neuber relation 
was generally valid for plane stress. 

Figures 11(b) and 11 (c) show a greater discrepancy as one 
moves toward more constraint, but in each case the peak ae 
agree very closely. It is also interesting to note that the scatter 
among the peak values of ae is very small for all three cases— 
in spite of the scatter in the measured strains and the computed 
stresses. The stress-strain curves flatten beyond the yield point, 
and therefore large strain errors produce only small stress 
errors. 

9 Conclusions 
There are three main conclusions from this work: 
• Biaxial elastoplastic strain measurements are feasible over 

short gage lengths in materials and geometries that have prac­
tical significance. When applied to geometries that dictate the 
principal strains and materials that meet the assumptions of 
the theory, the addition of a second strain component enables 
one to compute stresses. Although the ISDG measurement 
system is somewhat sophisticated, once it is set up, testing 
becomes routine. The strain measurements demonstrate the 
needed for replication when plastic strains are measured over 
gage lengths on the order of the grain size. However, the 
variability among the strains is suppressed when they are used 
to compute effective stresses. 

• Computation of elastoplastic stresses from measured 
strains is easy—given modern microcomputer-based measure­
ment systems. The lack of accuracy lies more in the represen­

tation of the material's constitutive behavior than in the strain 
measurements and the computational procedures. Anisotropy 
of the material is important and leads to moderate errors in 
the longitudinal stress, au but large errors in the lateral stress, 
u2. That is not a fatal flaw because one is really more interested 
in the effective stress which suppresses the error in a2. 

9 The results show that the predicted peak stress from the 
Neuber relation agrees with the measured peak effective stress 
within the startling range of ± two percent! The Neuber re­
lation is a good predictor of the effective stress at a notch root 
for monotonic loading regardless of the amount of constraint. 
This is important because a stress-based plasticity criterion 
should use the effective stress. However, it does not follow 
that the Neuber relation gives a good prediction of the strains; 
the shape of the upper portion of the stress-strain curve tends 
to dampen the variation of stresses. Low-cycle fatigue predic­
tions are based on strain-life curves, so this point is important. 
However, for static design and monotonic loading, these results 
give one considerable confidence in the Neuber relation. 

It is hoped that this presentation of the measured biaxial 
strains and the resulting computed stresses will contribute to 
a better understanding of the basic mechanics of notch-root 
behavior. The longer term goal is to gain a better understanding 
of the initiation phase of fatigue crack growth in order to 
improve life predictions. 
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A Micromechanical. Damage Model 
for Uniaxially Reinforced 
Composites Weakened by 
Interfacial Arc Microcracks 

A micromechanical anisotropic damage model is presented for uniaxially reinforced 
(brittle matrix) composites weakened by an ensemble of (fiber/matrix) interfacial 
microcracks. A11 microcracks are assumed to occur along the fiber/matrix interfaces, 
and are modeled as arc microcracks under "cleavage 1" deformation processes. 
Microcrack-induced strains and overall elastic-damage compliances are analytically 
derived based on micromechanical bimaterial (interfacial) arc-microcrack opening 
displacements and mesostructural probabilistic distributions. Both "stationary" and 
' 'evolutionary' * damage models are given. In particular, microcrack kinetic equations 
are constructed based on micromechanical fracture criterion and mesostructural 
geometry in a representative volume element. Simple and efficient computational 
algorithms as well as some numerical uniaxial tension tests are also presented. Finally, 
it is noted that not a single arbitrary (fitted) "material constant" is employed in 
the present work. 

1 Introduction 
Initiated by Kachanov (1958) and Rabotnov (1963) for one-

dimensional creep damage of metals, continuum damage me­
chanics has been extensively explored and applied to various 
engineering materials by many researchers. Most of the existing 
works are classified asphenomenological damage models; see, 
e.g., Krajcinovic (1984, 1986, 1989) and Bazant (1986) for a 
comprehensive literature review. There are, however, some 
micromechanical "stationary" or "evolutionary" damage 
models proposed in the literature; see e.g., Budiansky and 
O'Connell (1976), Horii and Nemat-Nasser (1983, 1985), 
Kachanov (1987), Krajcinovic and Fanella (1986), Sumarac 
and Krajcinovic (1987), and Ju (1991). 

In particular, interesting studies on damage mechanics in 
modern fibrous composite materials were presented by Weits-
man (1987, 1988), Talreja (1985, 1986), and Allen et al. (1987) 
for distributed microcracks within the framework of phenom­
enological damage models. On the other hand, some note­
worthy micromechanical (primarily "stationary") damage 
models for composites were proposed by, e.g., Wang et al. 
(1984), Laws et al. (1983), and Hashin (1985) for transverse 
(parallel) matrix crack systems, and Laws and Dvorak (1987) 
for aligned penny-shaped microcracks. It is noted that existing 
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phenomenological damage models of Weitsman, Talreja, and 
Allen et al. employed either vector-valued or second-rank (sym­
metric or nonsymmetric)' 'damage tensors" (treated as internal 
state variables) to characterize the state of damage in composite 
materials. However, a vector or a second-rank damage tensor 
is inherently incapable of describing general anisotropy in com­
posites. An appropriate description of anisotropic damage gen­
erally involves a fourth-rank (or even eighth-rank) damage 
tensor representation; see, Chaboche (1979), Cordebois and 
Sidoroff (1979), Ju (1989), and Krajcinovic (1989) for further 
remarks. In addition, in spite of attractive thermodynamic 
basis, specific functional forms of the Helmholtz or Gibbs free 
energy potentials in phenomenological damage models are to 
some extent arbitrary (heuristic). Therefore, the resulting over­
all stiffness-damage relationships and stress-strain laws are also 
somewhat arbitrary. Moreover, in order to have constitutive 
predictive capability, phenomenological damage models em­
pirically postulate functional forms for damage "evolution 
equations." Consequently, in thermodynamic potentials and 
damage evolution equations existing phenomenological models 
rely on the use of many (perhaps up to 100) fitted "material 
constants." Thus, it becomes difficult to identify these fitted 
constants from actual experimental data of composites. 

Hence, as pointed out by Krajcinovic and Fanella (1986) 
and Weitsman (1988), micromechanical damage theories for 
composites are warranted to incorporate mesostructural ge­
ometry, micromechanical deformations, and microcrack 
growth into the damage mechanics framework. Most of ex­
isting micromechanical damage models for composites focus 
on the effects of transverse stationary matrix cracks or aligned 
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penny-shaped microcracks (fiber breaks) on overall compliance 
tensors. The present paper, on the other hand, considers dam­
age effects on uniaxially reinforced composites due to the ex­
istence and growth of many microcracks at the fiber/matrix 
interfaces. This circumstance corresponds to an ensemble of 
randomly distributed arc microcracks along the interfaces be­
tween cylindrical inclusions and extended exterior regions un­
der plane strain and "cleavage 1" deformation processes. In 
the case of a single arc crack at the fiber/matrix interface 
subjected to remote tension field, solutions are available in 
England (1966), Permian and Sih (1967), Toya (1974), and 
Piva (1982). In particular, Toya's solution is very suitable for 
damage mechanics formulation because it provides analytical 
expressions for arc microcrack opening displacements and 
fracture energy criteria. 

An outline of this paper is as follows. The representation 
of the fourth-rank damage tensor and the thermodynamic basis 
for microcrack-weakened brittle composites are presented in 
Sec. 2. It is assumed that distributed arc microcrack concen­
tration justified the use of effective continuum medium theory. 
Based on Toya's (1974) micromechanical solution of interface 
arc-crack opening displacements, damage-induced strains and 
compliances are systematically derived in Sec. 3 for an ensem­
ble of randomly distributed and oriented (not necessarily pe­
riodically spaced) open arc microcracks. In Sec. 4, microcrack 
growth (evolution) is considered based on Toya's (1974) mi­
cromechanical fracture criterion for a single arc microcrack 
under uniaxial tension. The extension to account for biaxial 
tension loadings can be readily made. "Stable" and "unsta­
ble" domains are identified for stationary and propagating arc 
microcracks, respectively. As a consequence, a simple "evo­
lutionary model" is rendered. It is emphasized that the present 
work does not employ any fitted "material constant." Simple 
and efficient computational algorithms are given in Sec. 5. In 
addition, some numerical uniaxial tension tests are presented 
to illustrate the potential capability of the proposed damage 
model for composites. 

It is noted that the present work assumes an interface be­
tween a fiber and a matrix material. However, if there exists 
a third phase (such as a thin coated film) between a fiber and 
a matrix, an attractive choice is to use an interphase microcrack 
model; see Achenbach and Zhu (1989) for detailed discussions 
on the effects of an interphase and of fiber proximity. In 
Achenbach and Zhu (1989), the authors considered a simple 
one-dimensional linear elastic extensional and shear springs 
numerical model for periodically spaced fibers in a matrix 
material. Further investigation is needed to incorporate an 
interphase model (such as Achenbach and Zhu (1989)) into the 
present framework. 

2 Thermodynamic Basis 

We employ a fourth-rank anisotropic damage tensor to rep­
resent the state of damage in composite materials. It is worth 
mentioning that the fourth-rank damage tensor utilized has an 
appealing correspondence with the fourth-rank overall com­
pliance tensor. 

Within the framework of homogenization concept for in-
homogeneous effective continuum medium, one may define 
the homogenized Gibbs free energy as 

X^<r:[S°.(I + D)]:ff (1) 

where a is the volume-average stress tensor, S° is the undam­
aged (constant) linear elastic compliance of a composite 
material, I is the fourth-rank unit tensor, D denotes the fourth-
rank damage tensor, and " : " denotes the tensor contraction 
operation. It is emphasized that D is an evolving tensorial state 
variable, not a constant tensor (see also Chaboche (1979), 
Krajcinovic (1984), and Ju (1989) for more thermodynamics 

details). By the Clausius-Duhem inequality for isothermal 
process, we have (e = the volume-average strain) 

X-«:t>0 (2) 

The standard Coleman's method then leads to the following 
macroscopic stress-strain law and overall elastic-damage com­
pliance tensor S: 

e = $:a; S = [S°.(I + D)] (3) 

together with the damage dissipative inequality: 

-ff:S:<r>0, or-o-:[S°.b]:ff>0. (4) 

From Eq. (4), it is observed that the evolution S (or D) plays 
an essential role in microcrack energy dissipation and growth. 
During a damage loading process, the total strain tensor e is 
amenable to an additive decomposition: e = t c + e*, where ee 

and e* denote the elastic and damage-induced strains, respec­
tively. The elastic-damage compliance tensor is also suitable 
for an additive decomposition: S = S° + S*, where S* signifies 
the damage-induced compliance. Clearly, the relationship be­
tween S* and D can be formally expressed as S* = S°-D. 
Therefore, if one can micromechanically derive the damage-
induced compliance S*, then one can explicitly express the 
fourth-rank damage tensor D by means of micromechanics. 

3 Microcrack-Induced Inelastic Strains and Overall 
Compliances 

In this section, damage-induced strains and compliances are 
derived for an ensemble of randomly distributed fiber/matrix 
interfacial arc microcracks. Microcrack interactions are ne­
glected at this stage of the development, and shall be subjects 
of future study. Accordingly, only "Taylor's model" is con­
structed here. 

3.1 Microcrack-Induced Strains. In Toya's (1974) solu­
tion, the fiber and matrix are assumed to be homogeneous and 
isotropic, but with different linear elastic properties. Toya 
(1974) provided solutions for stresses, displacements, and de-
bonding criteria for an open arc crack at the bimaterial inter­
face under remote uniaxial and biaxial tension loadings. In 
what follows, for simplicity, we only consider the case of 
uniaxial tension loading. 

As remarked by Toya (1974), both stresses and displacements 
oscillate violently at the immediate regions near the crack tips. 
This is quite typical for the mixed boundary value problem 
for interfacial cracks at bimaterial boundaries. However, the 
extent of the oscillating regions is very small under remote 
tension. Consequently, Toya (1974) concluded that his solu­
tions provided a good approximation to the physical state of 
the body at the interface except in the immediate vicinity of 
the crack tips. Although some results of oscillation-free bi­
material stress and displacement analyses were reported in the 
literature, they were typically derived for line cracks at the 
interface of two dissimilar semi-infinite materials. 

The global (unprimed) and local (primed) Cartesian coor­
dinate systems as well as the local polar coordinate system (at 
a typical arc point) are shown in Fig. 1. In particular, a denotes 
the half-angle expanded by an arc microcrack, a denotes the 
radius of the fiber, 4> denotes the angle between the x'-axis 
and j'-axis, and t/<( = 7r/2 - <£) signifies the angle between the 
y-axis and .y'-axis. The uniaxial tension p is applied in the y-
axis direction. Counterclockwise direction is taken as positive, 
and 6 is measured from the A:'-axis. In addition, n ' and («/, 
UQ) represent the outward unit normal vector and the polar 
coordinates at a typical point along the arc, respectively. The 
expressions for u'r and Ug under remote uniaxial tension are 
given by Eq. (3.57) in Toya (1974) by means of a complex 
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* • X 

Fig. 1 The local (primed) and global Cartesian coordinates, as well as 
the polar coordinates at a typical arc point 

variable form. Note that the real part is u'r and the imaginary 
part is ud. Let us first transform the local polar coordinates 
at a typical arc point to the local Cartesian coordinate defined 
at the midpoint of the arc: 

ux = u'r cos 8-Ug sin 8 \u'y= u'r sin 8 + Ug cos 8. (5) 

Futhermore, the Cartesian components of the unit outward 
normal vector at a typical arc point are: 

n'x = cos 6 ; n'y = sin 8. (6) 

Under plane strain, the virgin (transversely isotropic) brittle 
composite material is isotropic. However, if the composite 
contains an ensemble of microcracks, it may become aniso­
tropic, depending on microcrack sizes and orientations. First, 
the inelastic plane-strain components (in Voigt's notation) due 
to a single (kth) arc microcrack take the form: 

• < * ) / • < * ) / a 

~A 
cos 8 d8 = -

A 

(u'r cos20-Ug sin 8 cos 6)d8 (7) 

£2 (*)/ c *<* ) ' { a sin dd = — 
A 

(uf sin20 + Ug sin 8 cos 8)d8 (8) 

J o; 

(ux s i n 0 + « ; cos 6)d8 
-a 

= - («/ sin 28 - Ug1 cos 28)dd (9) 
A j _ a 

where A is the surface area of a representative volume element 
in two dimension. 

In the above equations, it is implicitly assumed that the kth 
arc microcrack is entirely open; i.e., « / > 0 . Therefore, there 
exist some restrictions on the arc microcrack size 2a and the 
orientation </> (Toya, 1974). For example, in the case of epoxy 
matrix (shear modulus/x! = 346 KSI or 2.39 GN/m2, Poisson's 
ratio r/] = 0.35) and glass fiber (shear modulus \x.2 = 6410 KS1 
or 44.2 GN/m2, Poisson's ratio i}\ = 0.22) composite material, 
the range of "entirely open" arc microcracks is approximately 
defined by I </> I + a < 65 deg. See Fig. 2 in Toya (1974) for more 
information regarding allowable (</>, a) region. 

The strains due to an ensemble of noninteracting arc mi­
crocracks can be evaluated by performing the following in­
tegration: 

--N Sji (*-)e*(*)/ P(4>, a)dQ (10) 

where N is the number of open (active) arc microcracks; i, j 
= 1, 2, 6; P {<!>, a) is a joint probability density function of 

3 . 0 

2 . 0 

1.0 

o.o 

u = 0.64 

Lateral 

- 1 . 5 0 . 0 3 . 0 4 . 5 

Strain x 10 
Fig. 2 The axial-stress versus the axial and lateral-strain under different 
microcrack concentrations w (varying from 0 to 0.64). Note that a = 
N(aaflA. The dotted lines are the undamaged elastic stress-strain re­
sponses. 

randomly distributed (not necessarily periodically spaced) arc 
microcrack orientations and sizes; fi is the domain of all open 
microcracks; and g}P is the component of the following local-
global transformation matrix (Horii and Nemat-Nasser, 1983) 

IV0] 

cos2 \j/ 

sin2 \p 

- - sin 2î  

sin2 \j/ 

cos2 \j/ 

1 • „ , 
- s in 2i/< 

sin 2\p 

— sin 24* 

cos 2\p 

(11) 

The total strain components can be obtained by adding ef 
to the elastic contributions ef, with ef expressed as: e' = SyOj. 

Remark 3.1 In the case of biaxial tension loadings, t* can 
be obtained by the same procedure outlined above. The only 
modification required is to use Eq. (3.43) in Toya (1974) when 
integrating arc crack-opening displacements. 

3.2 Overall Elastic-Damage Compliances. To derive the 
damage-induced compliance matrix S*, Eqs. (7)-(9) must be 
modified. The key step is to construct the strain-stress rela­
tionship (e * w ' versus a') in local Cartesian coordinates. How­
ever, this local relationship is not readily available from (3.57) 
in Toya (1974). The local stresses can be easily obtained as 
follows: 

a{ =a'xx=p cos24> ; 02=o'yy=p sin2</> ; CT6' =axy = - sin 2<t>. 

(12) 

After a lengthy derivation, Eqs. (7)-(9) can be recast as 

. * ( * ) » _ : / 2 \ (M"-cos20 - «« sin 8 cos 6)dd 

(13) 

»(*)/ 
A s \ (UH sin20 + Ug-, sin 8 cos 8)d8 

~ 12 ( ("*sin2e ~ " a * c o s 2e)dd) 
(14) 

<y; \ (15) 

where the summation is for / = 1, 2, 6, and the expressions 
for u'ri and Ug, are 
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Bx=Axa sin - (a - 0) sin - (a + 0) - M T T - a ) (16) 

u;,= 

-B, 
1 - (cos a + 2X sin a)e2X(,r~0') + (l -A:)(l +4X2) sin2 a 

2-k-k(cos a+-2X sin a)e2X(,r"a) 

A: A: 
cos I - 5 - X In 

sin - ( a -6>) 

s i n - ( a + 0) 

^ - ^ ^ " " ^ s i n e s i n U e - X l n 

sin - (a - 0) 

s i n - ( a + 0) 

uU=-2B{ 
2(1 — k) ix(t,-T) 

x sin 5 cos I - 5 - X In 
2 

sin - (a - 0) 

s i n - ( a + 0) 

( l -A;)( l+4X 2 )s in 2a 
k[ 1 + (cos a + 2X sin a)e2X(,r" °°] _ A: 

2 ( 1 - A : ) ,2X(a-7r) cos 0 

u$6= - 2 B j 

x sin - d - X In 
2 

I 2 (1-*) ,2Xfa_T) 

s i n - ( a - 0 ) 

s i n - ( a + 0) 
(21) 

-B, 
1 - (cos a + 2X sin a)e2X(T"a) + (1 - k)(l + 4X2) sin2 a 

2-k-k(cos a + 2X sin a ) e 2 X ( M ) 
x sin 0 sin I - 0 - X In 

_ l _ 2 ( l - ^ e 2 M a _ T ) c o s f l sin - 0 - X In 
2 

sin - (a - 0) 
2 

s i n - ( a + 0) 

sin - (a - 0) 

s i n - ( a + 0) 

( l -A-)( l+4X2)sin2a 

)t[l + (cos a + 2X sin a ) ^ 1 - " ' ] ~ k 
2(1 * ) 2X(a-7r) 

^ - ^ ^ " - ' ' s i n f l c o s l i f l - X I n 

sin - (a - 0) 

s i n - ( a + 0) 

x cos I - 0 - X In 

sin - (a - 0) 

s i n - ( a + 0) 

.. (22) 

In the above equations, k, X, and Ax are given material prop­
erties defined as follows (Toya, 1974): 

«/?.= 

B, 
1 - (cos a + 2X sin cOe2^"" ' - (1 - k(l + 4X2) sin2 a 

1-k- k(cos a + 2X sin a)e2X(,r" °° 

«i = 3 — 4T/I ; K2 = 3 - 4 ) 7 2 

/ t l ( l + / t 2 ) . _ (jH2 + K2/*l) . , &_ 

0*1 + KlM2> ' 0*1 + Kl/^2) ' 1 + I* 

A: A: 
cos I - 0 - X In 

sin - (a - 0) 
2 

s i n - ( a + 0) 
6) 

(23) 

(24) 

(25) 
Mi M2 

Therefore, Eqs. (13)-(15) can be rewritten as (/, j = 1,2, 

In »/ A: 1 + Kl 1 + K2 

- + " 

^ — ^ e2X(—» sin 0 sin U f l - X l n 
k \2 

sin - (a - 0) 

s i n - ( a + 0) 

« ( * ) / _ c * ( * ) / (26) 

"« = 

- 5 , 
1 - (cos a + 2X sin a p e 2 ^ - " ' - (1 - A:)(l + 4X2) sin2 a 

where Sjjik)' are the local compliance components of the form: 

Sf,w ' = - («;,cos2 0 - «„',• sin 8 cos 0)rf0 (27) 
A J^ a 

•S2*W '=7 ( ^ s in 2 0 + M9',sin0cos0)rf0 
A J_„ 

2 - Ar - A:(cos a + 2X sin a)e' ,2X(TT - a) 

. i + HCLJJeWa-x,^^ sin I - 0—X In 
2 

s i n - ( a - 0 ) 

s i n - ( a + 0) 

^ — - e2X(a-T) sin 0 cos U f l - X l n 

sin - (a - 0) 

sin - (a + 0) 

(28) 

S$jW '=- \ {u'n sin 20-ui i cos 20)^0. (29) 
A J_a 

It is noticed that the individual compliance matrix S*w' is 
nonsymmetric; i.e. S?/k)/ *Sfk)' for /Vy. In terms of global 
coordinates, S$ik)' can be rephrased as (Eq. (11)) 

& I) — Smi Snj &mn • (50) 

Consequently, the total compliance S* due to an ensemble of 
randomly oriented interfacial arc microcracks can be expressed 
as 

S$=N \ S*w/>(<M)tffi. (31) 
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FromEqs. (27)-(31),itis observed thatS* is actually a iensorial 
function of the mean "arc microcrack density parameter" <co>, 
with a = Niacif/A. Finally, the overall elastic-damage com­
pliance S is obtained simply by writing S = S° + S*. 

4 Microcrack Kinetic Equations 
It is typical that brittle fibrous composites have some preex­

isting arc microcracks along the fiber/matrix interfaces even 
before specimens are first loaded. Some of these initial mi­
crocracks may grow (propagate) later upon application of loads. 
In this section, we transform the stationary damage model 
presented in Sec. 3 into an "evolutionary" model so that the 
model possesses a constitutive predictive capability. That is, 
"cleavage 1" microcrack growth and evolution of S* are con­
sidered. 

The present work is not restricted to monotonically increas­
ing loads. In fact, loading/unloading sequences can be easily 
accommodated by computing and checking whether there is 
undergoing microcrack growth (excluding those previously 
propagating and currently arrested microcracks). If there is 
no {<t>, a) region in which microcrack growth is now taking 
place, then the incremental load step is in an unloading state. 
Moreover, the damage-induced inelastic compliance S* takes 
the form: 

S* = S* + Sf + S/ (32) 
where S% = the compliance contribution from undergoing 
microcrack growth, S* = the contribution from stationary 
microcracks having initial sizes, and S/ = the contribution 
from arrested microcrack due to previous microcrack growth. 
In particular, if Ŝ  = 0, then the current load level, p is not 
high enough to cause further damage. 

4.1 Interf acial Microcrack Fracture Criterion. The mixed-
mode bimaterial fracture criterion was provided by Eqs. (4.7)-
(4.8) in Toya (1974) for a single, entirely open arc microcrack 
along the fiber/matrix interface under biaxial and uniaxial 
tension. It is implicitly assumed that the bonding strength 
between the fiber and matrix is sufficiently small compared 
with the fracture toughness of the matrix, so that an existing 
arc microcrack grows along the bimaterial interface. Thus, 
microcrack kinking into the matrix is not considered here. 
Toya's fracture criterion for a tip of an arc microcrack under 
uniaxial tension reads: 

~p2kaAx{\ +4\2)TTNON0 sin ote2Xir~a) = 2ylf (33) 
16 

where 7'̂ is the specific surface tension energy of the interface 
(i.e., critical energy release rate), and N0 together with its 
complex conjugateTv'o are functions of 0, a, and elastic material 
properties (see Eq. (4.9) in Toya, 1974). Note that one tip of 
a microcrack may reach the fracture criterion (33) before the 
other tip does. Hence, one tip may propagate while the other 
is stationary. 

When the energy release rate reaches its critical value (or 
when tension reaches a critical value pcr), an arc microcrack 
may grow in a stable or unstable fashion, according to Fig. 3 
in Toya (1974). Within a limited range of the (0, a) region, 
Eq. (33) may have two solutions for a and <j>. Thus, one tip 
or both tips may actually grow in a stable manner. This implies 
that the final microcrack size a/ and orientation fy can be 
analytically obtained. However, for other ranges of (</>, a) 
region, there is only one solution for Eq. (33). Namely, an arc 
microcrack may grow in an unstable manner outside the limited 
two-solution (</>, a) domain. Moreover, with further increase 
of the tensile stress p(>pcr), even an originally stable arc mi­
crocrack will grow continuously in an unstable manner. 

In the case of many randomly distributed open arc micro­
cracks, Eq. (33) is systematically checked for every permissible 
microcrack orientation 4> and size a to numerically determine 
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Fig. 3 The overall compliance S22 versus microcrack concentration u> 
for various stationary damage model simulations. The dotted line is the 
elastic response. 

the domains of "growth zone" and "stationary zone" under 
a given tensile stress p and known elastic material properties. 

4.2 Microcrack Growth—A Simple Evolutionary 
Model. Since analytical solutions for mixed boundary value 
problems are not yet available for partially closed, entirely 
closed (mode II frictional sliding), or kinked arc microcracks, 
it is assumed here that all arc microcracks are entirely open 
and confined to the fiber/matrix interfaces. In view of the 
limiting range of "stable microcrack growth," it appears rea­
sonable and practical to simplify the distributed microcrack 
kinetics as follows. If one tip of an arc microcrack reaches or 
exceeds the critical surface energy required to initiate micro­
crack growth, then both tips of the arc microcrack may grow 
continuously (generally in a nonsymmetric fashion) until the 
half-angle size reaches a/and the central crack "orientation" 
<^=0 deg (i.e., approximately aligned with the applied tensile 
loading direction). In the case of the aforementioned epoxy-
glass composite, af = 65 deg is a reasonable value since it is 
the maximum allowable half-angle size for an arc microcrack 
to remain open. It is noted that the arc-microcrack central 
orientation indeed changes during microcrack growth. 

In the case of many randomly distributed arc microcracks, 
Eq. (33) is used to numerically (iteratively) define bounds of 
(4>, a) regions undergoing microcrack growth for a particular 
tensile stress p. For simplicity, we shall assume that all arc 
microcracks are of equal initial size a, and are such oriented 
that 10,-1 + a/< 65 deg (opening) always holds. Thus, for a 
specified interface toughness y'f, one can perform numerical 
iteration to obtain the minimum tension stress p„ required to 
cause the first arc microcracks to propagate. The correspond­
ing initial central microcrack orientations are denoted by ± (f>„. 
The proposed microcrack kinetic sequence (for epoxy-glass 
composite) proceeds as follows. 

(1) As p<pcr, all arc microcracks are stable and of initial 
size a,. Due to preferred initial microcrack orientations to 
ensure opening, the overall response is anisotropic even if virgin 
composite is isotropic (in plane strain). Although the overall 
response is currently linear and reversible, the material state 
is really elastic-damage. 

(2) As p=pcr, those microcracks with central orientations 
± 4>cr become unstable, and increase their lengths to a/ = 65 
deg as well as change their orientations to 4>f = 0. The con­
tributions from partially or entirely closed portions are ne­
glected here. 

(3) As p=P\>pcr, the unstable microcrack growth region 
increases. Therefore, microcracks in specific orientation do-

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 / 927 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



main fiact become activated and increase in size to a/ = 65 deg 
as well as change their orientations to <£/• = 0. It is noted that 
actual bounds of Qact depend onpi, pcn a, and y'f, and can be 
obtained by numerical iteration. The compliance contributions 
SJ and Sf in Eq. (32) can be computed as follows: 

g w ' S , " " ( ^ a / ) g " , P ( W 

sr=N\ g 
*ti­

(Ar)7Q*W S ' w ' ( * , a ; )g" , P(W 

(34) 

(35) 

where P(<f>) is a probability density function of microcrack 
orientation, and fiin is the stable (no growth) domain. 

(4) Aspcr<p<pu unloading takes place. There is no further 
microcrack growth and SJ = 0. Hence, the elastic-damage 
compliance remains its previous value. 

(5) Asp>pi, more microcracks are activated. The unstable 
growth domain can be computed similar to step (3). However, 
S,* in step (3) should now be replaced by the sum of S,* and 
» ; • 

(6) At some higher stress level p = pc, the energy release 
rate reaches the critical value of the matrix energy barrier. 
Therefore, microcracks having size af will resume to propagate 
(kink) into the matrix, and eventually lead to final failure. 

As was commented by Sumarac and Krajcinovic (1987), the 
above scheme implicitly assumes that ultimate failure prefers 
"runaway cracks" in comparison with "localization modes." 

5 Computational Algorithms and Numerical Simula­
tions 

In this section, computational integration algorithms are 
given for the proposed micromechanical damage model. Fur­
thermore, a number of uniaxial tension numerical simulations 
are presented. In the absence of suitable plane-strain experi­
mental data at this stage, however, actual experimental vali­
dation is not included here. Experimental verification of the 
proposed model should be performed in the future once data 
become available. 

5.1 Computational Integration Algorithms. The pro­
posed micromechanical damage model does not include mi­
crocrack interaction effects, and therefore falls into the category 
of "Taylor's model." The computational schemes involved in 
the proposed stress-controlled micromechanical damage model 
proceed as follows. It is assumed that all initial arc microcracks 
are of equal size a, and entirely open. 

(1) For a given load level p, compute "unstable orientation 
bounds" (-0;, -4>h) and (4>h, <j>i) according to the fracture 
criterion Eq. (33). For example, one may use the bisection 
method to locate the very first unstable microcrack orientations 
±4>cr, and later the bounds defining the microcrack growth 
domain. These "unstable orientation bounds" should be stored 
as history variables since they are irreversible. 

(2) Obtain the individual and total damage-induced inelastic 
compliance S*(Ar) and S* by actually evaluating the double 
integral involved in Eq. (31). Numerical integration of Eq. (31) 
can be efficiently carried out by two double "Gauss quadra­
tures"—one for stationary and the other for unstable regions. 
In particular, one needs to integrate compliance contributions 
from every 0-angle along an arc, and from every open micro­
crack. Here, we employ Gauss quadrature rule with 60 inte­
gration points for each single integral. 

(3) Obtain updated overall elastic-damage compliance S by 
adding S* to S°. 

(4) Apply the next load p and go back to step (1). 

5.2 Some Uniaxial Tension Tests. A number of mixed-
mode plane-strain uniaxial tension tests are considered in this 
section for various fiber sizes a, microcrack concentrations w 
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Fig. 4 The axial-stress versus the axial and lateral-strain for two dif­
ferent initial microcrack sizes: a, = 10 deg and a( = 20 deg. Note that 
a = 0.1 in. and NIA = 100. 

and initial microcrack half-angle sizes a,. Both stationary and 
evolutionary models are utilized. The composite material con­
sidered here is epoxy matrix/glass fiber; see Sec. 3.1 for elastic 
properties. The volume ratio of matrix and fiber constituents 
are 0.8 and 0.2, respectively. The overall Young's modulus 
and Poisson's ratio are found to be E = 1151 KSI (7.93 
GN/m2) and rj = 0.3481, respectively. Therefore, the (plane-

sr1) strain) elastic compliance matrix takes the form: (unit 
0.00076383 -0.00040784 0 

fS°] = -0.00040784 
0 

0.00076383 

0 

0 

0.0023433 

(36) 

Moreover, the interfacial specific surface tension energy (frac­
ture toughness) 27,:/"is taken as 0.001 K/in. (0.175 KN/m). It 
is noted that all the figures presented in this section are under 
the plane-strain conditions. 

First, we examine the effects of different initial microcrack 
concentrations o> on stress-strain responses and compliances 
of the uniaxially reinforced epoxy-glass composite. The initial 
microcrack concentration parameter to increases gradually (with 
256 increments) from 0 to 0.64. All microcracks are assumed 
to be stationary, open, and of half-angle size a,= 10 deg. In 
view of Fig. 2 in Toya (1974), I <j> I + a < 65 deg is required for 
microcrack opening. Therefore, arc microcracks are assumed 
to be perfectly randomly oriented between </> = - 55 deg and 
4> = 55 deg; i.e. the probability desnity of orientation is P 
(4>)= 0.521. The uniaxial tension stress is applied in the 2-
direction, and the lateral direction is denoted as the 1-direction. 
The axial-stress (KSI) versus the axial and lateral-strain curves 
are displayed in Fig. 2 for monotonically increasing values of 
oi. The elastic (undamaged) stress-strain response is also shown 
in Fig. 2 for comparison purpose. The elastic-damage com­
pliance component S22 versus oi parameter is shown in Fig 3. 

Next, we perform "process model" uniaxial tension tests. 
Let the fiber radius be a = 0.1 in. and microcrack number 
density be N/A = 100. Two initial half-angle sizes of arc 
microcracks are considered: a, = 10 deg and a,- = 20 deg, 
respectively. The (plane-strain) axial-stress versus the axial and 
lateral-strain responses are recorded in Fig. 4. It is noted that 
before the load p reaches a certain critical value pcn the stress-
strain response is linear (up to the corner point denoted by 
Pa) for either a,- = 10 or a,- = 20 deg. This is due to the fact 
that all pre-existing microcracks are stationary. After the crit­
ical value pcr (the corner point) is reached, more and more 
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microcracks become unstable and start to grow in size (cleavage 
1 processes). Therefore, the overall stress-strain responses in 
Fig. 4 become nonlinear after the corner points. In the case 
of a, = 10 deg, it is found (by numerical iteration) that the 
first microcracks to become unstable (propagating) are ori­
ented in the direction <j>cr = 5.01. Later, a s p increases, more 
"orientation fans" are enclosed within the unstable growth 
domain. In the case of a,- = 20 deg, on the other hand, it is 
found that 4>cr = 10.59 deg. It is also observed from Fig. 4 
that larger initial microcrack size a,- = 20 results in lower 
critical load level pcr for microcrack growth. 

Let us now fix the initial microcrack size a-, = 10 deg and 
vary fiber sizes and microcrack number densities: (i) a = 
0.05 in. and N/A = 40, and (ii) a = 0.1 in. and N/A = 100, 
respectively. The (plane-strain) axial-stress versus the axial and 
lateral-strain responses are shown in Fig. 5. Similar to Fig. 4, 
the stress-strain curves are linear up to the corner points (cor­
responding to critical threshold stresses for the first microcrack 
growth). The stress-strain curves subsequently become nonlin­
ear after certain threshold stresses p„ are reached at the corner 
points. The changes in overall elastic-damage compliances S22 

and Sl2 versus axial stresses are plotted in Figs. 6 and 7. It is 
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Strain x 10 
Fig. 8 The axial-stress versus the axial and lateral-strain for two dif­
ferent fiber sizes and microcrack number densities. Note that a, = 20 
deg. 

observed that Si2 increases as tensile stress level p increases 
(after reaching critical threshold stresses pcr). However, S12 is 
negative and decreases as the stress increases. The above 
uniaxial tension tests are repeated for fixed initial microcrack 
size a,- = 20 deg. The corresponding (plane-strain) axial-stress 
versus the axial and lateral-strain responses are shown in Fig. 
8. The corresponding changes in overall elastic-damage com­
pliances S22 and 512 versus axial stresses are qualitatively similar 
to those for a,- = 10 deg in Figs. 6 and 7, and are therefore 
not plotted here. From the above tests, it is observed that 
stress-strain curves and overall moduli deviate from their purely 
elastic (undamaged) counterparts even for stationary micro­
crack models. Moreover, results of evolutionary microcrack 
models are clearly different from those of stationary models 
due to growth of pre-existing arc microcracks. Finally, it is 
noted that the microcrack number density N/A is fixed and 
prescribed (e.g., based on results of scanning electron mi­
croscopy or computerized tomography, etc.) in each of the 
foregoing tests. That is, N/A is not a function of load. How­
ever, the average (mean) microcrack density parameter 
<o> (= (N{aa)2/A » does increase with load due to microcrack 
growth (i.e., increase in a value). 
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6 Conclusion 
A micromechanical damage model is presented for uniaxially 

reinforced brittle matrix fibrous composites, based on Toya's 
(1974) analytical solutions. All microcracks are assumed to 
occur along the fiber /matrix interfaces, and are modeled as 
arc microcracks under "cleavage 1" plane-strain deformation 
processes. Thermodynamic basis is rendered based on a fourth-
rank damage tensor. Microcrack-induced strains and compli­
ances are analytically derived. It is noted that the overall elastic-
damage compliance matrix is nonsymmetric. Microcrack ki­
netic equations are given based on micromechanical fracture 
criterion and mesostructural geometry in a representative vol­
ume (area) element. Moreover, simple computational algo­
rithms and a number of uniaxial tension tests are presented to 
illustrate the potential capability of the proposed microme­
chanical damage model. It is emphasized that the present work 
does not employ any arbitrary (fitted) "material constant." 
The proposed framework can be readily extended to account 
for biaxial tension loadings, asaddressedin^e/na/,A:3.7. Issues 
related to the effects of an interphase (not interface), fiber 
proximity, microcrack interaction, closed microcracks, micro-
crack kinking, and microcrack nucleation mechanisms (cleav­
age 2) warrant further studies in the future to extend the 
proposed method. 
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Weight Function Analysis of 
Interface Cracks: Mismatch 
Versus Oscillation 
This paper has two goals. First, it is aimed at providing a fundamental understanding 
of the oscillatory behavior of an interface crack between two dissimilar materials 
from the viewpoint of the interface mismatch that results from the cracking. Second, 
we extend the Bueckner-Rice weight function method to facilitate the interface crack 
analysis. Using properties of the surface Green's functions of a homogeneous solid 
and solutions obtained from weight function formulae, a mismatch analysis is carried 
out which indicates that the local mismatch near the crack tip results in the oscillatory 
near-tip field while the mismatch on the global scale leads to the corresponding 
stress intensity factors. For an oscillatory interface crack field, it is shown that, 
other than a few extra material constants, the interface weight function analysis is 
completely parallel to the well-developed homogeneous theory so that knowledge 
of one crack solution for a given bimaterial geometry is sufficient for determination 
of solutions under any other loading conditions. 

Introduction 
The problem to be discussed in this paper involves cracks 

along an interface between two dissimilar materials #1 and #2. 
When the two materials are isotropic, Williams (1959) discov­
ered the so-called oscillatory behavior for the elastic field near 
the crack tip. In the coordinate system shown in Fig. 1(a), the 
crack-tip field has a universal structure for each given material 
pair with the normal stress ayy and shear stress ayx along the 
interface ahead of the crack tip given by 

(jJyy + iOyX)e = Q = fr" / ^flitf ( 1 ) 

where / = V - 1. The complex constant k defines the stress 
intensity factor for an interface crack by Eq. (5) below and 
the "oscillation index" e is related to the material constants 
by 

e = (l/27r)ln[(Kl/Ml + l/Al2)/(/c2/^2+ 1/^)]. (2) 
Subscripts 1 and 2 refer to the materials #1 and #2, K = 3-4I> 
for plane strain and K = ( 3 - V)/(1 + v) for plane stress, 
y = Poisson ratio, and n = shear modulus. The complete near-
tip stress field in the Ay-plane can be written in the form (Rice 
et al., 1990) 
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Re(/cr/£)]>][.(0) + Im(krk)J]''(0) (i,j = x,y). 

(3) 

In the sense of the crack-tip field structure expressed in (1) 
and (3), the angular functions Ey(0) and £;j(0) can be said to 
correspond to crack modes I and II that are inherently coupled 
together along the interface with a variable singularity strength 
kr11. The antiplane shear mode (mode III) involves no oscil­
lation and will not be discussed in this paper. 

(a) 

(b) 

Fig. 1 (a) A semi-infinite crack along a bimaterial interface with coor­
dinates x, y and r, 0; (b) a semi-infinite crack in a homogeneous solid 
interacting with a dislocation 
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The fracture analysis of interface cracks has been compli­
cated by the oscillatory feature of the near-tip deformation 
field. For example, the oscillatory displacement field associated 
with (1, 3) is kinematically inconsistent in that it implies in-
terpenetration of the crack faces behind the tip; this suggests 
that a small zone of nonlinear deformation (Knowles and 
Sternberg, 1983) and/or mechanical contact (Comninou, 1977) 
exists near the tip. Despite of these complications, Rice (1988) 
has argued that the oscillatory solution can still be used to 
characterize the interface crack field since the contact zone 
size is extremely small (e.g., subatomic) for a broad range of 
bimaterial and loading configurations of practical importance. 
For an absolute characterization of the interface stress intensity 
factor, Rice (1988) introduced a scaling length f so that Eq. 
(1) may be rewritten as 

(o),y + ioyX)e=o:=K(r/f')u/-j2*r (4) 
where the coefficient K=kr'e shall be defined as the stress 
intensity factor for the interface crack. As pointed out by Rice, 
the scaling length f may be chosen arbitrarily as long as it is 
held fixed when specimens of a given material pair but with 
different loading and geometry conditions are considered. Dif­
ferent values of f will not alter the magnitude of K but will 
change its phase angle. Since the oscillation index e is typically 
very small, the variable quantity (r/r)'e = exp[/eln(/Vf)] has a 
very weak variation with r. Thus, it may sometimes be justified 
to choose r as a representative scale of the "fracture process 
zone'' for a given bimaterial combination and define the' 'mode 
I and II" interface stress intensity factors Kj and Kn as 

K=K,+ iKn=kfk. (5) 
It should be understood that the definition of (5) rigorously 
reduces to that of the classical mode I, II stress intensity factors 
only when e = 0, but for simplicity we will use the same stress 
intensity factor notations (Kh Kn and K=Kj+iKn) for both 
homogeneous and interface cracks. 

The stress intensity factor K defined in (5) can then be used 
to characterize the interface fracture toughness. Since interface 
fracture is inherently mixed mode with K being a complex 
number, the interface toughness in general cannot be given by 
a single material constant analogous to the Klc concept in 
homogeneous crack theory, rather the toughness is defined by 
a failure locus that gives the critical magnitude of Jf as a 
function of the phase angle of K (Cao and Evans, 1989; Wang 
and Suo, 1990). 

Based upon the above definition and understanding for the 
interface stress intensity factor, the crack face relative dis­
placements behind the crack tip AUj = (Uj)o = -w-(,Uj)e=--K are 
found to be 

Auy+iAUx= * r \ , , ftVjf (6) 

2(l+2;e)cosh(7re) \rj ^ 2 ^ 
where the constant 

f8(1 - v2)/E for plane strain 
C=(K+1)/H= (7) 

(jS/E for plane stress 
(E= Young's modulus) with subscripts 1, 2 measures the com­
pliance of each material. One can use the crack solutions pro­
vided in (1) and (6) to derive the Irwin-type energy release rate 
per unit length of crack extension along the interface, with the 
result giving 

G= C'+,C2 {K] + K2„). (8) 
16cosh Tre 

An interesting special case occurs when the oscillation van­
ishes. Letting e = 0 in Eq. (2) yields the so-called nonoscillation 
condition on the moduli: 

E(K-l)//tD = (K2-l)/j*2-(Ki-l)//»i=0 (9) 
where H/B denotes the jump in/across the interface. Equation 
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(9) can be alternatively written as [(1 -2v)/fi^=0 for plane-
strain conditions. The nonoscillation condition has been dis­
cussed recently by several authors for interface cracks in gen­
eral anisotropic media (e.g., Ting, 1986; Bassani and Qu, 1989; 
Suo, 1990). Under the condition e = 0, the following two im­
portant observations can be made by examining Eqs. (1), (6), 
(8): (i) The near-tip stress field decouples so that the ratio 
<jyy/<jyx = Kj/Kn remains constant along the interface ahead of 
the crack tip; (ii) The crack face relative displacement Auj and 
the energy release rate G become the average of the corre­
sponding homogeneous solutions for materials #1 and #2. For 
instance, letting e = 0 in Eq. (8) results in 

G = (81 + S2)/2, (10) 
where 

Q = ̂ (K2, + Kh) (11) 

with subscripts 1 or 2 denotes the familiar Irwin G-Krelation 
between the energy release rate and the stress intensity factors 
for cracks in the homogeneous solid #1 or #2, respectively. 

This paper has two goals. First, it is aimed at providing a 
fundamental understanding of the crack-tip oscillation from 
the viewpoint of the interface mismatch that results from the 
cracking. Second, we extend the Bueckner-Rice weight func­
tion method (Bueckner, 1970, 1973; Rice, 1972) to facilitate 
the interface crack analysis. Using properties of the surface 
Green's functions of a homogeneous solid and solutions ob­
tained from weight function formulae, a mismatch analysis is 
carried out which indicates that the local mismatch near the 
crack tip results in the oscillatory near-tip field structure while 
the mismatch on the global scale leads to the corresponding 
stress intensity factors. For oscillatory interface crack field, it 
is shown that, other than a few extra material constants, the 
weight function analysis for interface cracks is completely par­
allel to its homogeneous counterpart so that any one known 
crack solution is sufficient for determining solutions for the 
same bimaterial geometry under any other loading conditions. 
The reader is referred to Rice's (1989) review article for more 
references on the weight function development in homoge­
neous crack analyses. Sham and Bueckner (1988) has also 
attempted to use the weight function method to study a com­
posite wedge under antiplane loading. Our result is significant 
in that it allows many well-established weight function appli­
cations to be directly extended to the interface crack analysis, 
such as those involving crack interaction with arbitrary forces, 
transformation strains and dislocations. The weight function 
approach is also important in devising finite element schemes 
(e.g., Sham, 1987) to compute stress intensity factors for ar­
bitrary geometry. 

Background 

Muskhelishvili's Complex Variable Representation. The 
field of plane elastic deformation may be represented by the 
standard complex Kolosov-Muskhelishvili potentials </>(z), \j/(z) 
where z = x+iy (Muskhelishvili, 1953). For crack problems it 
is convenient to use an associated pair of potentials 4>(z), 0(z) 
where 

Ofe) = ««'(*)+ *(«). (12) 
The displacement field u — ux + iuy is then expressed as 

2/*K = K<I>(Z)-W) + {Z-ZW (z) (13) 

where the overbar denotes complex conjugation. The stress 
components are derived from 

<JXX+Oyy = 2W{z) + <t>'(Z)] 

ayy + iaXy = <j>'{z) + Q'{z)-{z-zW'{z). (14) 

The solutions to two-dimensional crack problems can be fully 
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expressed in terms of (/>(z), 0(z) . For example, the asymptotic 
crack-tip field in a homogeneous solid has a universal structure 
represented by 

(15) </>(z) = fl(z) = i« :V(z-0/27r 

where the tip is assumed to be located at x = I and K=Kr+ iKn 

is the stress intensity factor. For a finite crack of length / 
subjected to the crack face traction u0, = u^y

Jr ia"x, correspond­
ing to the reduced problem of remote loads, the solution is 

«K*) = Q f e ) = | f f « Vz(z -l)-z (16) 

The stress field derived form (14), (16) results in the well-known 
stress intensity factor solution 

K=OC°\TM2. (17) 

Weight Function Theory. The weight function ^ ( x ; I) is 
defined as the mode a (a = I, II, III) stress intensity factor at 
a crack tip located at x=l due to a point force in y'-direction 
at a position x. If haj{x; I) is known, then the stress intensity 
factors are obtained by superposition as the weighted average 
of applied forces over the whole body. Using a reciprocal 
relation between the energetic force on a crack t ip, which is 
just the energy release rate g given in (11), and a point force 
P acting at x, Rice (1972) has shown that 

(K^u + Kuhuj). (18) 
di dp/ 

It is convenient for us to define the complex valued weight 
function ha as 

ha = hax+ihay. (19) 

Using the displacement representation (13) and the fact that 
(18) must hold for any combinations of Kj and K„ leads to 

2li,h,= K<I>„(Z) - Qlv(z) + (z -z)</C(z) 

2nhB= K[ - i4>w(z)} - [iQ„(z)] + (z-z)[ - i<t>^z)] (20) 

where 4>m Qw are two "weight function potent ia ls" which are 
related to the regular displacement potentials <£, fi by 

aofe /) 
dl 

•KQM;1). (21) 

The functional dependence on the crack-tip location / has been 
shown explicitly in the expressions of (21). Equations (20), (21) 
indicate that the weight function ha may be treated as a special 
displacement field associated with stresses 2/tl^*/=Cy*/Aa|/ij> 

where Cijki is the elastic modulus tensor. The mode I stress 
quantities U{i are represented by <j>w, Qw in the same manner 
as (14): 

2 ,*( t4+ t 4 ) = 2[K(z) + Kfe)] 

2^{Uyy+iUxy) = ̂ z ) + K(z)-(z-z)K{z). (22) 

The mode II stress quantities if" are obtained from the same 
relations but using the potential pair (-/</>„,, iUw). 

With the knowledge of ha and U?j, the following applications 
are possible: 

(a) For a body force d is t r ibu t ion /} , 

Ka(l)=\ haj(x;l)fj{x)dA. 
J body 

(23) 

(b) For an arbitrary distribution of transformation strain 
eii (Rice, 1985; Gao , 1989), 

Ka{l) = 2fx\ £/S(x; l)e'kl(x)dA. 
J body 

(24) 

(c) For a general Somigliana dislocation Au = u + - u ~ on a 
dislocation cut surface d, having normal N pointing from the 
( - ) side to the ( + ) side of d, 

Ka(l) UU*i l)Nk(x)Au,(x)dL. (25) 

(d) For a dislocation at s = xd + iyd with constant Burgers 
y, the formula (25) can be simplified to 

ib[(z-

vector b = bx+ ib 

K=-ib[<j,w(z) + iiAz)l -z)K(z)]?. (26) 

Using the basic weight function relations (21), a passage 
from one crack solution to any other solutions under the same 
geometry is established as follows: Starting with a known 
crack solution, "deriving the weight function potential from the 
known solutions by (21) and calculating the stress intensity 
factors by (23)-(26), the full solution to any other loading 
system can then be obtained by integrating (21) with respect 
to the crack position parameter /. Thus, knowledge of one 
crack solution is sufficient for determining the solutions for 
the same geometry under any other loading conditions. 

For a semi-infinite crack with crack tip located at x=l, 
differentiating the if-field potentials in (15) with respect to the 
crack-tip position / yields 

bw — " v v — 

C V 2 T T ( Z - / ) 
(27) 

Similarly, potentials in Eqs. (16) and the K solution of (17) 
lead to 4>w, Qw for a finite crack of length /. At the right crack 
tip x = I, it may be shown that 

</>„, = fiH 
c^2iri'\Z-l 

(28) 

Using the weight function formulae, the solution to a semi-
infinite crack interacting with a dislocation (Fig. 1(b)) may be 
easily obtained as 

K= — 
Mb 

</>'(z) = Q ' ( z ) = -
ib 

irc(z-t) • 
(29) 

Analysis of Interface Mismatch. 

Surface Green's Functions. Observe that the interface crack 
problem shown in Fig. 1(a) may be viewed as interaction 
between two elastic half-planes #1 and #2 via forces along 
the interface plane y = 0. We first consider the fundamental 

F ( K - l ) / 8 ( i F(K-|)/8n 

(a) 

F(K-|)/8n F(K-1 ) /8 f i 

(b) 

Fig. 2 Antisymmetric surface Green's functions of a homogeneous 
half-plane: (a) lateral expansion about a normal force; (£>) antisymmetric 
warp about a shear force 
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(a) 

• X 

(b) 

Fig. 3 (a) The basic interface crack problem considered in this paper, 
(o) the corresponding homogeneous configuration 

\arl (x)dx 

Fig. 4 The procedure of separating a homogeneous crack and forming 
an interface crack 

Green's function problem of a homogeneous half-plane sub­
jected to a concentrated surface force F. As schematically 
shown in Fig. 2, a fundamental result of contact mechanics 
indicates that a unit normal force F causes a uniform lateral 
expansion F ( K - 1 ) / 8 J K along the surface. Similarly, a shear 
force causes an antisymmetric "warp" with the same mag­
nitude. These surface deformations are represented by the 
"surface Green's function" (SGF) tensor G which allows one 
to use a simple superposition procedure to write the surface 
displacement vector u(x) due to an arbitrary distribution of 
surface traction t(x') in the convolution form 

Uj(x)= \ Gjj(x-x')tj{x')dx' (30) 

Specifically, the Green's function component Gjj(x-x') cor­
responds to the /th displacement at x due to a unit point force 
in the ./-direction at x'. Standard two-dimensional elasticity 
solutions for G can be found in standard textbooks as (e.g., 
Muskhelishvili, 1953) 

Gxx=Gyy= - — l n U - x ' l , 

Gxy = Gyx = -
8n 

sgn(x-x ' ) - (3D 

The tensor G can be separated into a symmetric part G s and 
an antisymmetric part GA, i.e., 

G = GS+G' 4 . (32) 

The symmetric part G 5 is diagonal with components Gxx, Gyy 

while the antisymmetric part GA has two off-diagonal com­
ponents Gxy= -Gyx. Following (31), the matrix forms for G s 

and GA are 

G>= — 
4ir 

S/x 

1 0 

0 1 
lnlx-

0 

- 1 
sgn(x-x ' ) - (33) 

The symmetric tensor Gs also represents symmetric displace-' 
ment responses with respect to a force while the antisymmetric 
tensor GA also represents the antisymmetric responses. The 
tensor GA is of the same constant magnitude but opposite sign 
on both sides of the force, generating the lateral expansion 
with respect to a normal force and the antisymmetric warp 
with respect to a shear force, as shown in Fig. 2. The Green's 
function tensors of (33) satisfies Betti's reciprocal theorem 

Gu(x-x') = GJi(x'-x). (34) 

The antisymmetry Gxy(x-x') = - Gyx{x-x') is due to the fact 
that we have kept the same set of variables x, x', rather than 
interchanging them as in the reciprocal relation (34). 

It is well known that under traction boundary conditions, 
stresses of a bimaterial interface may be expressed in terms of 
the two Dundurs mismatch constants (Dundurs, 1968) 

c 2 - c i . H(«-l)/r i l a = , p^ 
C2 + C1 c2 + Ci 

(35) 

In particular, the oscillation index e defined in Eq. (2) is related 
to the parameter p by 

" S " 1 = - ^ + 0(/33). 
1 +p IT 

(36) 

It is interesting to observe that a and p simply measure the 
dissimilarity of surface Green's function tensors G s and GA 

given in (33). By requiring 0 < y < l / 2 and /*>0, Dundurs 
showed that a and /3 are confined to a parallelogram in the 
(a,p) plane enclosed by a = ±1 and a - 4/3 = ± 1. Calculations 
by Suga et al. (1988) on more than a hundred material pairs 
suggest that the values of p are mostly restricted to I p I < 0.25, 
implying that I e I <0.08. Hence, the oscillation index is a very 
small parameter for most of the bimaterial combinations of 
interest. 

The Basic Interface Crack Problem. A general interface 
crack problem may involve complicated geometry and loading 
configurations. Without accounting for too much complica­
tions, we define the basic interface crack problem as a collinear 
crack array lying along an interface between two semi-infinite 
solids #1 and #2 and having a pair of unit point forces on the 
upper and lower crack faces as shown in Fig. 3(a). The solution 
to the basic problem can be used as the building block to 
construct the solutions to the given collinear crack problem 
with arbitrary crack-face traction, or to construct the solutions 
under general loading if the crack-face traction is equated to 
that would be induced at the crack site by the applied loadings 
in the absence of a crack. 

Analysis of Interface Mismatch via SGF Tensor. To un­
derstand the basic interface crack problem, we consider the 
corresponding homogeneous cracks in Fig. 3(Z>). The case of 
a pair of wedge opening normal forces acting on the crack 
faces results in a mode I deformation field near the crack tips. 
Imagine that the body is separated without relaxation into two 
half-planes along the crack plane y = 0, as shown in Fig. 4. 
Along the separated surface ahead of an arbitrarily chosen 
crack tip, a distribution of a normal traction ayy(x) would be 
found which is independent of the material moduli in the 
present case of point force loading. Set the coordinate origin 
at the chosen crack tip. Then, by superposing on the Green's 
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function G , the traction ayy{x) results in a horizontal surface 
displacement 

W * M = ( V ) 1 M * ' ¥ X ' (37) 

relative to the crack tip. Since the vertical surface displacement 
ahead of the crack tip is identically zero by symmetry, the only 
interface mismatch arising in the process of joining an upper 
half-plane #1 with a lower half-plane #2 to form an interface 
crack is the difference in lateral displacements. Obviously, this 
lateral mismatch is given by 

IUX{X)1 = UK-\)/^1 (x')dx' (38) 

([WyM]] = 0). If the parameter ( K - 1)//* is the same for no. 1 
and no. 2, then there is no interface mismatch so that no extra 
forces shall be needed in forming the interface crack. But the 
compatibility condition H(K-1)/^B = 0 is just the nonoscilla-
tion condition (9). Similar arguments may be applied to for­
mation of interface cracks under mode II shear conditions with 
the same conclusion that there is no interface mismatch if the 
nonoscillatory condition is satisfied. Combining the mode I 
and II results, one finds that the interface mismatch may be 
represented by a continuous distribution of dislocations along 
the interface with density 

dlu(x)I 
dx 

= \[(K-l)/4^Mx) (39) 

where u = ux+iuy and a=oyy + iayx. Equation (39) provides a 
relation between the traction and the mismatch along the in­
terface between two semi-infinite solids. Thus, for the basic 
interface crack problem (Fig. 3(a)), when e = 0, there is no 
mismatch so that the stress state in each half plane #1 and #2 
remains identical to that of the corresponding homogeneous 
cracks. This by superposition is also true for cracks under 
arbitrary crack-face traction. Given the fact that interface crack 
problems under general loading can be solved by the corre­
sponding reduced problems involving crack-face tractions, it 
can be concluded that the interface crack field for collinear 
cracks in an infinite bimaterial body will remain identical to 
that of the corresponding homogeneous crack if the induced 
crack-face traction is independent of the material moduli. An 
obvious example is a finite crack or collinear cracks subjected 
to remote stresses in which case the stress solutions are identical 
to the corresponding homogeneous solutions. However, the 
induced traction in general will depend on the moduli of both 
materials so that the stress intensity factors will depend on the 
moduli of both materials while the structure of the stress field 
remains the same as that of the homogeneous cracks. 

The nonoscillation condition for the interface crack fields 
can be given a more general interpretation as requiring the 
antisymmetric SGF tensor GA to be continuous across the 
interface, i.e., 

H G ^ O . (40) 

The condition (40) also applies to more complex interface crack 
problems such as those involving anisotropic materials. Those 
problems will be considered in a separate paper (Gao et al., 
1991). 

The above SGF analysis indicates that for interface cracks 
in an infinite body subjected to prescribed crack-face traction, 
the oscillation and mismatch are equivalent in that the mis­
match vanishes when oscillation does and vice versa. This is 
not true for interface cracks involving more complicated load­
ings and/or finite geometries such as thin films on a substrate. 
In those problems, there is also a strong dependence of the 
crack field on the other Dundurs parameter a. The reader is 
referred to Hutchinson (1990) for a review on some of the 
recent results of the stress intensity factors for various fracture 

specimens. Hutchinson and co-workers (e.g., Suo and Hutch­
inson, 1989; He and Hutchinson, 1989) have proposed to ig­
nore the oscillation effects by setting e = 0 in many engineering 
applications, provided that in those cases the effect of e (or 
/3) is much less significant compared to that of a. 

Weight Function Analysis of Nonoscillatory Interface 
Crack Fields 

To understand the singularity nature of the oscillatory in­
terface crack field, it is helpful to consider first the nonoscil­
latory case, i.e., when e = 0. In that case, the interface crack 
field has the same near-tip structure as homogeneous cracks 
and one may define the interface weight function ha = hax + ihay 

in the same manner as the homogeneous case. The reciprocal 
relation (18) also holds for interface cracks if the homogeneous 
energy release rate Q is replaced by the interface energy release 
rate G given by Eq. (8). Under the nonoscillation condition, 
G = (8i + S2)/2 so that the fundamental weight function re­
lation analogous to (18) may be written as 

du C\ + C2 
(Kjh^Kuhn). (41) 

Similarly, the interface weight functions hh hu can be repre­
sented by two weight function potentials </>„,, Q,„. The analog 
of (21) is 

3<Mz;/) c1 + c 2 -
—-— A <f>„(z; I), dl 

dQ(z; l)^cl + c2 

dl 8 
A T U Z ; 0- (42) 

Equations (41), (42) are the basic weight function relations for 
the nonoscillatory interface crack fields. The weight function 
formulae (23)-(26) for crack interactions with arbitrary forces, 
transformation strains, and dislocations also apply for the 
interface cracks. It suffices to calculate one crack solution for 
a given material pair and geometry; all the other solutions can 
be developed from the weight function potentials <t>w, Qw fol­
lowing the same approach established in the homogeneous 
weight function theory. 

For collinear cracks between two semi-infinite solids, one 
may conveniently choose u, <f>, Q, and A' in (41), (42) as the 
solutions under remote stresses or prescribed crack face trac­
tion, in which case the deformation field in each material is 
identical to the corresponding homogeneous crack field. It is 
thus clear that for this special case the interface weight func­
tions haj are related to the homogeneous weight functions by 

h = 
C[2ci/(cl + c2)](ha)i i n# l 

\[2c2/{c{ + c2)](ha)2 in #2 
(43) 

where (A„)i> (ha)2 denote the homogeneous weight function 
field in material #1, #2, respectively. It can be shown that the 
continuity of ha across the interface is guaranteed by the non­
oscillation condition. Using the weight functions as the basic 
building block, one may further write the stress intensity fac­
tors for an interface crack between two semi-infinite solids in 
the following form 

2c1(A')1 + 2c2(A')2 
K=-

Cl+C2 

(44) 

where if),, (f)2 are the homogeneous solutions for the quantity 
/ d u e to the loads lying, respectively, in material regions #1, 
#2. Similar relations also apply to complex potential functions; 
it may be shown that 

0: 
2c,(0), + 2c2(0)2 

fi: 
2c1(fl)1 + 2c2(Q)2 

(45) 
C\ + C2 C, + C2 

Therefore, under the nonoscillation condition, the stress 
intensity factor for the bimaterial case of Fig. 1 (b), i. e., a semi-
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infinite interface crack interacting with a dislocation ahead of 
the crack tip, can be directly derived from the corresponding 
homogeneous solutions (29) as 

K= 5 ^ = . (46) 
(Ci + C2)V27rt 

The associated complex potential function is 

«'(z) = Q'(«) = 
lib 

T(CI + C 2 ) ( Z - 0 
(47) 

Oscillatory Interface Crack Field Versus Interface Mis­
match 

Crack-Tip Oscillation Versus Local Mismatch. When the 
nonoscillation condition (9) is violated, oscillation at an in­
terface crack tip would occur as a consequence of the interface 
mismatch. The oscillatory near-tip field expressed in (1), (3), 
(6) can be represented by the following potentials 

Ke~ 
<j>;(z) = W(z) = : 2V27r(z-/)cosh(7re) \Z-l/ 

Ql'(2) = *2'(«) = 
Kew 

2V27r(z-/)cosh(Tre) \Z~l, 
(48) 

where the subscripts refer to the two materials and the crack 
tip lies at x = /. 

The relation (39) between the mismatch and traction along 
the interface can be used to form an iteration procedure that 
adjusts an initially assumed traction distribution a(x) to the 
oscillatory state. In that procedure, the mismatch due to the 
initial o(x) is represented by an array of dislocations with 
density given in (39), but the superposed effect of such mis­
match dislocations will change the traction <j(x) itself, forming 
a loop adjustment between the traction and mismatch along 
the interface. It will be shown below that this procedure leads 
to the oscillatory singularity field. Set up the coordinate origin 
at a chosen crack tip. The mismatch dislocation density along 
the interface ahead of the crack tip is related to the traction 
there by (39). Use the nonoscillatory field as the initial state 
in the loop adjustment procedure described above, so that the 
traction is taken as a{x) = K/*j2irx and 

dx 
• | [ (K- l ) /4 / i ] | -

K 
(49) 

The superposed effect of such dislocations within the crack 
tip region characterized by f can be calculated from the single 
dislocation formula (47), which modifies, for example, the 
potential function <j)'{z) in material #1 as 

*i'fe) = : 
K 

1+-
ir(Ci + c2)K 

L ( J_ L (dMt)Adt 
\K i0z-f\z \ dt ) 

K 
l - z ' e ( m - - T n ) + 0(e2) (50) 

where the approximation e = - /3/7r (correct to the second order 
in 0) has been used and quantities of order z/f are ignored in 
the present "near-tip" calculation. 

At a fixed position z, one may expand the exact solution of 
4>{(z), given by (48) for 1 = 0, into a power series of e as 

* i ' ( « ) = : K 

2^/2TTZ cosh(Tre) \z 

K 
1 •ielhi-- •Kl In + 0(e3) (51) 

Thus, the results (50) of the first adjustment from the non­
oscillatory state gives the first-order expansion in e of the 
oscillatory field. Using the first-order potential given in (50) 
to update the traction distribution a(x) by (14) and repeating 
the above adjustment procedure result in the second-order 
expansion expression of 4>'\iz), as expressed in (51). Continuing 
the adjustment procedure leads to a Taylor expansion series 
in e of the oscillatory field at any given material point. Sum­
mation of such Taylor expansion then constructs the full os­
cillatory near-tip field. 

Global Mismatch Effect. The presence of interface mis­
match not only alters the singularity nature at a crack tip as 
we have explored, but also changes the singularity strength of 
the oscillatory field. To understand how interface mismatch 
affects the stress intensity factor K, consider, for example, a 
semi-infinite crack subjected to a pair of crack-face forces 
p=py + ipx at a distance / behind the crack tip. In that case 
the exact solution is (e.g., Rice and Sih, 1965) 

K=p cosh^e f- (52) 

Again, for a fixed r/l, the above may be expanded into a Taylor 
power series of e, giving 

K=P. 
\1_ 
ITT/ 

l + / e l n - + 0(e2) (53) 

where the zeroth-order term p^j2/wl corresponds to the non­
oscillatory solution. The first-order term can be understood 
as the superposed effect of mismatch dislocations given by (39) 
with traction o(x) taken as the e = 0 result, i.e., 

an»(*)ll 
dx 

= H(K-1/4,XTJ 
ir(x+t) 

(54) 

Since the above dislocation density is of order e, it may be 
justified to use the nonoscillatory crack-dislocation formula 
(46) in the superposition procedure. Thus, the mismatch dis­
locations outside the crack-tip region characterized by r give 
the first-order term in (53): 

K= 
Si 1 dlu(x)l 

(C[ + C2)V27T *f V* dx 
dx 

2 \ r 
- ] « e l n 7 . (55) 

As explained before, the traction and mismatch along the in­
terface will adjust themselves to the oscillatory state via the 
loop procedure based on (39), eventually resulting in the full 
Taylor expansion of the exact if-solution (52). Clearly, the 
scaling length f is acting here as a characteristic distance at the 
crack tip where the global information of geometry and loading 
is transmitted to the fracture process zone. 

A Finite Interface Crack. As the corresponding reduced 
problem of that shown in Fig. 5, a crack along the interface 
subjected to uniform crack-face traction a„ = a"y + io™x has the 
following potential function solution (e.g., England, 1965; 
Rice and Sih, 1965) 

</>!(*) = fi2(2) = 
2 cosh(7re) 

Vz(z-0 

*2fe) = 0lfr) = 
e"o„ 

2 cosh(ire) 
ViCz^O ( ^ (56) 

Substituting this into (14) and using the stress intensity factor 
definition given in (4), one finds that 

' (57) K= (1 + 2ie)(f/l)kaxyfid72. 
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Fig. 5 A finite interface crack under remote loading 

When 6 = 0, the K of (57) reduces to the corresponding ho­
mogeneous solution (17) since the interface mismatch also van­
ishes in the present case (of infinite geometry). 

Weight Function Method for Oscillatory Interface Crack 
Fields 

In general, an interface crack will have an oscillatory near-
tip field due to the existing interface mismatch. Since the os­
cillatory field predicts crack-face interpenetration behind the 
crack tip, the forms given in (1), (3), (6) for the near-tip stress 
and displacement field must be wrong on a sufficiently small 
scale. However, the near-tip contact zone size estimated by 
several authors (Comninou, 1977; Rice, 1988; Rice et al., 1989) 
is found to be negligible (e.g., subatomic) for a broad range 
of crack-tip loading configuration. Thus, Rice (1988) pointed 
out that the stress intensity factor K as defined in (5) does 
characterize the severity of the near-tip loading when the size 
of the fracture process zone involving crack-face contact, ma­
terial nonlinearity (plasticity, microcracking, transformation) 
and/or the discreteness of material microstructure (e.g., fiber 
distance in a composite globally treated as a continuum) is 
much smaller than characteristic macroscale dimensions such 
as crack length or a film thickness. When such a size restriction 
is met, the value and history of K uniquely characterize the 
crack-tip state. With this understanding, we extend the weight 
function method to the general interface crack analysis, for 
determination of the oscillatory field solutions such as the stress 
intensity factors. 

In terms of the crack mode designation displayed in 
K=kf'e = KI+iKII, we may define the weight function ha for 
interface cracks in exactly the same manner as the homoge­
neous case. We note that the reciprocal relation (18) still holds 
for the oscillatory interface crack field if the homogeneous 
energy release rate Q is replaced by the interface energy release 
rate G given by (8). Therefore, the basic weight function re­
lation for interface cracks analogous to (18) is 

du Cl + C2 
{KIh,+KIIhu). (58) 

67 8 coshz(7re) 

Similarly, two weight function potentials 4>w and Qw can be 
used to represent ha by (20), with (21) becoming 

d<j)(z; I) cx+c2 

dl 8 cosh2(ire) 

3fi(z; 0 C l + C 2 

dl 8 coshVO 

K <t>M; D, 

KQw(z; /)• (59) 

The above relations may be used to determine the weight func­
tion field by differentiating any known crack solution with 
respect to the crack-tip position /, or to determine the full-
field potentials </>, Q by integration with respect to / from given 
solutions of <j>„, Qw, and K. Therefore, other than a few material 

constants, the interface weight function formulation is com­
pletely parallel to its homogeneous counterpart developed by 
Bueckner (1970) and Rice (1972) as presented in Eqs. (18)-
(26). The important conclusion is that knowledge of any one 
crack solution leads to the determination of crack solutions 
for the same geometry under any other loading conditions. 
The crack interaction with arbitrary forces, transformation 
strains, and dislocation can be studied by the same formulae 
(23)-(26), now with the understanding that K represents the 
near-tip stress field in the sense of (l)-(5). 

For a semi-infinite crack with crack tip located at x = / , 
differentiating the crack-tip potentials in (48), with respect to 
the crack-tip position / according to (59), yields the interface 
weight function potentials as 

em4>lvl(z) = e — Q^fe) 

, (60) 
4 cosh(Tre) 1 

Ci + c2 V 2 T T ( Z - 0 \ z ~ l , 

in material #1. The potential functions in material #2 are ob­
tained from (j>w2(z) = 0wl(z) and Qw2(z) = ^w\(z). Also, poten­
tials in Eqs. (56) and K in (57) lead to </>,„, Q„ for a finite crack 
of length /. At the right crack tip x= I, it may be shown that 

4 cosh(ire) 1 

C\ + c2 2irl \z-l 

1/2 + ie / „ \ k 
(61) 

Similarly, 4>w2(z) = Q,w\(z) and SlW2(z) = 4>w\(z). The complete 
weight function field derived from the above potentials via 
(20), (22) can be used to compute the interface stress intensity 
factors due to arbitrary forces, dislocations, and transfor­
mation strains according to formulae given in (23)-(26). 

For example, when a dislocation at s = xd + iyd in #2 interacts 
with a finite interface crack lying along (0, I) of the x-axis, 
substituting (61) into (26) immediately gives the K result 

1/2+IE 

K=-
4/ cosh(7re) 

(Cl+C2)% 

- 2 cosh(Tre) + e" 
s-l 

-(l/2 + ie)bewe[(.s-s)s~"i+K(s-l)~i"-'el][- (62) 

In the limit of a semi-infinite crack with crack tip at the co­
ordinate origin, (62) reduces to 

K= - 4 ' C ° S h ( " l . me-V/st/yTs + e-V/st/yrs) 
(c, + c2)V27r 

- (1/2 + ie)be™[(s-s)s-3/2(r/s)k]}. (63) 

These results are consistent with those derived by Suo (1989) 
from a different approach. 

Conclusions 
We have accomplished the following in this paper: First, 

it is shown that the near-tip oscillation of an mterface crack 
may be understood from the viewpoint of the interface mis­
match that results from the cracking. Our study indicates that 
the local mismatch near the crack tip results in the oscillatory 
near-tip field structure, while the mismatch on the global scale 
leads to the corresponding stress intensity factors. The study 
also reveals that the scaling length r introduced by Rice (1988) 
in defining the interface stress intensity factor defines a char­
acteristic distance at the crack tip where global information 
of geometry and loading is transmitted into the fracture process 
zone. Second, we have extended the Bueckner-Rice weight 
function method to the interface crack analysis, showing that, 
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other than a few extra material constants, the interface weight 
function analysis is completely parallel to its homogeneous 
counterpart so that all the well established formulae such as 
those given in (23)-(26) concerning crack interaction with 
transformation strains and dislocations can be directly applied 
to the interface crack problems. 

The interface weight function method presented here follows 
Rice's (1972) notion of reciprocal relations among energetic 
forces on a crack tip and other interacting defects. An alter­
native approach can be formulated following that of Bueckner 
(1970) in searching for a fundamental field whose potential 
functions behave as z~

W2±,e near a crack tip. Apparently un­
aware of Bueckner's work, Stern and coworkers (e.g., Stern, 
1978; Hong and Stern, 1978) developed a concept of "com­
plementary elastic state" for interface cracks which is essen­
tially the same as the fundamental field of Bueckner (1970). 
However, the analysis by Stern and coworkers is cumbersome 
and much less transparent than our present formulation given 
in (58), (59). In recent years, the weight function method has 
been intensively developed for both two and three-dimensional 
crack analysis in homogeneous materials, as reviewed by Rice 
(1989). Finite element schemes have also been devised to com­
pute the two and three-dimensional weight functions (e.g., 
Parks and Kamenetzky, 1979; Sham, 1987) for arbitrary ge­
ometry. Use of these existing techniques in the same vein of 
the present work will greatly facilitate the interface fracture 
analysis. 
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Three-Dimensional Stress Fields of 
Elastic Interface Cracks 
Various aspects of stress fields near an interface crack in three-dimensional bimaterial 
plates are investigated. Due to the nature of the resulting deformation field, three-
dimensional effects are more critical in a bimaterial plate than in a homogeneous 
plate. In the close vicinity of the crack front, the stress field is characterized by the 
asymptotic bimaterial K-field, and its domain size is a very small fraction of a plate 
thickness. Unlike a homogeneous case, the asymptotic field always consists all three 
modes of fracture, and an interface crack must propagate under mixed-mode con­
ditions. Furthermore, computational results have shown that the two phase angles 
representing the relative magnitudes of the three modes strongly depend on the 
bimaterial properties. It has been also observed that a significant antiplane (Mode 
III) deformation exists along the crack front, especially near the free surface. Since 
experimental investigations have shown that critical energy release rate Sc is highly 
dependent on the phase angles, accurate prediction of the interface fracture behavior 
requires not only the S distribution but also the variations of phase angles along 
the crack front. 

1 Introduction 
With the rapidly increasing use of composite materials for 

engineering structures, a great deal of interest in the interface 
crack has been generated. During the past few years, com­
prehensive analyses have been carried out, and many questions 
regarding the mechanics of interface fracture has been an­
swered. However, progress has been generally restricted to 
understanding of the two-dimensional idealization of an in­
terface crack, and limited work has been conducted on the 
three-dimensional aspect of interface fracture. This is in part 
due to the extreme complexity of such problems and the very 
large computational efforts required for their numerical anal­
ysis. However, given the material mismatch along the interface 
boundary, it is expected that the three-dimensional effects play 
a more significant role in a bimaterial structure than in a 
homogeneous structure. 

In this study, detailed three-dimensional finite element com­
putations are performed to investigate the complete stress field 
near the interface crack front. A large, finite thickness, bi­
material plate containing a finite length crack along the in­
terface under remote tensile load is considered. The purposes 
of the analysis are to assess the zone of three-dimensionality 
and to determine characteristic features of the deformation 
field, including the variations of energy release rate and mixed-
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mode stress intensity factors along the crack front. Accurate 
determinations of these parameters are essential in predicting 
fracture behavior along the bimaterial crack front. 

We also examine the field very close to the crack front to 
determine the existence and size of the asymptotic bimaterial 
K-field. In addition, the presence of bimaterial corner field 
near the intersection of the crack front and free surface is 
investigated. Near the free surface or in the corner field region 
where the three-dimensional effects are large, variations of 
stress intensity factors along the crack front are expected to 
be significant. The behavior of these fracture parameters are 
studied from a very detailed finite element model in conjunc­
tion with the bimaterial corner solutions. 

2 Crack-Tip Field at Bimaterial Interfaces 
2.1 Singular Stress Field. In an elastic bimaterial body 

containing a crack along the interface, the stress field very 
close to the crack front should correspond to the asymptotic 
field based on the two-dimensional (plane strain and antiplane) 
solutions (Williams, 1959). The form of the bimaterial A"-field 
given by Rice, Suo, and Wang (1990) (with an addition of 
Mode III) is, 

1 [ RelK^] &!y (0;e) + ImlKr1'6] djj (0;e) 
2TIT 

+ Kmdfm), (1) 
where r and d are the in-plane coordinates of the plane normal 
to the crack front, K is defined as the complex stress intensity 
factor for the in-plane modes, K{ + iKn, and <7,y are the angular 
variations of stress components for each mode. The oscillatory 
index e is 
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e ^ l n 
K1M2 + M1 -i- " l - | 8 " 

(2) 

Here, Ka = 3 - 4ca for plane strain and Ka = (3 - 0 / ( 1 + ''a) 
for plane stress, fia is the shear modulus, va is the Poisson ratio 
and the subscripts a = 1 and 2 refer to the materials above 
and below the crack plane, respectively. Furthermore, /3 is one 
of Dundurs' parameters. In two-dimensional problems, the 
solutions can be characterized by the two Dundurs' parameters, 
and thev are defined as (Dundurs, 1969), 

fll(K2+ 1) - H2{K\ + 1) o _ /*!("?." l)-/*2(Kl-l) 
M2(Kl + 1)+/X,(/C2+ 1) /i2(Kl + 1) + Ml(«2 + 1) 

0) 

Unlike two-dimensional cases, the above parameters are not 
sufficient to characterize the full-field deformation of three-
dimensional boundary value problems. However, for any bi-
material combinations of /3 = 0 (under plane strain), the os­
cillatory index e vanishes, and the asymptotic stress field along 
the three-dimensional crack front coincides with the homo­
geneous material solution. Note, a bimaterial combination 
yields different Dundurs' parameters under plane-strain and 
plane-stress conditions. 

2.2 Three-Dimensional Energy Release Rate. Based on 
energy release arguments, the relationship between the energy 
release rate Q (or the equivalent /-integral in the case of an 
elastic medium) and the stress intensity factors of an interface 
crack is, 

E*cosh (ire) 2n* 
(4) 

Here, E* and n* are the average/effective plane-strain tensile 
modulus and shear modulus of two materials, respectively, 
and they are 

JL_ 
E* 

1 - "1 , 1 - H J__I (L 1 
ix* 2 \/xi n2 

(5) 

The local energy release rate 9 along the crack front ad­
vancing in the Xi-direction (i.e., along the interface boundary) 
can be expressed in terms of near-tip fields for three-dimen­
sional bodies as, 

g'ocal(5) = lim ( 
r-o J] rw 

Wn, 
diij 

- a in dr. (6) 

Here, the superscript "local" emphasizes that Slocal is a.point-
wise energy release rate along a three-dimensional crack front. 
Also, 5 represents the location/arc length of the crack tip on 
the crack front measured from any reference point (e.g., corner 
point), Wis the strain energy density and «, are the components 
of a unit vector normal to T, which surrounds the crack front 
at 5. 

2.3 Three-Dimensional Interaction Integrals. For elastic 
interface cracks where the field is mixed mode, an effective 
method was introduced to extract each stress intensity factor 
by considering an auxiliary (pseudo) field that is the solution 
to a crack problem under some arbitrary loads (Shih and Asaro, 
1988). Here their formulation is extended to the general three-
dimensional case. We begin by superimposing an auxiliary field 
to the actual field (the three-dimensional interface crack 
boundary value problem) and introducing a local interaction 
energy release rate as 

I(s) = lim[ 
r-oJr(j) 

ouTny 
duf 

dX\ 
-ofr!% 

bX\ 
dr. (7) 

The variables with the superscript "aux" are the solutions of 
the auxiliary field. The above integral is a conservation integral 
as long as the limit (r -~ 0) is preserved. Additionally, I(s) 
along the crack front relates to local K at a point s by 

Us) = 
E*cosrT(ire) 

[*i*?u + KlIK$r\+—Km 
ft 

A/;/ (8) 

where Afux, A?"* and Afff are local stress intensity factors for 
the auxiliary field at a point s. To extract Ku we choose the 
auxiliary field to be the known interface A-field shown in 
equation (1) and the values of its stress intensity factors be 
A?"* = 1, A t r = K\n = 0. Next, we calculate the interaction 
energy (7) from both the actual and the auxiliary field solutions. 
Finally, the Mode I component of stress intensity factor, Kh 

at a point s on the crack front can be deduced from I(s) through 
(8) as 

E*cosh (ire)T/ 
Ki(s) = / ( s ) . (9) 

This procedure can be repeated for extracting A'n and A'm by 
choosing the corresponding auxiliary fields to be the Mode II 
and III singular field solutions, respectively, and using (8) after 
each I(s) is evaluated through (7). To obtain the complete 
variations of local K along the crack front, the calculation 
must be carried out over the entire crack front. 

From a discrete computational point of view, the expressions 
(6) and (7) are not suitable for evaluating values of Qloca\s) 
and I(s) since a precise numerical evaluation of limiting fields 
along the crack front is difficult. An accurate procedure based 
on the "domain integral method" exists for obtaining three-
dimensional 8 and K. A detailed description of the domain 
integral method for the similar three-dimensional mixed-mode 
field is given by Nakamura and Parks (1989). 

2.4 Phase Angles. The relative value of each stress in­
tensity factor along the crack front plays an important role in 
the initiation and direction (e.g., kinking) of interface crack 
growth. It is convenient to define their relative magnitude in 
terms of nondimensional phase angles. The first phase angle 
has been defined and employed in earlier two-dimensional 
studies as 

^(L) = tan~ 
(lm[K//el 

[Re[K7/e] 
(10) 

Here, L is the reference/characteristic length and K is the 
previously defined complex stress intensity factor for the in-
plane models. For nonzero e, this phase angle is a function of 
L. However, for a small e, the phase angle essentially represents 
the relative strengths between Kx and Kn. 

In three-dimensional situations, A'm is generally nonzero, 
and an additional phase angle is necessary to express the relative 
strength of antiplane deformation. The second phase angle 
may be introduced as 

> = cos 
A-,, 

2n* 

7s*coslr(7re) 
2>_:; t- î + ^ n ] + ^m 

A:,, 

.VVGJ" 
(i i) 

The above form of the second phase angle is consistent with 
the relationship between Q and stress intensity factors given 
in (4). Suppose we imagine a coordinate system formed by 

three othogonal axes: Re[K7/e] / y/E*cosh\we), Im[KZ/£] / 

V7?*cosh2(7re) and Km/ \/2/i*. Then the length of a vector 
from the origin to a point in such a coordinate space equals 
V g . Thus, i/< and <j> are the standard spherical angles repre­
senting the directions of the vector in such a coordinate system. 
Unlike the first phase angle, the second phase angle 4> is always 
independent of the characteristic length. This phase angle de-
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Fig. 1 Schematic oi three-dimensional bimaterial plate with an inter­
face crack along the boundary under tensile load 

creases for increasing relative magnitude of Kul. In a bimaterial 
combination of e - 0, the phase angles under pure Mode I, 

II, III conditions are «s </») = (o, ^ j , fe ^ j , (*, 0), re­

spectively. (Under pure Mode III, \p is undefined.) 

3 An Interface Crack in a Large Plate Under Tension 
3.1 Computational Model. For the three-dimensional 

study, a large bimaterial plate (thickness t) containing a through 
crack on the interface is considered. This Griffith-type crack 
is assumed to be under remote tensile stress a" as shown in 
Fig. 1. In the model, the height and width of the plate are 
chosen to be 30 times the crack length (W/a = 30, H/a = 
30). These dimensions are large enough so that the geometry 
represents essentially a finite length crack in an infinite (in-
plane) plate. We have selected this geometry for the analysis 
since the only characteristic dimensions are the crack length 
and the thickness.The computations are performed for various 
plate thicknesses ranging from t/a = 0.001 to t/a = 1.0. 

In order to minimize the complexity of the present three-
dimensional bimaterial study, the Poisson's ratio of the upper 
half plate is kept at v\ = 0.2. Moreover, the material properties 
of the lower half plate are selected so that the bimaterial com­
binations yield e = 0 (and /3 = 0) under plane-strain conditions 
(except for the elastic-rigid substrate plate). The three sets of 
material properties employed in the analysis are; (1) v2 = 0.2, 
H\/fi2 =1-0 (homogeneous case), (2) v2 = 0.3, ^1/^2 = 1-5, 
and (3) v2 = 0.4, fii/fi2 = 3.0. With these combinations, the 
oscillatory behavior in the asymptotic stress and deformation 
fields disappear and the stress intensity factors in (1) are well 
defined. Here, the extent of bimaterial mismatch can be meas­
ured by the other Dundurs' parameter (a = 0, 0.1351, 0.3846 
for each case). 

In constructing the finite element mesh, we have used the 
symmetry conditions across the center plane (x\ = 0) and the 
midplane (x3 = 0) to model a quarter of the plate. Zero dis­
placement boundary conditions in the X\ -direction are pre­
scribed on the right and left planes of the model and also in 
the x3-direction on the x3 = 0 plane. The finite element mesh 
of this geometry is constructed with 8-node trilinear hexah­
edron (brick) elements. In carrying out the analyses, two finite 
element meshes are employed for each bimaterial combination. 

(a) (b) 
Fig. 2 Typical finite element meshes for (a) a quarter of bimaterial plate, 
(b) near crack front region. The front plane corresponds to the free 
surface. 

The first mesh, shown in Fig. 2(a), models the entire plate 
while the finer second mesh is cylindrically shaped and models 
only the near crack front region. This finer mesh, shown in 
Fig. 2(b), is used to obtain more accurate solutions close to 
the crack front. In order to prescribe the boundry condition 
on the outer perimeter of the finer mesh, the computed dis­
placements from the first mesh are interpolated to the bound­
ary nodal points of the second mesh. The first (coarser) mesh 
has a total of 6048 elements (8 layers through half-thickness). 
The second (finer) mesh has 4860 elements (15 layers through 
half-thickness). The outer most nodes of the second mesh have 
a radial extent of 0.014 a, its crack-tip elements have a radial 
extent of 10~5 a, and the thickness of the element layer ad­
joining the free surface is 10"3 t. 

3.2 Three-Dimensionality in a Bimaterial Plate. In a ho­
mogeneous plate with sufficiently small thickness (as compared 
to in-plane dimensions), a three-dimensional region exists only 
near the crack front. From various experimental and numerical 
investigations it has been determined that such a region extends 
to the radial distance of about a plate thickness from the crack 
tip. Due to the mismatch in the material moduli along the 
interface, the size of the three-dimensional region in a bima­
terial plate is expected to be substantially different from the 
one in a homogeneous plate. Here the extent of three dimen­
sionality is quantitatively determined from the difference be­
tween the stress fields in a three-dimensional plate and the 
corresponding plane-stress plate. For given in-plane coordi­
nates (x\, x2), the average difference through thickness is cal­
culated as 

1 f'/2 

£>ave (*i, x2) = — \ II ay (xi, x2, x-i) 
a t J_t/2 

-atsiKS\Xl,x2)\ldx3, (12) 
where cr,y are components of the three-dimensional stress field, 
ff/,pi.stress are the plane-stress solutions of the same bimaterial 
crack plate subjected to remote tension, and II • II is a spectral 
matrix norm. This coordinate invariant parameter Z)ave ap-
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Fig. 4 Normalized local g along the half-crack front for t/a = 0.1 with 
various bimaterial combinations. (Note zero suppression of ordinate axis.) 

proaches zero for closer agreement with the plane-stress so­
lution, becoming zero if and only if ay is identical to 0J?'-Stress 

throughout the thickness. 
This parameter is calculated over the xrx2 plane of a rela­

tively thin bimaterial plate with t/a = 0.1, and the contours 
of Dave = 0.10, 0.13, 0.16 are plotted in Fig. 3. As in the case 
of a homogeneous material plate (now shown here), these 
results indicate a strong three-dimensional effect near the crack-
tip (xi = 0, x2 = 0) region. However, due to the modulus 
mismatch, the three-dimensional zone extends ahead of the 
crack and continues along the bimaterial boundary. The width 
of this zone is nearly constant (— At) for xx/t > 10 (or X\/ 
a>\) where the influence of the crack-tip field becomes neg­
ligible. In fact, this is the extent of three-dimensional zone 
along the interface boundary in a bimaterial plate without a 
crack. 

3.3 Energy Release Rate and Stress Intensity Fac­
tors. The energy release rate along the crack front is obtained 
using the domain integral method. In Fig. 4, the local 8 along 
the crack front are shown for plates {t/a = 0.1) with various 
bimaterial properties. In the figure, the 9local are normalized 
by gfar which is the energy release rate of a plane-stress plate 

(1 +4e )ira. (Here, e is from the plane-stress conversion in 
(2)). Since the plane-stress condition essentially exists far away 
from the crack front in the current model (as shown by Fig. 
3), this value must be close to the average value for 8 along 
the entire crack front. Our computed average 8 over the entire 
crack front is within one percent of the plane-stress solution, 
8 f a r . 

The 8local variations through-thickness of all cases are nearly 
identical. The highest value is at the midplane (x3/t = 0), and 
8local continuously decreases away from the midplane except 
very near the free surface fa/t = 0.5). In the same figure, the 
distribution of Sloca' along the crack front of an elastic-rigid 
substrate model (y\ = 0.2) is also shown. The oscillatory index 
for this model is e = 0.1255, and it is the worst possible 
mismatch in a bimaterial plate. Contrary to the other cases, 
giocai increases towards the free surface. This behavior is at­
tributed to the much greater level of shearing condition af­
fecting the crack-tip field. The results from the homogeneous 
plate (Nakamura and Parks, 1989) have shown that the be­
havior of 8 along the crack front is directly related to the 
amount of in-plane and antiplane shear in the crack front 
surrounding region. In a bimaterial plate, even in absence of 
any remote shear loading, the antisymmetrical conditions are 
induced by the material mismatch along the interface. The 
magnitude of shear increases with a larger mismatch, and when 
a sufficient bimaterial mismatch exists, a higher 8local prevails 
near the free surface as shown by the elastic-rigid substrate 
result. 

Each mode of stress intensity factor is computed along the 
crack front via the interaction integral. Figure 5 shows #joca l , 
AT}?081, and K\^x along the crack front of the plate with v2 = 
0.4, u±/_n2 = 3.0. Each stress intensity factor is normalized by 
o°° \fwa, which is the amplitude of stress intensity factor under 
plane-strain condition. In a plane-strain plate under tensile 
loading, Kn and Km are zero as long as e = 0. However, in 
three-dimensional tensile plates, this condition (e = 0) does 
riot insure the symmetrical loading in the crack front region. 
In fact, the stress field near the crack front is mixed mode. 
Due to the relatively small bimaterial mismatch in this plate 
{a = 0.3846, /3 = 0), the tensile force is still dominant and 
values of Kn and Km are relatively small along the crack front. 
Near the free surface, the amplitudes of both antisymmetrical 
modes increase while K\ decreases near the free surface (see 
the discussion on the corner field in Section 4.3). 

In order to study the relative strength of each mode effec-
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tively, the two phase angles described in the Section 2.4 are 
plotted in Fig. 6. In the homogeneous plate (v2 = 0.2, p.\/\i2 
= 1.0), the only nonzero stress intensity factor is K\, and the 
phase angles are always \p = 0 deg and 0 = 90 deg along the 
crack front. In the two bimaterial plates, the first phase angle 
\j/ remains nearly constant along the crack front except very 
near the free surface. The results imply that the ratio of K^ 
and Ku is essentially uniform throughout the crack front (see 
also Fig. 5). The second phase angle </> decreases from the 
midplane, reflecting the rising Mode III deformation near the 
free surface. These results clearly show a higher mixed-mode 
state near the free surface, and also larger in-plane and anti-
plane shear deformation in a plate with greater material mis­
match. 

3.4 Effect of Thickness. The effect of thickness is shown 
by the variation of the phase angles along the crack front in 
Fig. 7. The results are given for the plate thickness, t/a = 1.0, 
0.1, 0.01, 0.001, with the bimaterial properties v\ = 0.2, e2 = 
0.4, ii\/n2 = 3.0. In all cases, the relative strength of Mode 
II remains nearly constant along most of the crack front, as 
shown by \p in Fig. 7(a). Similar results for <t> in various plates 
are shown in Fig. 1(b). Both Mode II and Mode III defor­
mations increase for the thinner plates. 

Corresponding solutions from the plane-strain plate (lim­
iting case of //a—oo) are also shown in the figures. As the 
plate thickness increases, both \p and </> approach the plane-
strain limits (\j/ = 0 deg, <j> = 90 deg). Except near the free 
surface, there is a very small difference in 4* between the results 
for the t/a = 1.0 plate and the plane-strain limit. However, 
a significant difference remains between the same plate and 

the plane-strain solutions for <j>. These results indicate that 
while the in-plane shear is small in a thick tensile plate, the 
antiplane shear is not negligible and may play an influential 
role in the fracture initiation. 

3.5 Near Crack-Front Field. In order to use 8 and K as 
the fracture parameters in three-dimensional structures, one 
must substantiate the asymptotic bimaterial A"-field along the 
crack front. A basic requirement for the existence of .K-field 
is a sufficient plane-strain constraint near the tip. The amount 
of constraint can be measured by the parameter, (^/(oti + 
022). Under plane-strain conditions, this parameter equals v\ 
and i>2 above and below the crack plane, respectively. The 
angular variations of this parameter at various radial distances 
away from the crack front near the midplane are plotted in 
Fig. 8. The parameter indeed approaches the plane-strain limit 
as r/t -~ 0, and the discontinuity jump at 6 = 0 is accurately 
illustrated in the figure. At about r/t = 0.005, there is already 
a sufficient constraint in both upper and lower half of the 
plate. 

The complete stress field very near the crack tip (r/t = 0.001) 
is plotted in Fig. 9. The components of computed stress are 
normalized by the a°° \pm/ \flrr to obtained the dimensionless 
angular variations over — -K < 6 < ir. The solution from the 
if-field (1), o|/, a", ay1, are also shown with dashed lines. Since 
the field is a mixture of all modes, as shown in Fig. 5, these 
functions are weighted by respective local stress intensity fac­
tors (A^ocal/ff°° \hra = 1.08, 0.13, 0.01, for Modes I, II, HI, 
respectively at x^/t = 0.05). The figure shows an excellent 
agreement between the computed stress components and the 
asymptotic solutions, and these results confirm the existence 
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of the AT-field in three-dimensional bimaterial plates. We have 
also compared the near-tip stresses with the corresponding 
mixed-mode AT-field solutions on a plane closer to the free 
surface at the same radial location. The agreement of each 
stress component is as good as that of the midplane results 
except for the CT33 component. The worsened result of a33 is 
explained by a lesser constraint near the free surface. 

The agreement with the AT-field solution deteriorates as the 
radial distance from the crack front increases. Based on the 
results from individual stress components and the constraint 
parameter, we conclude that the AT-field exists within the radius 
of about 0.5 percent of plate thickness near the midplane for 
a plate with t/a < 1.0. 

4 A Thin Plate Under Mixed-Mode Loading 
4.1 Computational Model. For the investigation of the 

stress field near the corner a different model is constructed. 
It has been established in Section 3.2 that if the plate thickness 
is sufficiently small, a nearly plane-stress field exists outside 
the crack-front region (except the narrow band of three-di-
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the half-crack front in a very thin plate (t/a - 0) with i>2 = 0.4, ^,//t2 = 
3.0. (b) Phase angles along the half-crack front in a thin plate with various 
bimaterial combinations. 

mensional zone ahead of crack). By taking the thickness to be 
very small (t/a —• 0), one could assume an existence of annular 
region where the field is essentially characterized by the plane-
stress K-field. An advantage for using such a thin plate model 
with a surrounding plane-stress AT-field is that the characteristic 
dimension is reduced to the plate thickness alone. 

For the computational model, a mesh with similar shape 
and element arrangement as shown in Fig. 1(b) is constructed. 
The maximum radial extent of a disk-shaped mesh is chosen 
to be 100 times the thickness, which should be large enough 
to contain any three-dimensional effects along the interface to 
minimum. The external strip of boundary is subjected to the 
traction of plane-stress mixed-mode bimaterial AT-field. A de­
tailed description of a similar mesh is given in Nakamura and 
Parks (1991). The amplitudes of far-field stress intensity fac­
tors are chosen as K[m = 1 and K\f = 1. This combination 
is selected so that the resulting field along the crack front is 
strongly mixed mode, and any numerical errors which may 
arise from calculating smaller stress intensity factors are min­
imized. For the material properties, the same sets of Poisson's 
ratios and shear moduli as in the previous analysis are used. 

4.2 Stress Intensity Factors. The stress intensity factors 
along the crack front are computed by the interaction integrals 
and normalized by the magnitude of applied load, Kfw = Afr 

+ Kn1 and the results are shown in Fig. 10(a). The two in-
plane stress intensity factors jKJoca! and A'J°cal are nearly identical 
along the crack front except near the free surface where Z[°cal 

decreases while K\°C!il increases. As in the previous model, the 
antiplane A^f1 rises from the symmetry plane (x3/t = 0) to­
ward the free surface. 
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In Fig. 10(6), the phase angles of various bimaterial prop­
erties are plotted. The trends are similar for all cases: increasing 
antisymmetrical deformation near the free surface as shown 
by increasing \p and decreasing </>. Again, the levels of shear 
deformation are greater in the plates with larger bimaterial 
mismatch. 

4.3 Corner Singularity Field. At a point sufficiently close 
to the normal intersection of a crack front and a free surface, 
the asymptotic deformation field can be characterized by the 
corner singularity field of a quarter-infinite crack plane in a 
half space. Such a corner field has an interesting implication 
toward crack growth since the stress singularity on the free 
surface is different from the usual l/yfr singularity. The corner 
field in the homogeneous material has been extensively inves­
tigated by Benthem (1977, 1979) and Bazant and Estenssoro 
(1979). Recently, Barsoum and Chen (1989) and Ghahremani 
and Shih (1991) have computed eigenvalues corresponding to 
the singularities of corner fields in various interface cracks. 

For many bimaterial combinations, the first two eigenvalues 
are real, and the stress near the intersection of a homogeneous 
solid may be expressed in terms of dominant symmetrical and 
antisymmetrical elastic corner singularities as shown in a ho­
mogeneous material (Nakamura and Parks, 1989), 

0ij(p,9,<t>) = 
1 

/2ir 
[®SP

 Sg?j(0,<l>*s) + ®A P Agij(6,4>;\A)l 

Here, (Be and ($>A are the corner stress intensity factors, and 
gfj and g?j are angular functions corresponding to the dominant 
symmetrical and antisymmetrical fields, respectively. The 
spherical coordinates, p, 6, and <t>, are centered at the corner, 
and in the present model they are 

p = yr2 + z2, </> = tan ' i)'z=h- (14) 

Also, \ s is the eigenvalue for symmetrical fields, and X̂  is the 
eigenvalue for, antisymmetrical fields. Typically, Xs > - 0 . 5 
and X̂  < - 0 . 5 for many bimaterial solids (Ghahremani and 
Shih, 1991). On the free surface we have p = r, and thus these 
values of X suggest that the second term in (13) dominates as 
r — 0 and the stress singularity is more severe than the usual 
l/yfr singularity. 

The general relationship between the bimaterial A'-field and 
the corner field is complex. However, for solids with e = 0, 
a relationship between the stress intensity factors and the corner 
stress intensity factors can be expressed as, 

1/2 

K\rl(z) = ®AzXA + [ 

K^(Z) = R(^A)(RA^A + 1 

for z - 0 . (15) 

Here, R(\A) is a dimensionless factor equivalent to the ratio 
of A'l'n^'to K{°cal, and it is a function of only \A and independent 
of loading conditions. Equations (15) suggest that the local 
stress intensity factor tends to zero in a symmetrical field (Mode 
I) and tends to infinity in an antisymmetrical field (Modes II, 
III) for small z. Furthermore, since the corner field is always 
mixed mode in a bimaterial plate, the energy release rate in­
creases to infinity near the free surface. 

In order to determine the dominance of such corner sin­
gularity fields in a finite thickness plate, all three modes of 
A*03' are plotted in a log-log scale in Fig. 11. The small circles 
in the figure indicate A^ocalat the midlocations of element layers 
along the crack front. Also plotted in the figure are the straight 
lines whose slopes are (Xs + 1/2) for Ku (hA + 1/2) for Kn 

and Km. The values of Xs and \A indicated in the figures are 
given by Ghahremani and Shih (1991). The curves are nearly 
straight for z/t < .003, and the agreements with the corner 
field solutions are very good for both the homogeneous and 
bimaterial plates shown in Fig. 11. Similar results are also 
obtained with v2 = 0.3, m//*2 = 1-5. Based on the behaviors 
of f?a near a corner as shown in Fig. 11, we tentatively 

(13) 

conclude that the corner singularity field in a thin plate dom­
inates within the spherical radius of p/t — .003 from the 
intersection in a thin bimaterial plate. 

5 Discussions 
The present analysis has shown that three-dimensional ef­

fects are more complex in a bimaterial plate than in a ho­
mogeneous plate with similar dimensions. It has been observed 
that a large Mode III deformation exists along the crack front, 
even in a relatively thick plate. Furthermore, the bimaterial 
properties are found to play an important role in the state of 
mixed mode. In view of determining fracture behavior, these 
effects are very critical since they influence not only the var­
iations of energy release rate but also all three stress intensity 
factors along the crack front. 

The manner which Q varies along the crack front is directly 
dependent on the relative magnitude of shear in the near crack-
front region. The rise of Q near the free surface occurs when 
there are sufficient shear loads. This phenomena is consistent 
with the Q variation observed in a homogeneous plate under 
a remote shear loading (Nakamura and Parks, 1989). In a 
bimaterial tensile plate, the shearing condition near the crack 
front is caused by the material mismatch, and as a consequence, 
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the behavior of S along the crack front is affected. The extent 
of shearing increases with greater material mismatch in a plate, 
and the most severe case occurs in an elastic-rigid substrate 
plate. Certainly, any remotely applied antisymmetrical load­
ings enhance the shear deformation near the crack front, and 
hence promote the increase of 8 near the free surface. 

Recently, Cao and Evans (1989) showed experimentally that 
the critical energy release rate Qc of a propagating interface 
crack depends on the phase angle \p, and that 9c increases for 
larger \j/. The increase of Qc is explained by the shielding of 
the crack tip from the large stress by rubbing/contact of crack 
surfaces under a large in-plane shear deformation (high \p)- A 
similar mechanism is expected to operate under antiplane shear, 
and the critical energy release rate should increase when the 
relative magnitude of Km is high (small <j>). Thus, the critical 
energy release is a function of both î  and </> as 

ec=Sc«s</>). (16) 

Based on the above argument, to predict the location of a 
crack growth initiation with an available Qc (\j/, <j>), one must 
know the 8 variation (e.g., Fig. 4) as well as the complete 
phase angle distributions (e.g., Fig. 6). In the near free-surface 
region, the driving force S is generally high due to the mixed-
mode corner field. At the same time, there are greater shear 
deformation (high i/s low <f>) in the region, which may lead to 
more fracture resistance condition. These two effects compete 
during the initiation, and they must be considered carefully 
when one tries to estimate the steady state angle made by the 
propagating crack front and the free surface. 
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Nonaxisymmetric Annular Punch 
Problem 

A general formulation is given for the first time to the title problem. The method 
is based on the new results in potential theory obtained by the author earlier. The 
problem is reduced to a two-dimensional integral equation with an elementary kernel. 
Several specific examples are considered. 

Introduction 

It is impossible even to mention all the publications related 
to the Dirichlet problem for a flat circular annulus, a particular 
case of which is the annular punch problem. Their number is 
awesome. One can find many references related to a contact 
problem in Barber (1983). Other references related to the equiv­
alent electrostatic problem can be found in Love (1976). Why 
is there any need for yet another paper on the subject? The 
main reason is that the majority of publications is devoted to 
the simplest, flat, centrally loaded, annular punch problem. 
A very small number of publications treat nonflat but still 
axisymmetric problems (Barber, 1976, 1983). An important 
problem of circular sliding contact was considered by Keer 
and Mowry (1979). The zone of contact was split in 
two: circular and annular, with a complete adhesion applied 
at the first one and Coulomb friction law at the other. Two 
interesting problems involving annular crack, externally 
cracked body and a penny-shaped crack were considered by 
Selvadurai (1985, 1987). The case of an elastic plate on a half-
space was solved by Rajapakse (1988). Some more complicated 
dynamical problems were considered by Veletsos (1987, 1988). 

Though some results related to consideration of specific 
harmonics have been published (Williams, 1963; Cooke, 1963), 
no general solution to the problem has been attempted as yet. 
This kind of solution is now possible due to the new results 
in potential theory obtained by the author (Fabrikant, 1989). 
The problem is reduced to a two-dimensional Fredholm in­
tegral equation with an elementary kernel which can be solved 
numerically. Flat inclined and centrally loaded annular punches 
are considered as examples. Asymptotic formulae are derived 
for the case of a very narrow annulus. 

Theory 

Consider a rigid annular punch b < p < a penetrating a 
transversely isotropic elastic half-space z > 0. Neglecting the 
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shear stress under the punch base, the boundary conditions 
for the problem can be formulated as follows: 

w(p,4>)=5-s(p,<j)), for b<p<a, 0<<j><2ir; 

a z =0, for p<b or p>a, 0<</><2Tr; 

Tyz = Tzx = 0, for 0<p<oo , 0<(t><2ir. (1) 

Here, 5 is the maximum punch penetration and s describes the 
shape of the punch base. It is well known (Fabrikant, 1989) 
that the problem can be reduced to the governing integral 
equation 

H n <r(Po,(t>o)Podp0d<l>o 

b yp2 + po-2pPocos(<t>-4>o) 

= w{p,4>). (2) 

Here, H is the elastic constant (see Fabrikant, 1989), w is the 
known function (1), and a — -azis the yet unknown function. 
The following integral representation for the reciprocal of the 
distance between two points can be found in (Fabrikant, 1989) 

1 1 

R [~2 2 
V P +Po-2ppQcos((/>-(/>o) 

•K J, 

XI—, <t>-fo\dx 
min(p0,ri \PPo 

•\/p2-x2-\Jpo-x1 

Here, 

l-k2 

(3) 

(4) 

Substitution of (3) in (2) leads to the governing integral 
equation 

V 
£ | — )o(Po,<t>) 

Pa 
2 ^2 \PP0/ 

+ 4 r dx r 

^ 
£>[ — \a(poA)=—TT-- (5) 

Po 
2 ^2 \ P P o / H 

In Fabrikant (1989) the ^-operator was introduced as fol­
lows: 
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&{.k)f(p,4>)-
2ir 

X(k,(j>-4>oV(p,(l>o)d(j)o 

= ̂  E kMe'"* \'e-"*°f(p< ,<t>o)d<t>o 

n= -co 

Here, /„ is the «th Fourier coefficient of the function / . Ap­
plication of the operator 

to both sides of (5) yields 

, Ar [b^Jb2-x2dx [° Podpo n ( * \ , ., 
+ , i ?— , £ — k ( p o , 0 ) 

We introduce a new unknown function 

£=A/Ve'' l0~*o). (13) 

Here, 9? denotes the real part of the expression to follow. 
Thus, the general problem of annular punch has been reduced 
to a Fredholm integral Eq. (11) with an elementary kernel which 
can be solved numerically. It is noteworthy that the governing 
equation for each specific harmonic will also have an elemen­
tary kernel. For example, the equation corresponding to the 
zero harmonic is 

Xo(r) + 

with 

1 f 
r2h 

aK0(y,r)-K0(r,y) 

f-r2 Xoiy)dy 

1 d fr w0(p)pdp 

' 2-KH dr f V^v 

KoO>,r)=r 
2\ 1/2 

?-b' 
In 

y + b 

y-b' 

(14) 

(15) 

There have been so many variations of the governing integral 
equation published for the case of axial symmetry, that there 
is no doubt that Eq. (14) coincides with some known result, 
though we have difficulty to pinpoint exactly which one. The 
governing integral equation for the first harmonic will take 
the form 

x(r,4>)-
•v Jn

2? W 

2 {"Kdy^-K^y) 
xi (/•)+— - i — j xi(y)dy 

IT Jft y -r 

(8) 
1 1 d 

2-KH r dr r 
•>b 

WI(P)P dp 

J7-
The inverse of (8) is readily available, and is 

i 
with 

T P dp J„ Jp-_f W 
* i O v ) = 

2\ 1/2 

r>-b' 
y l n ^ - 2 b 

y-b 

(16) 

(17) 

Substitution of (8) in (7) gives 

f" ydy 

J/, 

2TTX(/-,0) + - J- -j—,J dx 

There is no need to compute the stress distribution a if one is 
interested in the integral characteristics only. Indeed, both the 
resultant force P and the tilting moment M can be expressed 
through the new unknown function x as follows: 

£(- )xOv» 

fs n7,TT nQ 

TT J0 Jb 

x(p,4>)pdpd(j> 

ViC r Xo(p)pdp 
(18) 

H 

M= 
, 2 . , a ( 2 p 2 . 

dr L V?^ 
£(p)w(p,«). (10) o J* 

b )x(p,<t>)cos<t>dpd<t> 

One can interchange the order of integration in the second 
term of (10) and perform the integration with respect to x. 
The result is 

V7^ 
(2p2-b2)Xi(P)dp 

(19) 

-1 ni/K nil 

7T3 J 0 Jj, 

K(y,r,<j> - <fto) -K(r,y,(j> - <ft0) 
x(y,<t>a)dyd(j)0 

We note also that the kernels in (14) and (16) are finite at the 
point y = r. The following limits can be computed 

~r2 + b2 

The kernel of (11) can be expressed in terms of elementary 
functions as follows: 

K0(y,r)-K0(r,y) 1 _ 

Kdy,r)-Kdr,y) 1 
V - 6 2 

2r 

Sf-b2 

2r 

i r + b u In -~b 
r-b 

In-
/•-fc" 

-3b 

(20) 

lim 

Mm 

y-r 

Equations (11), (12), (18), and (19) are the main new results 
of this article. 

2\ 1/2 

K(y,r,4> - 0O) = ry (j^S j - A K <j> - 0O) J In ( j± f 

+ 2$R 

£( 1 - - e"--^-^) 

where 
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In 
% + b 

i-b 
<, (12) 

Description of the Numerical Procedure 
Consider the following integral equation: 

h(r)f(r)+ \ X(r,x)f(x)dx = g (/•). (21) 

Here, h and g are known functions, X. is the kernel, and / i s 
the as yet unknown function. The procedure which is usually 
used may be described as follows. We divide the interval [b, 
a] into n - 1 equal subintervals of length A = (a - b)/(n 
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- 1). The points of division are called xk, k = 1, 2, . . . , n. 
Assume the unknown function / to be piecewise constant on 
each of the subintervals and equal to fk on the subinterval 
number k. Introduce a set of points rk - (xk + xk+\)/2, for 
k = 1,2, . . . , « - 1. These assumptions allow us to reduce 
the integral Eq. (21) to a set of n - J line- • algebraic equations 

n - i 

h(rk)f(rk) + 2 K,(rk)f, = g(rk), 

for k=l, 2, 

Here, 

*/(/>) -t X(rk,x)dx. 

n - 1. (22) 

(23) 

The second method to be used here is somewhat different 
from that above. We consider the unknown funct ion/ to be 
piecewise linear. Assuming/t = f(xk), for k = 1, 2, . . . , n, 
this implies that at the kth subinterval the function / can be 
expressed as follows: 

/ ( * ) = / * + ( / * + ! - / * ) 
x — b 

Substitution of (24) in (21) leads to a set of n linear algebraic 
equations 

n - l 

Mo)/ /+ / i Ki(n) 
in) 

diin) -

A 

' / - i (O) 

k), for xk<x<xk+l. (24) 

/£,•(/•,)-(/-2H_,(/v) 

+/„ 

1 = 2 L 

(«-2)K„„!(r ;) 

= « (0 ) . 0=*/ , for / = 1, 2, . . . , n. (25) 

Here, 

o,in) -V 3d(r,,x)(x~b)dx. (26) 

Since the piecewise linear function follows the real function 
more close than the piecewise constant one, we should expect 
the set of Eqs. (25) to give a more accurate solution than (22). 

Examples 
Flat, Centrally Loaded, Annular Punch. In this case w0 = 

const., and the governing integral Eq. (14) will take the form 

2 (aK0(y,r)-K0(r,y) 
Xoir)+~2 \ T—J. Xoiy)dy 

IT Jb y -r 
w0 

2-wH v^ (27) 

It is well known that the stress distribution a has square root 
singularities at p = a and at p = b. We can then conclude 
from (8) that function xo will have a logarithmic singularity 
at the point p = ft. In order to obtain an effective numerical 
solution of (27) we have to eliminate singularities whenever 
possible. We introduce a new unknown function 

/(/•) = 
Xoir) 

r+b' 
r-b 

(28) 
In 

which will have no singularities and will be limited on the [b, 
a]. Substitution of (28) in (27) allows us to rewrite it as follows: 

v^ -b\ r+b.. . 2 ^Jf-b2 

— In - / ( / • ) + ^ 
r-b ir r 

,, [aK0(y,r)-K0(r,y) „ %1 fy + b\J w0 
X i 7=? AyHy^b)dy = 2^ (29) r 

•>b 

H~- (30) 

Note that in the limiting case of r — b Eq. (29) yields 

i(y + b\ fjy)dy _irw0 

The problem was solved numerically by using both methods 
from the previous section. The value of the total force P was 
computed in the first method according to the formula (18) as 
follows: 

1=1 JXi \ P 

P + b\ pdp 

47^ 
(31) 

The resultant force in the case of the second numerical method 
was computed as 

p-*Y, ' • ! > 

A Jv. 

pdp 

2 1,2 

p - b 
P + b\ p2dp 

p-b) 47^i 
(32) 

The integrals in (31) and (32) can be computed exactly in terms 
of elementary functions or it can be computed numerically. 

Numerical computations were performed according to both 
methods for different values of n and various ratios b/a. The 
dimensionless quantity/" = Hf/w0 is plotted on Fig. 1 against 
the dimensionless argument p* = (p - b)/A + 1. The ar­
gument of each plot was scaled in such a way that it stretch 
over the same interval. The pattern of each curve consists of 
three long dashes and a certain number of dots which corre­
sponds to a specific ratio b/a defined by Table 1. For example, 
five dots in the pattern correspond to the fifth line in Table 
1, with b/a = 0.9. The dimensionless resultant force P* = 
P/P0 is presented in the Table 1. The quantity P0 = 2w0a/ 
(TTH) corresponds to the resultant force producing normal 
displacement vv0 when applied to a circular punch of radius a 
(see Fabrikant, 1989, p. 342). The column denoted as exact 
was computed independently according to the formula derived 
in (Love, 1976). This formula in our notation reads 

P* = l-J]k^UK"L(u,t)j{du. (33) 

Here, k = \fb~7a, and K'[ is the nth iteration of the kernel 

KL(u,t)=-
ut 

IT 1 - w¥ ' 
(34) 

Let us point out some interesting features of the numerical 
results in Table 1. First of all, two different methods lead to 
different results, but the discrepancy between them decreases 
as n increases, and in such a way that their average changes 
very little being very close to the exact value. The second 
conclusion is that each of the methods gives either upper or 
lower bound for the computed quantity. This feature is ex­
tremely important since it allows us to estimate the error of 
computation. As we expected, the second method is everywhere 
more accurate than the first one. 

An asymptotic solution for a very narrow annulus can be 
found by using the analogy with a two-dimensional contact 
problem. The stress distribution can be taken in the form 

O(P)=-
tfo 

V C 2 - ( P - / - O ) 2 

Here, a0 is the as yet unknown constant, 

c=(a-b)/2,r0 = (a + b)/2. 

Substitution of (35) in (8) yields 

(35) 

(36) 
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Fig. 1 The dimensionless stress function f* 

Table 1 

n 

10 

20 

30 

40 

bla 

0.20000 
0.40000 
0.60000 
0.80000 
0.90000 
0.95000 
0.99500 
0.99950 
0.99995 
0.20000 
0.40000 
0.60000 
0.80000 
0.90000 
0.95000 
0.99500 
0.99950 
0.99995 
0.20000 
0.40000 
0.60000 
0.80000 
0.90000 
0.95000 
0.99500 
0.99950 
0.99995 
0.20000 
0.40000 
0.60000 
0.80000 
0.90000 
0.95000 
0.99500 
0.99950 
0.99995 

Method 1 
P~ 

1.0325 
1.0117 
0.9776 
0.9027 
0.8224 
0.7473 
0.5598 
0.4440 
0.3676 
1.0119 
0.9993 
0.9704 
0.8998 
0.8216 
0.7475 
0.5608 
0.4449 
0.3684 
1.0066 
0.9959 
0.9684 
0.8990 
0.8214 
0.7476 
0.5612 
0.4452 
0.3686 
1.0043 
0.9944 
0.9674 
0.8986 
0.8213 
0.7477 
0.5613 
0.4454 
0.3687 

Method 2 
P' 

0.9855 
0.9807 
0.9587 
0.8950 
0.8204 
0.7483 
0.5632 
0.4471 
0.3702 
0.9924 
0.9859 
0.9620 
0.8964 
0.8207 
0.7481 
0.5625 
0.4465 
0.3697 
0.9946 
0.9876 
0.9631 
0.8968 
0.8208 
0.7480 
0.5623 
0.4463 
0.3695 
0.9958 
0.9884 
0.9636 
0.8970 
0.8209 
0.7479 
0.5622 
0.4462 
0.3694 

Average 
P' 

1.0090 
0.9962 
0.9682 
0.8988 
0.8214 
0.7478 
0.5615 
0.4456 
0.3689 
1.0022 
0.9926 
0.9662 
0.8981 
0.8212 
0.7478 
0.5617 
0.4457 
0.3690 
1.0006 
0.9918 
0.9657 
0.8979 
0.8211 
0.7478 
0.5617 
0.4457 
0.3691 
1.0000 
0.9914 
0.9655 
0.8978 
0.8211 
0.7478 
0.5618 
0.4458 
0.3691 

Exact 
P' 

0.9989 
0.9907 
0.9651 
0.8976 
0.8210 
0.7478 
0.5618 
0.4458 
0.3691 
0.9989 
0.9907 
0.9651 
0.8976 
0.8210 
0.7478 
0.5618 
0.4458 
0.3691 
0.9989 
0.9907 
0.9651 
0.8976 
0.8210 
0.7478 
0.5618 
0.4458 
0.3691 
0.9989 
0.9907 
0.9651 
0.8976 
0.8210 
0.7478 
0.5618 
0.4458 
0.3691 

X(0=oo 
>r0 

dx 
(37) 

^ 2 *t ^ c 2 - * 2 yfx^t 

Here the following new variables were introduced 

p0 = r0 + x, r = r0 + t, (38) 

and the small quantities of the order of c/r0, x/ra, and t/r0 

were neglected. The same procedure applied to (18) and (30) 
yields, respectively, 

P=2a„ oay[2r0 \ . 
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(39) 

W0 = 
2V2< x{t)dt 

(40) 
TH-J70 J_C \t+cJ ^Jt+c 

Substitution of (37) in (39) and (40), interchange of the order 
of integration and subsequent integration yield 

= 27r r0a0, 

''•?)• 
Here the following integral was used 

' 2r0 \ dt ^ / 8 r 0 \ 

P 

w0 = 2%Ho0\n 

(41) 

(42) 

J_c \t + c) = 7rln 
Kt + c/ s/t+c \jx-t \x+c, 

We may now deduce from (41) and (42) that 

p TTWQ 

(70 = 
Wo 

2 i r V 
2irHln e?y 

21n 
16(a+b) 

a-b 

(43) 

(44) 

(45) 

(46) 

The last result is in agreement with that of Smythe (1951) 
and Collins (1963). 

Flat Inclined Annular Punch. Assume that the punch is 
tilted about axis Oy in the positive direction, and that the angle 
of rotation is a. The normal displacements under the punch 
can be expressed as 

w(/0,</>)= -ap cos(j>. (47) 

Substitution of (47) in (16) leads to the governing integral 
equation 

xi (/•)+— 2—j x\{y)dy 
* J* y -r 

2^-b1 

2vH V^ 
(48) 

It is reminded that the kernel K\ is defined by (17). We may 
conclude once again that since the stress distribution is singular 
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Fig, 2 The dimensioniess stress function g* 

250 

at the edges p = b and p = a, the function x\ will have a 
logarithmic singularity at the point p = b. Introducing a new 
unknown function q as 

, . X\(r) 
q(r)-

In 
r+b' 

' r-b 

(49) 

we may rewrite (48) in the form 

yjf-b2 .r + b 2 V̂ -Z>2 f^Qy)-^^) 
l n • • ( 7 ( r ) + ^ 2 ^ - 6 2 J6 * * 2/-2-62 

/ • - & J ' 

X , ( , ) l n ( j ± | ) ^ = - ^ . (50) 

The problem was solved numerically by using both methods 
from the previous section. The value of the tilting moment M 
was computed in the first method according to the formula 
(19) as follows: 

M= S <?< J ln 'p + A (2p2-b2)dp 
(51) 

The following formula was used in the second numerical 
method 

n - l 

M = - 2 S * ( / + | 

-tf,+l I < • + - - ! 
p*;+l / 

1, '-(: 
p + A (2p2-b2)dp 

'p + b\ (2p2-b2)pdp Qi+i-Qi p + 1 j (p + b\ (2P
2-b2 

• (52) 

The integrals in (51) and (52) can be computed in terms of 
elementary functions, namely, 

p + b\ (2p2-b2)dp =V7^ lb + pin 
'p + b 

o-b W - , r— 

M^)w^ ,v+ftW^'"(^) 
^sU^^h^JT^). 

Table 2 

« 

10 

20 

30 

40 

b/a 

0.2000 
0.4000 
0.6000 
0.8000 
0.9000 
0.9400 
0.9800 
0.9900 
0.9990 
0.9999 
0.2000 
0.4000 
0.6000 
0.8000 
0.9000 
0.9400 
0.9800 
0.9900 
0.9990 
0.9999 
0.2000 
0.4000 
0.6000 
0.8000 
0.9000 
0.9400 
0.9800 
0.9900 
0.9990 
0.9999 
0.2000 
0.4000 
0.6000 
0.8000 
0.9000 
0.9400 
0.9800 
0.9900 
0.9990 
0.9999 

Method 1 
M-

1.0028 
1.0079 
1.0012 
0.9491 
0.8658 
0.7991 
0.6677 
0.5989 
0.4392 
0.3449 
1.0012 
1.0024 
0.9941 
0.9443 
0.8638 
0.7986 
0.6685 
0.6000 
0.4403 
0.3458 
1.0007 
1.0010 
0.9923 
0.9430 
0.8633 
0.7984 
0.6688 
0.6004 
0.4407 
0.3461 
1.0005 
1.0003 
0.9914 
0.9424 
0.8630 
0.7984 
0.6690 
0.6006 
0.4408 
0.3462 

Method 2 
M" 

1.0017 
0.9959 
0.9839 
0.9368 
0.8609 
0.7982 
0.6707 
0.6027 
0.4429 
0.3479 
1.0000 
0.9971 
0.9866 
0.9389 
0.8617 
0.7982 
0.6701 
0.6020 
0.4422 
0.3473 
0.9998 
0.9976 
0.9875 
0.9396 
0.8620 
0.7983 
0.6699 
0.6017 
0.4419 
0.3471 
0.9998 
0.9979 
0.9880 
0.9399 
0.8621 
0.7983 
0.6697 
0.6016 
0.4418 
0.3470 

Average 
M-

1.0023 
1.0019 
0.9925 
0.9429 
0.8633 
0.7986 
0.6692 
0.6008 
0.4411 
0.3464 
1.0006 
0.9997 
0.9904 
0.9416 
0.8627 
0.7984 
0.6693 
0.6010 
0.4412 
0.3465 
1.0003 
0.9993 
0.9899 
0.9413 
0.8626 
0.7983 
0.6693 
0.6010 
0.4413 
0.3466 
1.0002 
0.9991 
0.9897 
0.9411 
0.8625 
0.7983 
0.6694 
0.6011 
0.4413 
0.3466 

Exact 
M* 

0.99996 
0.99878 
0.98930 
0.94084 
0.86243 
0.79830 
0.66942 
0.60115 
0.44138 
0.34661 
0,99996 
0.99878 
0.98930 
0.94084 
0.86243 
0.79830 
0.66942 
0,60115 
0.44138 
0.34661 
0.99996 
0.99878 
0.98930 
0.94084 
0.86243 
0.79830 
0.66942 
0.60115 
0.44138 
0.34661 
0.99996 
0.99878 
0.98930 
0.94084 
0.86243 
0.79830 
0.66942 
0.60115 
0.44138 
0.34661 

Numerical computations were performed according to both 
methods for different values of n and various ratios b/a. The 
dimensioniess quantity q* = H\q\/{aa) is plotted on Fig. 2. 
The conventions are the same as with Fig. 1 except for the 
curve identification which is now related to Table 2. For ex­
ample, six dots in the curve pattern now correspond to b/a = 
0.94. The dimensioniess tilting moment M* = M/M0 is pre­
sented in the Table 2. The quantity M0 = 4fl3a/(3ir^) cor­
responds to the tilting moment producing angular displacement 
a when applied to a circular punch of radius a. Here we no 
longer have that peculiar property that each method gives either 
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upper or lower bound for the solution. It does not hold for 
b/a = 0.2, though it appears to be valid for b/a > 0.4. All 
the numerical results presented in this article are in excellent 
agreement with similar data received in personal communi­
cation from Professor Mastrojannis . 

An asymptotic solution for a very narrow [(a - b)/a] « 
1 annulus can be at tempted as above. Assume 

a{p,<j>) = 
<TiCOS</> 

v; (53) 
(p - 'o ) 2 

Here, as before, 2c is the annulus thickness and r0 is its average 
radius as defined in (36). Substitution of (53) in (8) yields 

X i ( 0 
dx 

V c 2 - ^ 
(54) 

Here the new variables were introduced in the manner similar 
to (38). In the limiting case of r — b we can deduce from (50) 
that 

AH 

\b2 r yln 
y + b 

y-b 

I-4IH r 
•wb2*JFa J -

-2b 

r0ln 

Xi (y)dy 

V y2-b2 

2/Q 

t + c 
2b 

Xi(t)dt 
(55) 

Substitution of (54) in (55) yields after interchanging the 
order of integration and subsequent integration 

2-KHO 

r0 "(v 
A similar procedure performed on (19) gives 

M = - 7T2/o<7l. 

We may now deduce from (56) and (57) that 

M 

•K 1% 

2HM 
In 

/ I 6 ( g + f t ) \ 

\ °-b ) 

(56) 

(57) 

(58) 

(59) 

Taking into consideration that for a circular punch of radius 
a we have 

M o = 3 ^ ' 
(60) 

the following expression for the dimensionless moment can be 
written 

3ir\a + bf 

M 0 
64a3 16C. + 6) 

a-b 

(61) 

We are unaware of a similar result published elsewhere. 

D i s c u s s i o n 

An at tempt can be made to obtain an approximate analytical 
solution. We can multiply both sides of (27) by 4rdr/ 

\jr — b2 and integrate with respect to r from b + e to a. 
The result is 

Ja
 X0(r)rdr [ 4 f" 

V^ 
X In 

b2 

y + b 

y-b 
yln 

(y~b)(a+y) 

(y + b)(a~y) 
- M n 

(a + b)e 

(a-b)2b 

Ix + b \ xdx yVn{x--b x2 xo(y)dy 

2w0 

' TTH 

. b. (a + b)e 
a-b-2lnT^bm 

. (62) 

By using indentity (30), the limiting case of e — 0 can be 
computed 

Xo(y)ydy 2w0(a-b) 

TV Jb 
P+-2 ny) 

VT^2 •KH 
(63) 

with 

y-b) \(a-y)(y + b) 

\>m X2' 
(64) 

Taking into consideration that xo does not change sign in 
the interval [b, a], we can use the mean value theorem and to 
rewrite (63) as 

l+-2T(Y) 
2w0(a — b) 

•KH 

with an immediate consequence 

2w0(a-b) 

•KH\ \ + \ T { Y ) 

(65) 

We know about the value of Y only that it is located some­
where in the interval [b, a]. This condition allows infinite 
variation of T, thus making (65) of little practical value. On 
the other hand , formula (65) is exact in two limiting cases, 
namely for b — 0 and b — a. This means that an additional 
investigation can reveal an optimal value of Y, making (65) 
useful. 

Yet another solution can be deduced from (18) and (30) 
which can be rewritten as 

In 
'y + b\ xo(y)dy 

'/\[7^b2 y-b 

irw0 

~4H' 
(66) 

Taking into consideration that X0 does not change sign in 
the [b, a], we can apply the mean value theorem to (66), with 
the result 

1 
In 

Y+b 

Y-b r 
•>b 

xo(y)ydy 

Comparison of (67) with (18) yields 

irw0Y 

TTWQ 

~4H' 

P = -

Hln 
Y+b 

Y-b 

(67) 

(68) 

Again, the main problem with (68) is the fact that we know 
about the value of F o n l y that it is located somewhere between 
b and a, which allows infinite variation. This does not preclude, 
however, from finding some optimal value for Ywhich would 
make (68) useful. This investigation is beyond the scope of 
this paper. 

The complete solution, namely, the explicit expressions for 
the field of stresses and displacements in the elastic half-space 
due to the annular punch indentat ion, can be derived in terms 
of the function \- Indeed, in order to obtain the field of normal 
displacements, one has to compute the integral 

HP,4>,Z)-- I
2TT f>a 

n J / J 

<y(poMpodpod<l>o 

yf, p2 + Po~ 

(69) 

2pp0cos(4>-<j>0) + z 
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Substitution of (9) in (69) yields, after interchanging the 
order of integration and subsequent integration, 

•JT J0 Jb p + oc - 2pxcos((j) - 4>0) + £ 

+ » r r c x(y,4>)ydy 
hWJA ^b2-g2(x)dx 

(70) 

Here 

' i W = 2 l^Jip + xf + z2-^ (p-xf + z2}, 

h(x)=- [\j{P+x)2 + ZL + \](p-xf + z2}, 

e 11/2 
g(x)=x P -x2 (71) 

Note that function g is inverse to both ^ and l2. The method 
of integration is described in (Fabrikant, 1989). The complete 
solution is to be published separately. 
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Green's Functions for a Point Load 
and Dislocation in an Annular 
Region 
This paper contains an analysis of a two-dimensional annular region whose inner 
boundary is that of either a hole or a perfectly bonded, rigid inclusion. Fast-con­
verging Green's functions for a point load or a dislocation on the annulus are 
determined using analytic continuation across the boundaries of the annulus. 

1 Introduction 
Problems of annular regions have applications to many dif­

ferent engineered structures such as pressure vessels, rollers, 
and toughness test specimens, and their solutions have occu­
pied mathematicians and engineers for many years. In the first 
book published on the theory of elasticity, Lame (1852) in­
cluded the solution for the stresses in a pressure vessel under 
uniform external or internal pressure (Timoshenko, 1953). The 
general solution for the annulus was given by Michell (1899) 
in his landmark paper on planar elasticity. The Michell solution 
determines the Airy stress function for the annulus from the 
Fourier expansions of the boundary stresses, given that the 
solution is nondislocational (see Timoshenko and Goodier, 
1970). Michell also showed that the stresses in the annulus are 
independent of the elastic constants provided that the resultants 
of the tractions on the inner and outer boundaries are zero. 
An analysis of a ring test specimen loaded by diametrically 
opposed compressive point loads was undertaken by Ripperger 
and Davids (1947). Stresses at critical points in the loaded 
annulus were determined by solving what was essentially the 
Fourier series of the Michell solution. Modern analyses of the 
annulus containing a crack includes the finite element method 
(Ahmad and Ashbaugh, 1982) and the boundary collocation 
method (Bowie and Freese, 1972). 

Delale and Erdogan (1982) solved for the Green's function 
for a dislocation on the annulus with a Burgurs vector normal 
to the boundaries of the annulus. This solution was used to 
determine an integral equation for a crack on the annulus. By 
solving the integral equation subject to the condition that the 
normal and shear stresses along the crack are zero, the crack 
opening displacement and stress intensity factors for the crack 
were found. 

This work derives the Green's functions for a point load or 
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a dislocation in an annular region. Two types of annular re­
gions are examined: that of the annulus whose inner boundary 
is a hole and that of the annulus whose inner boundary is a 
perfectly bonded, rigid inclusion. Thus two boundary value 
problems are examined for the inner boundary: that of the 
stress-free boundary, and that of the rigidly displaced bound­
ary. For the outer boundary, only the stress-free condition is 
examined; however, the method is easily extended to solve for 
the displacement free boundary. 

Since the Green's functions considered here are derived for 
a finite body, the Green's function for the point load must be 
for a system that is in equilibrium. This condition is not nec­
essary for the displacement free outer boundary, and the two 
problems, while similar, cannot be formulated together as for 
the case of the inner boundary. 

2 Formulation 
The method of solution used here is that of analytic con­

tinuation across the boundaries of the annulus (Milne-Thomp­
son, 1968). The complex variable method of Muskehelishvili 
(1954) is used to define the stresses and displacements in the 
elastic plane in terms of the Kolosov potentials, </>(z) and \p(z): 

0"w — OVr + 2/ffy 

= 4 Re {* (z)), 
= 2(z*'(z) + * ( z ) j , 

2n(u + iv) = K<I>(Z) -z<p' (z) -i>(z), 

(1) 

(2) 

(3) 
where axx, ayy, and axy are the stresses and u and v are the 
displacements in the x-y plane, K = 3 - Av for plane strain and 
K = (3 — v)/(\ + v) for plane stress where v is the Poisson's ratio, 
H is the shear modulus, z is the complex coordinate: z = x+iy 
where / = V - 1, the bars denote complex conjugation, Re de­
notes the real part of the function, and, following the common 
notation, *(z) = </>'(z) and *(z) = \j/' (z). 

The polar form of the stresses is: 

ffrf + o-̂  = 4Re !$(z)j , (4) 
am - a„ + liar, = 2em {z*' (z) + * (z)), (5) 

where 6 is the rotation of the stresses. If & is measured from 
the origin, then z = re'e, where r is the modulus of z, and e1'0 

= z/z. 
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The annulus is pictured in Fig. 1; the center region contains 
either a hole or perfectly bonded, rigid inclusion. The boundary 
condition on the inner boundary of the annulus containing the 
inclusion is 

2\i ( u + iv) = K<f> ( t ) — t<t>' -i/'j —) =2/*(5 + fW) (6) 

where t = ae'e, 8 is complex and represents a rigid body trans­
lation, and co is real and represents a rigid body rotation. Taking 
derivatives with respect to t, Eq. (6) becomes 

li. 

^ - X 

Fig. 1 Problem configuration for the annulus 

,«*(,) _f(£)+^(£ 
t1 \t 

- 2/xio) = 0. (7) 

Also, for the annulus containing a hole, we have at the inner 
boundary 

ff„+/ffrt = * ( 0 + * 
t 
-$ ' - 7 * 7 =f{t) (8) 

where/(t) is the complex sum of the normal and shear stresses 
on the inner boundary at the point t. Equations (7) and (8) 
can be combined into one boundary condition for both the 
hole and the inclusion, 

a * ( 0 + $ 
t 
- * ' • 7 * ( T ) — ! > > • » 

for the inclusion and where a=\ for the hole, a — 
Q= - (a - l )2^co / (K+l ) . 

Similarly, the boundary condition on the outer boundary is 

where, in this case, t = be'd. 
A Green's function solution is sought for the annulus of 

Fig. 1 for a<r<b. Since the strength of the singularity in the 
Green's function is known, define 

$ U ) = * o U ) + < M z ) + * 2 ( z ) , (11) 

* ( « ) = * o U ) + *i (*: )+*2(«) , (12) 
where <Mz) and ^i(z) are the potentials for the known sin­
gular solution for the point load or dislocation at the point f 
in the infinite plane, * 0 U ) and ¥ 0 U ) contain reactive singular 
sources at the origin, and $2(2) and "^(z) are nonsingular 
and are determined so that the boundary conditions are sat­
isfied.Then (9) and (10) become 

„2 

a*2(z) + *2(-7'] -y*2 
A a2^ (<? 
-\-j^2\-)=Ga{t), (13) 

Fig. 2 Analytic regions of the annulus 
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b2\ b1-, bl\ bl- b .2 /u2\ .2 luf 
$i{z) +$2[-j\ - - n \ - \ -j*2\-) =Gb(t), (14) 

where 

eft a2 

G o ( 0 = - « * i ( z ) - * i | Y J + j * i l y ) ' + ^ « r i i -

— (aft a2 —./eft a2— (a 

eft a2^ (a2 

a*o(z) - * o ~ + T * o T + 3 * o / / " ? °W/V*°W 

and 

G„(t): 

K+ 1 

- M b2-
* i ( z ) - * i ( y l + y * i ' 

(15) 

- * o ( z ) - * c + y * o 

+ ? * , 

+ 7 ¥ ° (T (16) 

The function $2 is analytically continued into the regions S" 
and Sb~ shown in Fig. 2 by defining 

r$a
2-{z) z€S°-

< M z ) = | * 2 + ( z ) ZtS+ 

(17) ,*£-(«) Z€S*~ 

so that *2_(«2 /z) and **"(ft2/z) are analytic in S + . Also, 
unless otherwise stated, #2(2) = ^ (z) since the solution is in 
the region S + . If the definition for ^ ( z ) is chosen: 

then (13) reduces to 

a $ 2 + ( 0 - * 2 " ( 0 = G o (0 . (19) 

Again, Sf^U) may be defined so as to determine a solution on 
the outer boundary. 

¥2(z)=^j*2 + * 2 ( z ) - Z * 2 ( z ) (20) 

and (13) becomes 

* 2 + ( 0 - * f " ( 0 = G6(/). (21) 

Equations (19) and (21) can be solved by considerations of the 
Plemelj formula: 

A + , . I I Gajt)/a , , , 1 f Gb{t) 
$2 (z)= -T—.<X> — dt + — ® dt 

2-wi J Ca t — z 2iri J Cb t — z 

+ F(z)+P(z)+Po+PiZ, (22) 

where Ca is the contour r= a and Cb is the contour r= b, both 
integrals are taken in the counterclockwise sense, F(z) and 
P(z) are analytic functions in Sa~US+USb~. The function 
P(z) has the form 

P{z) = Y,pnz"+P-nz-". (23) 

The function F(z) is arbitrary; it is chosen so that a more 
convergent form of P(z) is obtained. The potentials <J?2~ (z) 
and **~ (z) are determined from (19) and (21). Next, Eqs. (18) 
and (20) are set equal to each other to obtain the compatibility 
condition of Milne-Thompson (1968) 

(b2~a2)l^2(z)-z^2(z)} -62**~ 

+ a 2 * r ( - ) = 0 . (24) 

By expanding the terms in (24) into a Laurent series, a solution 

> x 

Fig. 3 Equilibrating loads for the point load on the annulus 

for P(z) can be found depending on the choice of F{z). Con­
sequently, a first choice of F(z) = 0 is best used to determine 
the initial coefficients of P(z). By inspection, less convergent 
coefficients can be deleted by choosing appropriate functions 
for F(z). The final step of the solution is to determine ^2(z) 
from (18) or (20). 

The constant z'O in Eq. (9) does not directly affect the so­
lution; it can be seen from (1) and (2) that *(z) can have an 
additive imaginary constant without changing the distribution 
of stresses in the body. However, when the compatibility con­
dition is applied, only the real part of p0 can be determined; 
the imaginary part depends on the choice of Q. If a consistent 
choice of the two constants is made and then used when solving 
for ^ 2 ( z ) , no spurious moments will be added to the solution 
and boundary conditions will be satisfied. When the final result 
is found, any imaginary constants in $(z) can be deleted, 
particularly those that are inversely proportional to the inner 
radius of the annulus. 

3 Solutions 
The singular potentials for the point load or for the dislo­

cation at the point f in the infinite plane are (Muskhelishvili, 
1954): 

* ! ( z ) = — , . (25) 

••«>-s'i. (26) 

where 

A = 
2TT(K+1) 

bx + iby 

2iri(K+l) 

for the point load 

for the dislocation 

and 

K for the point load 

for the dislocation. 

(27) 

(28) 

Here, Px and Py are the point loads and bx and by are the 
dislocations; the relation between these two solutions was 
pointed out by Dundurs (1968). 

3.1 Point Load Solution. The applied loads on a finite 

956 / Vol. 58, DECEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



body must be in equilibrium if a solution is to be found. 
Therefore, the point load Green's function for the annulus 
must be for a system of point loads that are in equilibrium. 
Equilibrating loads are most conveniently placed at the center 
of the annulus to counter the action of the applied point load 
at the point f. This choice will not leave any extraneous loads 
when a Green's function is used to determine the stresses in 
an annulus under applied boundary tractions. Since the trac­
tions must be in equilibrium, in the overall solution the loads 
at the center will cancel. 

For equilibrium, the following complex point load and mo­
ment are applied at the center of the annulus as shown in Fig. 
3: 

P=-(Px + iPy), 

M=P, . Im(f ) -P , -Re( f ) . 

The potentials for these loads are (Muskhelishvili, 

A 

z 

1954) 

*oU) = 

*<>(*) = 
KA_ iMi_ 

Z 2ir z2'' 

(29) 

(30) 

(31) 

(32) 

where A is defined in Eq. (27) for the point load. In the case 
of the annulus with a hole, boundary tractions are applied on 
the inner boundary such that a net force and moment are 
exerted on the annulus equal to the point loads applied to the 
center. The function/(f) chosen for the solution here is 

/ ( 0 = * o ( 0 + *o 
' / W ;%. (33) 

so that 

™ = l<+l»\l + &}-A\?-<K+1)&\- (34) 

This simple solution has a sinusoidal distribution of normal 
and shear tractions for the point loads and a constant distri­
bution of shear tractions for the moment. This result is similar 
to one previously obtained by Dundurs (1963). In determining 
the Green's function for a point load and moment in an elastic 
embedded disk, he obtained the same distribution of tractions 
for the limiting case of a disk with a free boundary. He con­
cluded his solution was a convenient Green's function for the 
disk as the tractions vanish for any problem where the applied 
loads are in equilibrium. 

The total solution for the equilibrated point load on the 
annulus is given in the Appendix. The best convergence for 
P(z) was achieved when the function F(z) in Eq. (22) was 
chosen as 

F(z)=A 
1 

z-a*t/b2 

abb m- 3z-a2 f /*2 

(z-a2[/b2)3 

-<- !^M? * f / (z-« 2 f / * 2 ) 3 (35) 

Note that when a = 0 or b— oo, p(z) =F(z) =0 . 

3.2 Dislocation Solution. The dislocation Green's func­
tion is derived in the same manner as the point load Green's 
function. There is only one consideration to make: When the 
Green's function is used for an edge crack on a hole, displace­
ment continuity must be satisfied on a contour that encloses 
the edge crack and the hole. This is done by using an appro­
priate Green's function. By adding the solution for a dislo­
cation at the origin that is opposite in sign to the dislocation 
at the point f, a Green's function that enforces displacement 
continuity is obtained (Comminou and Chang, 1985). The 

solution for the dislocation at the center of the annulus with 
free boundaries is: 

%(Z)- -A- + 2A-j^ 
z bl + cr 

%(z)=-2A 
<?b2 

b' + a2 i-4 
(36) 

(37) 

When the Green's function is used for the edge crack on a 
hole, the potentials for the dislocation at the center are added 
to the already determined potentials for the dislocation at the 
point f in the annulus. The entire solution is given in the 
Appendix. 

4 Conclusion 
Green's functions for an annulus whose inner boundary is 

a free surface or a rigid, perfectly bonded inclusion have been 
obtained using the complex variable method of Muskhelishvili 
(1954). Be carefully defining the analytic regions for an an­
nulus, the potentials describing an equilibrated point load and 
a dislocation were found in the form of functions plus an 
infinite series. By taking functions that are singular outside of 
the analytic regions of the annulus and expanding them in a 
Laurent series for the annulus, less convergent terms in the 
infinite series were cancelled by adding and subtracting the 
nonsingular functions from the function part and the infinite 
series part of the potentials. The convergence of the infinite 
series is dependent on the ratio a/b; this method is not ap­
propriate for analyzing thin-walled annuli. For problems con­
cerning thin-walled members, the reader is referred to Cheng 
and Finnie (1989). 

The resulting Green's functions can be used to solve prob­
lems of an annulus with applied tractions on its free boundaries 
that contains a crack. Future work will consider curved crack 
propagation in an annulus acted on by concentric point loads. 
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A P P E N D I X 

Potent ia l s for the P o i n t L o a d and Di s loca t ion 

The Kolosov potentials for the point load are: 
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The Kolosov potentials for the dislocation are: 

$(z)=A-
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where a is the inner radius and b is the outer radius of the 
annulus, f is the point at which the point load or dislocation 
is applied, z is the point where the stresses are measured, and 
A is defined for the point load or the dislocation in Eq . (3). 
The functions P(z) and Q(z) are Laurent series in z and are 
defined as follows, 

and 

where 
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A Crack Terminating at a Slipping 
Interface Between Two Materials 
The paper investigates an edge crack that terminates at a slipping interface with a 
different material. The formulation is reduced to a singular integral equation. The 
integral equation is solved and the stress intensity factor extracted using a numerical 
method. Moreover, the asymptotic nature of the stresses at the open tip of the crack 
is studied. 

Introduction 
It is often observed in experiments dealing with bone im­

plants that the bond at an interface breaks before the formation 
of cracks (Gharpuray et al., 1990). This may happen either on 
the bone side or the implant side of the material used to provide 
adhesion. Moreover, the subsequent cracks appear to emanate 
from the interfaces that, after debonding, allow slip. This 
suggests that it is worthwhile to analyze the interaction of an 
edge crack with a slipping interface. 

The problem is formulated using a continuous distribution 
of dislocations which leads to a singular integral equation. The 
singularity at the open end of the crack that touches the in­
terface is studied using the Williams technique. The integral 
equation is solved and the stress intensity factor extracted using 
a numerical method. 

Formulation of the Problem 
As shown in Fig. 1, let region 1 with shear modulus fii and 

Poisson's ratio vx be the half plane containing the crack and 
region 2 with shear modulus ^ and Poisson's ratio v2 be the 
half plane without the crack. The crack of length c emanates 
from the frictionless interface at an angle 6 to the positive x-
axis. The half plane 1 is loaded by a constant tensile stress T 
at infinity, as shown in Fig. 1, while the two half planes are 
pressed together normal to the interface. The boundary con­
ditions to be satisfied in this problem are: 
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On the interface (x = 0), 

i#)(0,y) = itf>(0,y) (2),, 

.(1) (0, / ) = 

„dV, 

=4?(0, y) 

^(.0,y) = ^>(0,y) = 0. 

Along the crack (0< r<c), 

o#(r,0) = O. 

(1) 

(2) 

H l H T 

Fig. 1 Geometry of the problem for a finite crack 
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The crack is represented as an unknown continuous distri­
bution of edge dislocations. This is most easily formulated in 
terms of the complex potentials </>(z) and \p(z), as defined by 
Muskhelishvili (1953), so that 

On + om = 2[4>'(z) + 4>' (z)] 

,-orr + Ho* = 2ew[z<t>" (z) + 0 ' (z)] 

2IJ.(UX + iuy) = KC£(Z) - z(/>' (z) - i/-(z) (3) 

where z = x + iy = re , and K = 3 - 4v for plane strain, 
K = (3 - c ) / ( l + e) for plane stress, with p denoting Poisson's 
ratio. 

The potentials for the discrete edge dislocation in the vicinity 
of a slipping interface between two half planes can be obtained 
from the concentrated force solution given by Dundurs (1962) 
and the correspondence between concentrated forces and edge 
dislocations (Dundurs 1968), and may be written as 

4>i(z) = b l og (z -z 0 ) - (1 - D ) b log(z + z~0)-Db log(z + Ta) 

_{l_D)Hz0 + z-0) 

Z + Zo 

ti(z) = b l o g ( z - z 0 ) -
bz0 

Z~Zo 
-(l-D)blog(z + z„) 

- Db log(z + Z) + (1 - D) - ^ + (1 - D) b{Z° + -5 o ) 

Z + Zo Z + Zo 

-D 
bz0 (1-D) 

Mz) = D(b-b) log (z-Zo) + D 

Z + Zo 

b(z0 + z0) 

bzo (z0 + Zo) 

(Z + Z~o)2 (4) 

Z-Z0 

Mz) = D(b-b) log (z-z0)-D 
b(z0 + 2 Zo) 

D 
bz0 

Z Zo Z Zo 

_D
bZo (Zo + Zo) 

, V ( 5 ) 

(Z-Zo) 
where z0 specifies the position of the discrete dislocation in 
region 1, and with br and bg denoting the components of the 
Burgers vector, 

b = 
^be-ibr)e'e 

TT(K, + 1 ) 

M2(«l+1) 
D = -

/X2(Kl+l) + / i l (K 2+l) 
The subscripts 1 and 2 denote regions 1 and 2, respectively. 

By enforcing the condition of traction-free crack faces, a 
singular integral equation of the Cauchy type is obtained as 

\ Y ^ ~ + B{r)Kl(q,r) + B{r)K2{q,r)}dr+f{q)=Q 

0<q<c (6) 

where Br and Bg are now the unknown dislocation densities 
and Kx(q, r), K2 (q, r) are given in the Appendix. For the 
specific loading condition investigated in this paper, 

f(q)=\T(\+em). (7) 

Equation (6) can be separated into its real and imaginary 
parts to obtain two coupled singular integral equations which 
must be solved for the unknown real-valued dislocation den­
sities Br and Be. These equations can be written as 

i f i<Mdr_±_ [ {Be(r)Re[Kl+K2] 
v J0 r — q 2ir J0 

+ Br(r)lm[Kl-K2\}dr = 
K, + l 

2/ii 
Re[/(<7)] (8) 

1 fc Br(r) 1 fc 

- -^1dr + — {5 r( / -)Re[/r , -^2] 
•K J0 r-q 2ir J0 

+ Be(r)Im[Kl+K2]}dr-
Ki+1 

2^i 
lm[f(q)]. (9) 

Fig. 2 Geometry of the problem for an infinite crack 

Since the crack terminates at an interface, the singularity at 
the crack tip touching the interface may not be of order 
- 1/2. Hence, the crack-tip singularity should be determined 
before the numerical solution of (8) and (9) is attempted. 

Stress Field Singularities at the Crack Tip 
The length c of the crack in the problem indicated in Fig. 

1 does not affect the nature of the stress singularity at the 
interface, and hence in the singularity investigation the crack 
can be viewed as of infinite length. The half plane with the 
crack can then be treated as two wedges pressed against the 
other half plane as shown in Fig. 2. Let 1 and 3 denote the 
two wedges that make up the cracked half plane, with ixx and 
Vi being their elastic constants, and let 2 denote the uncracked 
half plane with \>.2 and v2 being its elastic constants. The bound­
ary conditions that must be satisfied for the three regions are 

^ 1 ) ( r , - 7 r ) = 4 2 ) (r,~ir) 

^ 1 V , - T ) = 4 ' ( r , - 7 r ) = 0 

olee\r,-ir) = 4Ur,-Tr) 

aH\r, 7 - 2 T T ) = 0 

o$(r, 7 -270 = 0 

ffJS.3V,7) = 0 

4e\r, 7) = 0 

u?Hr, Q) = uf) (r, 0) 

a$\r, 0) = <7$(/-, 0) = 0 

ffJIV, 0) = a $ ( r , 0). (13) 
The nature of the singularity can be determined by employing 

the Mellin transform, as explained by Bogy (1971), or by simply 
using the Williams (1959) technique. Convenient for the latter 
approach are the elastic fields tabulated by Comninou (1977). 

The results of the asymptotic analysis are as follows: The 

(10) 

(11) 

(12) 
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II n II II n II II II n ii ii 

Fig. 3 Roots of A(A;<*,y) for - 1 <X<0 

stresses in the vicinity of the crack tip touching the interface 
are of the form 

<fU = r%(e), r - 0 . (14) 

The exponent X is determined by the condition that the de­
terminant of the homogeneous system that follows from the 
boundary conditions (10)-(13) vanishes. Omitting the multi­
plier 2[^2 (*i + l) + /*i (*2+ 1)] s m 2 (^T)I t h e determinant is 

A(X;a,7) = 2X(2 + X)(l - o:)2sin27 [X(2 + X) sin2
7 - COS27] 

+ 2X(2 + X)(l + a)2sin2 y cos2 y 

+ 2X(2 + X)(l - a)sin2 7 (cos[2(l + X)7] 

+ cos[2Xir-2(l + X)7]j 

+ X(l + a)sin27 (sin[2(1 + \)y] 

-sin[2Xir-2(l+X)7]) 

- 4sin [(2 + X)7] sin [kir - (2 + X>7] ( COSXTT 

+ cos[X(7r-27)]j (15) 

where 7 is the angle the crack makes with the interface, and 

ft2(Kl + 1)-Ml(*2+1) 
cc = . 

/i2(Kl + l) + Ml(«2+l) 
The first observation that can be made is that A depends on 

the single composite parameter a. This is not a coincidence, 
but rather follows from some general properties of frictionless 
contact along a straight interface (Dundurs, 1975). Although 
complicated in X and 7, it is seen from (15) that the expression 
for A is a simple quadratic in a. Thus, it is easy to obtain the 
loci of X = constant in the a, 7 plane by selecting the values 
of X and 7 and computing the corresponding value of a. The 
results of the computation are shown in Fig. 3 for 
- l < R e ( X ) < 0 . The question of complex roots is left open 
since the study of real roots in this range appears of greater 
concern. 

The computations reveal that only a single real root 
- 1 < X < 0 exists in the physical range (0 < 7 < T, - 1 < a < 1) 
of the problem. Thus, there is no singularity at the crack tip 
for the mode when the crack faces move in a direction parallel 
to the interface while for the mode perpendicular to the in­
terface, the stress singularity has the order shown in Fig. 3. 

It may be of interest to note that the singularity at the open 
end of the crack is not directly related to the singularities of 
two wedges that are pressed against a surface. If two wedges 
with angles that add to -K are a finite distance apart, the orders 
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of the two singularities at the vertices are those given by Dun­
durs and Lee (1972) and are generally different. As the two 
wedges are allowed to approach each other, we have what 
might be called an interaction between two geometric singu­
larities, the apparent result being that the resulting common 
singularity is associated with an entirely different value of X 
even in the case of 7 = 7r/2. 

For the special case when the crack is perpendicular to the 
interface, or 7 = 7r/2, A(X;a,7r/2) factors as 

•A(X;Qf,ir/2) = A,(X;a)-A2(X;o!) (16) 

where 

A,(X;a) = COS(XTT) + a - 2(1 - a)X - (1 - a)X2 

A2(X;a) = COS(XTT) - 1 - 2(1 - a)X - (1 - a)X2. 

The roots of A! correspond to crack-tip singularities for the 
symmetric or mode I crack, and those of A2 correspond to 
crack-tip singularities for the antisymmetric or mode II crack. 
It is found that A2 has roots for - 1 < X < 0, whereas A; does 
not, which means that the mode I crack for 7 = TT/2 has no 
singularity at the crack tip touching the interface. 

It is of interest to note here that when 7 = ir/2 (or 0 = 0 as 
in Fig. 1), the two coupled equations in Be and Bn (8) and (9), 
decouple to two equations, one each in Bg and Br. Employing 
the method used by Erdogan and Biricikoglu (1973) to find 
the singularity at the crack tip at the interface gives the same 
result as obtained from (15). From the equation for Be, 

A,(X;«) = 0 (17) 

and from the equation for Bn 

A2(X;a) = 0. (18) 

The same result is also obtained in the study by Dempsey and 
Sinclair (1981). 

Stresses Near the Crack Tip and Stress Intensity Factors 
Once the zeros of A are obtained, stresses near the crack tip 

at the interface are obtained in a straightforward manner in 
terms of a free constant by back substituting into the simul­
taneous equations previously obtained. The normal stresses 
across the interface are found to be always positive on one 
side of the crack and negative on the order; thus, the crack 
will always cause separation of the interface. The only excep­
tion to this rule is for the symmetric mode I crack normal to 
the interface where normal stresses across the interface are 
always compressive if the free constant is chosen to be negative. 
Separation at the interface is not considered here, and hence 
stress intensity factors are given only for the special case of 
the symmetric mode I crack. 

Once the crack is assumed to be a mode I crack normal to 
the interface, equation (9) becomes trivial and equation (8) 
gives the Cauchy singular equation to be solved as 

•K J0 (q-r q + r (.q + ry) ' 2/^ 

0 < ? < c . (19) 

This equation is solved numerically using the method de­
scribed by Gerasoulis (1982). At first the limits of integration 

. are changed to (— 1, 1) by the substitution 

4 = ^ ( 5 + 1 ) , r=X-c(t+\). (20) 

Then, assuming square root singularities at both ends of the 
crack, the unknown dislocation density may be expressed as 

By(t)=g(t)(l-t2yy2, (21) 

where g(t) is regular in ( - 1 , 1). The function g(f) is then 

approximated by piecewise quadratic polynomials and the re-
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K, 

TVc 

1.05 

Fig. 4 Stress intensity factors for a crack normal to a slipping interface 
for different combinations of materials 

suiting system of linear simultaneous equations is solved to 
get g(t) at selected collocation points in the interval ( - 1, 1). 
However, an additional condition is required to solve the sin­
gular integral equation. This is taken as 

S ( - D = 0 (22) 

in order to remove the square root singularity at the tip of the 
crack touching the interface. 

Once equation (19) is solved for the unknown dislocation 
density By(t), stress intensity factors are calculated from the 
expressions given by Erdogan (1983) as 

K,= 
2/* i 

Kl + 1 
lim [2(c-r)]i/2BJr). 

On substitution for By(r), (23) becomes 

(23) 

(24) 

The resulting mode I stress intensity factors for different 
values of material constants are shown in Fig. 4. It can be seen 
that for a = - 1 (i.e., /^//ii = 0 or the edge crack in a half 
plane), the expected value of K, = 1.12 (Paris and Sih, 1965) 
is obtained. For the case of a = 1 (i.e., /^/AM = » o r when 
the half plane not containing the crack is rigid), the stress 
intensity factor obtained is 1. This is as expected since the full 
rigidity of the abutting half plane causes normal displacements 
to vanish, and the problem reduces to that of a Griffith crack 
due to symmetry. 
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A Micromechanics Analysis of 
Cracks in Unidirectional Fiber 
Composites 
The elastic problem of a crack normal to a bimaterial interface is addressed in the 
context of unidirectional fiber composites. The structure of asymptotic crack-tip 
stress fields is obtained numerically. The numerical results are then analyzed to 
formulate criteria for assessing cracking normal to the fiber, interface splitting, and 
fiber pull-out. 

Introduction 

Failure in fiber composites is often a result of damage which 
starts close to an existing notch or a crack. The objective of 
the present work is to investigate how the concepts of linear 
elastic fracture mechanics (LEFM) of homogeneous materials 
can be exploited in characterizing crack-tip damage in (non-
homogeneous) fiber composite materials. Specifically, the 
plane-strain problem of a crack with its tip at or close to a 
bimaterial interface is considered. The crack resides entirely 
in one material (designated as material 2 in Fig. 1) and is normal 
to the interface. Both materials 1 and 2 are assumed to be 
elastic and isotropic. 

The problem depicted in Fig. 1(a) has been addressed in a 
number of articles. For example, see Zak and Williams (1963), 
Bogy (1971), Fenner (1976), and Cook and Erdogan (1972). 
Using the eigenfunction expansion method and Mellin trans­
form, these articles provide the form of the crack-tip stress 
and deformation fields as r — o. The key result of these 
investigations is that as the crack tip is approached, the stress 
field under opening mode (Mode I) loading is of the following 
form: 

<ru=Qi(r)x-lgu(0,a,ft (1) 

in which a and /3 are the bimaterial constants of Dundurs 
(1969) and o < X(a, (3) < 1 is the smallest real root of the 
following equation: 

2X2(a - /3)(/3 + 1) - a + (32 + (1 - /32)cos(Xir) = 0. (2) 

The functions gy are unobtainable in closed form (unlike in 
the homogeneous case), but can be found numerically. Qh the 
intensity of the singular crack-tip stress field, is determined 
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using the boundary conditions for a specific problem. Note 
that Qi would be called the Mode I stress intensity factor (Kj) 
of LEFM if the two materials were the same. In that case, 
both a and /3 would be zero and X would be equal to 1/2. 

Values of Kj for specific boundary value problems of a crack 
whose tip is close to the interface (Fig. 1(b)) have been given 
by Cook and Erdogan (1972), Isida (1970), and Erdogan and 
Bakioglu (1976). In this case, the crack-tip stress field is exactly 
the same as for a crack in a homogeneous solid (Williams, 
1972), that is 

o„ = Krr-m.Gum. (3) 

Fig. 1 The plane problem of a crack normal to a bimaterial interface 
with crack tip (a) at the interface, and (b) close to the interface 
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Table 1 Summary of numerical results 

Fig. 2 

Outer boundary of K-dominant region 

_jter boundary of nonlinear material zone 
(inner boundary of K-dominant region) 

The K-dominant region (shaded) 

.Lines of Symmetry 

Fig. 3 The boundary value problem solved by finite element method 
(FEM) with d = 0.0 (Problem A) and d <K a (Problem B) and zero normal 
displacement at X = ±°° 

Case 

A-1 

A-2 

A-3 

A-4 

A-5 

A-6 

A-7 

B-l 

B-2 

a 

0.00000 

-0.81818 

-0.98020 

0.81818 

0.98020 

0.72843 

-0.72843 

-0.72843 

-0.72843 

/> 

0.00000 

-0.23377 

-0.28006 

0.23377 

0.28006 

0.20812 

-0.20812 

-0.20812 

-0.20812 

X 

0.5000 

0.6672 

0.7061 

0.2464 

0.0852 

0.2942 

0.6471 

0.5 

0.5 

f 

3.128 

4.420 

29.750 

14.340 

119.800 

9.854 

3.473 

3.128 

3.128 

Q 

1.2650 

0.0712 

0.0010 

4.3915 

7.1271 

3.7362 

0.1452 

0.9366 

0.6557 

r0/c 

IO-1 

io-4 

10"10 

0.6 

0.8 

0.5 

10"3 

0.1 

0.1 

(i-io.3) 

1.000 

10.000 

100.000 

0.100 

0.010 

0.157 

6.365 

6.365 

6.365 

4a. 

In fracture mechanics, a macroscopic characteristic length 
must always be associated with the asymptotic crack-tip fields. 
This characteristic length (c) is the shortest of the nonzero 
distances from the crack tip to any of the boundaries of the 
solid containing the crack, and to the nearest point of load 
application. In a bimaterial system, the nearest boundary could 
be the bimaterial interface. For a given boundary value prob­
lem, the length c may be used to scale the intensity (Q7 or K/) 
of the crack-tip stress fields. But more generally, c helps define 
a radial distance r0 « c beyond which Eqs. (1) and (3) no 
longer accurately represent stress fields. For the homogeneous 
material case, r0 (Fig. 2) is often referred to as the outer bound­
ary of ^-dominant region. The validity of Eqs. (1) and (2) 
prevails over an annular region which encompasses the fracture 
process zone of dimension Lm and the inevitably present zone 
of inelastic deformation, rp (Fig. 2). As long as r0 is large 
compared to smaller scale heterogeneities (e.g., interface thick­
ness, interface irregularities, and grain sizes of materials), the 
condition for the validity of Eqs. (1) and (2) may be stated as: 
(ro - rp) » Lm. Later in this paper these concepts are called 
upon to discuss relevance of the numerical results. 

In the present paper, we investigate the efficacy of Qj for 
analyzing the behavior of cracks in bimaterial systems. We 
first focus on finding the outer boundary of Q-dominant region 
for the specific boundary value problem shown in Fig. 3 using 
the finite element method (FEM). Then, the results are gen­
eralized to other geometrical configurations by normalizing 
the r0 for various material combinations by a characteristic 
length (c). Next, the numerical results are used to assess the 
relative tendencies of cracks to propagate in self-similar fash­
ion, cause splitting of the interface, or cause fiber pull-out. 

Numerical Study 
Numerical solutions for both Problem A and Problem B 

(Fig. 3) were obtained by the displacement finite element 
method. Eight-node isoparametric elements of general quad­
rilateral shape were employed. The quadratic shape functions 
for these elements can be found on page 131 of Bathe (1976). 
The elements contain four corner and four midside nodes. 
Element stiffness matrices were generated using 3 x 3 Gaussian 

4c. 

Fig. 4 Finite element mesh close to the crack tip 

quadrature and assuming plane-strain condition. The global 
stiffness equation was solved using the Gauss elimination 
method. The finite element discretization domain is bounded 
by the dashed lines shown in Fig. 3. 

For Problem A, solutions were obtained for the seven dif­
ferent material combinations designated (A-1 to A-7) in Table 
1. In each case, the crack length (a) was taken to be equal to 
the material 1 width (b). Uniform displacement (A) was ap­
plied at a distance of 10 times b (H/b = 10.0). The material 
combinations in Table 1 are given in terms of Dundurs' pa­
rameters, defined as: 

ix2mi-nim2 (4) 
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J H 2 ( W I - 2 ) - / X I ( W 2 - 2 ) 
(5) 

where, for plane strain m, = 4 (1 - v,), and for plane stress 
m, = 4/(1 + v,). (i and v represent the shear modulus and the 
Poisson's ratio with the subscripts indicating the material. Note 
that in all cases the crack is taken to be in material 2. Figure 
4(a) shows the finite element discretization around the crack 
tip. The wedge-shaped elements were formed by collapsing the 
eight-node general quadrilateral elements. No attempt was 
made to enforce crack-tip stress singularly by relocating the 
midside nodes. The radial'dimension of the crack-tip elements 
was taken to be 10" l 0 times the characteristic length (c), which 
for Problem A is the same as the dimension b. As seen later, 
this degree of mesh refinement is sufficient to accurately model 
the crack-tip stress and deformation fields. 

Surrounding the crack-tip elements are rings of elements, 
with each consecutive group of three rings representing a dec­
ade of radial dimension (Fig. 4(b)). The radial dimension of 
each successive ring within a group is 2, 6, and 10 times the 
outer dimension of the previous group of rings. This mesh 
design allows for smooth element size transition from the crack-
tip region to the outer domain while maintaining a maximum 
element aspect ratio of 4. The outermost ring group culminates 
with its outer boundary shaped as a rectangle (Fig. 4(c)) of 
dimension c X 2c, and fits into the far-field mesh which con­
tains a uniform grid of elements of size (b x b/3). Overall, 
the mesh contains 426 elements with 1383 nodes, each with 
two degrees-of-freedom. 

For uniform remote stress (a), the Irwin (1957) exact solution 
for colinear cracks (with H —• oo) gives K; = 1.12838 a 
\pwa. Using the computed crack opening displacement, v(r, 
7r), at r/c = 10~6 obtained by FEM corresponding to uniform 
applied stress along the edge and same material constants, Kt 

= 1.13244 \fita. The 0.36 percent difference from the exact 
solution is attributable to numerical error and to the fact that 
the FEM result is for a large but finite H/ (a + b). The problem 
with uniform applied stress (rather than displacement) was 
analyzed primarily to assess the accuracy of the FEM solutions 
of the other cases in Table 1 using the discretization shown in 
Figs. 4(a) through 4(c) . 

For_cases (A-l) to (A-7), one can define dimensionless quan­
tities Q a n d / a s follows: 

75 ~ Wife H 
4ixi(mllx2 + mlV.x) A7r1/2(a)'-

Qj=ayy(r,o)(r)]~x(2ir)l/2 

-, , , , v(r,it) 
f=(lxlm2 + lx2ml) — ^ 

(6b) 

(la) 

where 

+ mx • 1 ) ^ + 1 * 2 -
v(r,ir) 

Qi(r)x'~ 2XV2^(1 - 2X/3)(Ai1w2 + ^/w,) 
• sin(TrX). (lb) 

where 

Both the stress normal to the crack line, ayy(r, o), and half 
the crack opening displacement, v (r, IT), are, of course, limiting 
values as r —• o. Equations (6b) and (lb) provide the means 
to obtain Q, values using the FEM integration point stress and 
nodal displacement solutions, respectively. The value of X used 
in these equations can be found by either solving Eq. (2) or 
by using near-tip FEM stress versus r solutions. The difference 
between numerically determined and the exact value of X was 
found to be within 0.2 percent. 

The X,/, and Q solutions for cases (A-l) through (A-7) are 
given in Table 1. If the Poisson's ratio for the two materials 
is taken to be the same and equal to 0.3, Cases (A-2) to (A-
5) then represent materials with modulus ratio (/xi/^) of 10.0, 
100.0, and 0.1, and 0.01, respectively, as indicated in Table 
1. Cases (A-6) and (A-7) represent cracks in a metal matrix 
composite with silicon carbide (SiC) fibers (E = 413.7 GPa, 
v = 0.3) and titanium aluminide (Ti-24AlllMO) matrix (E = 
65 GPa, v = 0.3). In Case (A-6) the cracks reside in the fiber 
and in Case (A-7) the cracks are in the matrix with fibers intact. 
The results in Table 1 can also be obtained using the method 
of Erdogan and Bakioglu (1976). 

Figure 5 shows numerically obtained values of the functions 
gij of Eq. (1) for Case (A-l). Since this is the homogeneous 
material case, the functions are also available in closed form. 
The difference between the exact and the numerically computed 
values is less than 0.5 percent. Figure 6 shows the variation of 
the logarithm of normalized stress component (a) with the 
logarithm of normalized distance from the crack tip (r) along 
8 = 1.7 deg. The deviation from linearity close to the crack 
tip is because the numerical value of crack-tip stress in the 
FEM analysis must remain finite. The departure from linearity 
at r ~ 0.1 for Case (A-l) is because of loss of Q (or, K) 
dominance. Thus, the outer boundary of the dominant region 
(r0) for (Case A-l) is 0.1 times the characteristic length. In 
determining r0, ~ 5 percent deviation between computed and 
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Fig. 5 Angular variation of crack-tip stresses for Case A-1 
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Fig. 6 Radial variation of crack-tip stress normal to crack plane 
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Fig. 7 Angular variation of crack-tip stresses for Case A-2 
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Fig. 8 Angular variation of crack-tip stresses for Case A-3 
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Fig. 9 Angular variation of crack-tip stresses for Case A-4 
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Fig. 10 Angular variation of crack-tip stresses for Case A-5 
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Fig. 11 Angular variation of crack-tip stresses for Case A-6 
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Fig. 12 Angular variation of crack-tip stresses for Case A-7 

exact stress solutions was allowed. Recall that for this case, Q 
and K are synonymous. 

The crack-tip stress field structures for the bimaterial cases 
are shown in Figs. 7 to 12. As expected, the gyy function, 
corresponding to the ayy stress of Eq. (1), is discontinuous at 
the bimaterial interface (6 = 90 deg). The gxx and gxy functions 
are continuous, and thus satisfy the condition of continuity 
of traction normal to the interface. As they should be, gxy and 
gyy are zero at the crack surface (8 = 180 deg) and gxy is zero 
along the symmetry line (0 = 0 deg). The variations of a with 
r for Cases (A-2) to (A-7) are shown in Fig. 6 and the r0 values 
are given in Table 1. 

The finite element mesh design for Problem B is similar to 
that of Problem A. Figures 4(a), 4(b), and 4(c) show the 
mesh in the crack-tip region. The characteristic length c now 
represents the distance d (Fig. 3) between the crack tip and the 
interface. The smallest element size around the crack tip for 
Problem B is 10~10 times the distance d. For Case (B-l), the 
mesh contains 471 elements with 1522 nodes. The mesh for 
case (B-2) consists of 579 elements with 1864 nodes. 

In both Cases (B-l) and (B-2), the crack lies entirely within 
material 2. Thus, the crack-tip stress fields are expected to be 
the same as for a crack in a homogeneous solid (see Eq. (3)). 
The finite element results agree with Eq. (3) to within 0.5 
percent. For both Cases (B-l) and (B-2), the extent of the A'-
dominant zone (r0) is found to be 0.1 times the characteristic 
length (see Fig. 6). Note that the characteristic length for case 
(B-l) is 10 times that for Case (B-2). Also, the characteristic 
length for Case (A-l) is 10 times that for Case (B-l). Thus, as 
long as the entire crack lies within the same material, the ratio 
of the A'-dominant zone size (r0) to the characteristic length 
(c) remains unchanged. 

Summary of resultsfor Cases (B-l) and (B-2) is included in 
Table 1. The symbols/and Q are retained only for consistency 
with Problem A results. These values were calculated by using 
Wi = m2, m = /t2, X = 0.5 and /3 = 0.0 in Eqs. (6) and (7). 
The Qi (= Ki) values were found using Eq. (lb) together with 
the finite element results for crack opening displacement. 

Analysis of Numerical Results 
The solutions of Problem B (crack tip close to the interface) 

indicate that stresses at any point on the interface are not 
uniquely characterized by the stress intensity factor (AT/). The 
outer boundary of the A'-dominant zone, defined by r0, is 
limited to ~ 10 percent of the distance between the crack tip 

s 
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Fig. 13 Variation of normalized Q-dominant zone size with X 

and the interface. Thus, when the crack tip reaches the inter­
face, r0 becomes zero and Kt no longer exists. As expected, 
for the same remote strain, K, for a given geometry decreases 
sharply as a crack residing in the more compliant material 
approaches the interface with a less compliant material (see 
results for Cases (B-l), (B-2), and (A-7)). The A"/ would increase 
sharply if the crack was approaching an interface with a more 
compliant material. But, in either circumstance, the loss of K-
dominance is gradual and Kt ceases to exist when the distance 
between the crack tip and the interface becomes zero. Also, 
in both circumstances, the stresses at the intersection of in­
terface and the plane of an approaching crack increase mon-
otonically, becoming infinite when the crack front intersects 
the interface. A single parameter (Kj) cannot uniquely char­
acterize stresses at the interface as a function of distance from 
the crack tip. But, full-field solutions (such as those obtained 
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by the finite element method in the present work) can be used 
to determine the stresses at the interface. 

For a given bimaterial pair, when the crack tip is at the 
interface (Problem A), the stresses within the Q-dominant zone 
(including those at the interface) can be uniquely characterized 
by a single parameter (Q,). But, even for a crack propagating 
through a bimaterial system, such as an idealized unidirec-
tionally fiber-reinforced composite, a single parameter (Qr or 
Ki) cannot characterize crack-tip behavior for all crack-tip 
locations. A unified crack-tip characterization would require 
establishing a connection between Kj and Qrdominated stress 
fields. A pragmatic way to accomplish this is discussed in later 
paragraphs. But first, it is worthwhile to comment on the 
remarkable dependence of the size of the Q-dominant zone 
(/•„) on the elastic properties mismatch between the two ma­
terials and crack location, as shown in Fig. 13. The size of the 
Q-dominant zone (normalized by characteristic length) dimin­
ishes sharply with increasing X (crack about to enter a less 
compliant material), and increases relatively slowly with de­
creasing X (crack about to enter a more compliant material). 
As the end values of X (0 and 1) are approached, r0 approaches 
the characteristic length (c) and zero, respectively. 

In addition to the size of Q-dominant zone, structure of the 
crack-tip stress fields (characterized by gxx, gyy, and gxy) changes 
dramatically with elastic property mismatch, as seen by com­
paring Figs. 5 and 7 to 12. For instance, the remarkably dif­
ferent structure of crack-tip stress fields in Figs. 10 and 11 
corresponds to the same material pair (Ti-24A111MO SiC) with 
the crack located in titanium aluminide in one case and in 
silicon carbide in the other. The only nontrivial similarity among 
the various cases is that gyy directly ahead of the crack (9 = 
0) remains unchanged at 1.0/^fli. The most noticeable dif­
ference among the various cases may be the relative size of the 
jump in gyy at the interface (6 = 90 deg). 

Enforcing the strain (eyy) and axx and oxy continuity at the 
interface, one gets: 

ayy(r,90 + ) 

ayy(r,9Q-) 
mm2 

H,m2 + ii2mi 
= a + (2/3-a) 

ayy(r,90-) 
(8) 

where the ( + ) and ( - ) signs indicate the material 2 (with crack) 
and material 1 (no crack) sides at the interface, respectively. 
For the homogeneous case (a = /3 = 0), Eq. (8) yields the 
continuity of ayy at 9 = 90 deg. Within the Q-dominant region, 
the stress components in Eq. (8) may be replaced by the cor­
responding functions gy (9, a, fi). Then, 

_/*i/«2gjy(90+,a,ff)-/*2'«ig.w.(90-,tt,|3) 
gxx /*2(« i -4) - / i , (m 2 -4) 

(9) 

graphs, significance of the above observations is presented first 
in the context of cracking normal to fiber direction, then in 
the context of interface failure. 

Cracking. Recall that Qi represents the propensity for Mode 
I crack extension, or crack driving "force," only for a crack 
normally intersecting the interface of a given bimaterial system. 
Therefore, it has the undesirable feature that the same nu­
merical value of Q, corresponding to different bimaterial sys­
tems does not imply the same crack driving force. It is 
worthwhile to investigate if a more useful representation of 
crack driving force can be found. If one hypothesizes that the 
propensity for crack extension by cleavage is governed by an 
"average" value of the first invariant (/() of the stress tensor 
over the Q-dominant region along 9 = 0, an interesting result 
is obtained. The choice of I\ (instead of, for example, ayy) is 
to acknowledge the fact that there is more triaxial stress con­
straint ahead of the crack tip in the homogeneous case than 
in the bimaterial case. The value of gyy at 9 = 0 being material 
independent, / , includes a representation for hydrostatic stress. 
Specifically, consider the average first invariant defined as 
follows: 

/„ = : 
1 

2(r0-rp) J 
I\(r,o)dr 

where 

h (r,o) = oxx(r,o) + oyy(r,o) + ozz{r,o). 

(14) 

(15) 

The radial distances r0 and rp are the same as in Fig. 2. Using 
Eq. (1), Eq. (14) may be expressed as follows: 

Qiti- rx
p) 

2\y/2ir(r0-rp) 
(1+1) 1 + 

«• (4-Wj) 
(16) 

where n has the value 1 for plane strain and 0 for plane stress. 
In deriving Eq. (16) from Eq. (14), the material independent 
value 1 / V 2 T for gyy at 9 = 0 has been used. 

Following the hypothesis that equal Ia in different bimaterial 
systems means equal propensity for crack extension, one can 
express the relative propensity of a bimaterial crack to that of 
a crack in a homogeneous solid of material 1 as follows: 

where 

C„ 

C> = %'C° 

i+g r,„-rh rm 

4X rm-rp / £ 5 - # 5 ' 

(17) 

(18) 

Equations (8) and (9) may be found useful in assessing the 
effect of thermal expansion coefficient mismatch between the 
two materials giving rise to readily calculable ayy stresses at 
the interface. 

The fact that gyy at 9 = 0 is independent of elastic properties 
of the materials yields the following two potentially useful 
asymptotic relations: 

and 

where 

and 

Q,= (2irY/2-ayy(.r,o)^r)1 

Q / =(27r) 1 / 2 . 6 w ( r ,o) . ( r ) 1 - x . 

*(!) = 
ty*i 

- ( 4 - w , ) . g 

gxy(0,q,g) l /2 

gyy(0,a,P) 

(10) 

(11) 

(12) 

(13) 

Case 

Table 2 Summary of results for cracking 

and eyy is the Y-component of strain. In the following para-

A-1 

A-2 

A-3 

A-4 

A-5 

A-6 

A-7 

B-1 

B-2 

1.1332 

0.3510 

0.0482 

3.6186 

12.3878 

2.8099 

0.4765 

0.7382 

0.5409 

1.00 

0.88 

0.80 

0.73 

0.52 

0.81 

0.90 

1.00 

1.00 

1.0000 

0.3097 

0.0425 

3.1932 

10.9315 

2.4796 

0.4205 

0.6515 

0.4773 

1.0000 

0.6463 

0.5542 

1.4597 

3.2878 

1.3301 

0.6828 

1.0000 

1.0000 
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The distance rm represents the smaller of the r0 (outer dimension 
of Q-dominant zone) for the bimaterial crack and for the 
homogeneous case. The stress intensity factor (Ki) in Eq. (17) 
is for the same geometry (including crack length) and boundary 
conditions as for Qr, but in a homogeneous solid with elastic 
properties that of material 1 (the material without a crack). 
The nonlinear zone size (rp) corresponds, to material 1 of the 
bimaterial system and must be small compared to r,„. For the 
corresponding homogeneous case, the nonlinear zone size is 
0,, which must also be small compared to rm. Since r0 in ho­
mogeneous material is 0..1 times the characteristic length (c), 
and because c must be the same for the bimaterial and the 
corresponding homogeneous material problems, rm must al­
ways be less than or equal to 0.1 times c. So that Qi and K, 
correspond to the same remote strain, one can use Eqs. (11) 
to (13) to define the following normalizing parameter (Q0): 

Q0 = *-e~(ay (19) 

which for the homogeneous case becomes K0, and is given as: 

4 tii 
Kn = 

(m,-2)V2 
00 / ~\ ' (20) 

In Eqs. (19) and (20), e"y represents remotely applied normal 
strain. Then, one can express Q/ and K, in terms of dimen-
sionless functions F(a/b, H/b, a, fl) as follows: 

QI=F(a/b,H/b,a,0)-Qo (21) 

and 

Ki = F(a/b,H/b,0.0,0.0)>Ko. (22) 

Substituting Eqs. (19) to (22) in Eq. (17), the following 
expression for the relative propensity is found: 

2.{mi - 2) F(a/H,b/H,a,P) 
CV=C>(«)U 

w, - (4 - m,)g F(a/H,b/H,0.0fi.O) 
(23) 

Using the finite element analysis results presented earlier, the 
values of the functions F and g in Eq. (23) are given in Table 
2. To evaluate C0, one needs (in addition to Table 1) rp and 
rh-

If the nonlinear zone sizes rp and rh are interpreted to be 
due to plastic deformation, small-scale yielding estimates of 
these can be found using the following relation based on the 
von Mises yield criterion at d = 0: 

Qi 

(70iV-2ir 
i+r-g- 16 

• itif (4-mi) (g+l) (24) 

where g and n have been defined in the context of Eqs. (13) 
and (16) earlier, and CT0I is the yield strength in uniaxial tension 
of material 1. The plastic zone (rh) for the homogeneous case 
is found by using X = 0.5, g = 1.0 and substituting Qj by K,. 

In the limit as the nonlinear zone size goes to zero, Eq. (18) 
reduces to: 

, - 1 + g Jl-0.5 
°~ 4X '" ' 

Substituting Eq. (25) into (23), one gets 

Cr=Cr-Fa°s~x 

where 

THi-2 
c=l+g 

2X mi-(4-ml)g 
F(a/H,b/H,a,l3) 
F(a/H,b/H,0,0)' 

and 

(25) 

(26) 

(27) 

(28) 

(29) 

Equations (23) and (26) are relevant for a crack normally 
intersecting a bimaterial interface. For a crack approaching 
the interface, one gets the trivial result, Cr = F. 

As an example, to analyze a crack traversing through the 
titanium aluminide-silicon carbide composite considered ear­
lier, rm would be 10 ~3 times the smaller of the fiber radius and 
half the fiber spacing. That is, the smaller of the r0 for Cases 
(A-6) and (A-7). The geometry-independent parameter Cr would 
range between 0.683 (Case (A-7)) and 1.333 (Case (A-6)), its 
value being unity for the homogeneous case. The function F 
would of course depend on geometry and_(depending on crack-
tip location) on a and /3. The values of F and Cr for the cases 
considered in the present work are given in Table 2. 

In a global sense, one may define a pseudo-elastic stress 
intensity factor (Kp,) for a given unidirectional fiber composite 
with crack normal to fiber direction as 

K", = CrK, (30) 

which, using Eqs. (20), (22), (27), and (28) gives 

4 5 6 

gyy(90+)/gyy(90-) 

Fig. 14 Variation of interfacial shear and normal stresses 
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J(B_ in(l+g)s/2 
X[/M1-(4-w,)g] 

( \ 0 .5 -X 

— 1 >F(a/H,b/H,a,(3)'eyy(Tra)U2 (31) 

in which all material constants (/*[, mlt g, a, /3, and X) are 
dependent on crack-tip location. Depending on the crack-tip 
location, r„, is a fraction of either the fiber diameter (D) or 
the fiber spacing (s). For a crack in a homogeneous material, 
Kpi does reduce to K, of Eq. (22). 

Interface Failure. The stress state at the interface cannot 
be described by the asymptotic stress field of Eq. (3) corre­
sponding to a crack approaching the interface. The dominance 
of this field is limited to ~ 10 percent of the distance between 
the crack tip and the interface. However, the asymptotic stress 
field of Eq. (1) can be useful in studying the interface stresses 
close to the crack tip. In this context, the following observa­
tions are offered. First, the asymptotic stress field along the 
interface (6 = 90 deg) is not always shear dominated. When 
the crack is in the more compliant of the two materials (Cases 
(A-2), (A-3), and (A-7)), gxy along the interface is the lowest 
of the gij. When the crack is in the less compliant of the two 
materials (Cases (A-4), (A-5), and (A-6)), gxy along the interface 
is higher than g^, comparable to gyy in the more compliant 
material, and smaller than gyy in the less compliant material. 
It is also observed that along the interface, both gxx and gxy 
show a weak dependence on X except in the neighborhood of 
X = 0.5. What does change with X more significantly is the 
ratio of gyy in one material to the other at the interface. As 
seen from Eq. (8), for a given bimaterial system this ratio is 
uniquely related to the ratio of g^ and gyy at the interface. 

Analysis of the numerical results for Cases (A-l) to (A-7) 
also indicates that within the Q-dominant region, the directions 
of both the maximum J2 (second invariant of the deviatoric 
stress tensor) and the maximum shear stress remain essentially 
unchanged compared to the homogeneous case. The maximum 
shear in all cases occurs along the interface {6 = 90 deg). The 
magnitude of maximum shear stress at the interface decreases 
monotonically as X increases. Assuming the Poisson's ratio to 
be 0.3 for both materials, the maximum J2 in plane strain 
occurs at 6 = 87 deg for the homogeneous case (X = 0.5) and 
when X > 0.5. For X < 0.5, maximum J2 occurs along the 
interface. Thus, the directions of maximum J2 and maximum 
shear stress do not provide a particularly discriminatory basis 
to study interface failure. 

Based on the above observations, it may be deduced that 
the tendency for shear failure of the interface (fiber pull-out) 
is higher when the crack resides in the less compliant of the 
two materials. The tendency for interface separation (splitting) 
is higher when the crack resides in the more compliant material. 
One may postulate that the tendency for splitting is directly 

proportional to gxx and the tendency for pull-out is propor­
tional to gxy at the interface. However, as discussed earlier in 
the context of cracking, the degree of hydrostatic tension at 
the interface may also play an important role in determining 
the interfacial failure mode. A quantity that provides a smooth 
and monotonic variation of the degree of hydrostatic tension 
over the entire range of X is the ratio of the two gyy values 
along the interface. Figure 14 shows the variation of this quan­
tity with interfacial shear and normal stresses. Accordingly, 
one may postulate that the tendencies for the intersecting crack 
should be addressed in formulating criteria for self-similar 
crack extension. 

The finding that the Q-dominant zone becomes smaller with 
increasing X suggests that for X > 0.5, direct consideration of 
nonlinear deformation field around the crack tip may be nec­
essary for accurate assessment of cracking and interface fail­
ure. Also, for composite systems which show evidence of 
reaction or diffusion zones in the interfacial region (whose 
width cannot be considered small in comparison to D and s), 
direct consideration of interfacial region properties may be 
warranted. 
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Conditionally Averaged Response 
Formulations for Two-Phase 
Random Mixtures 
A technique known as a projection or a smoothing, which has been used successfully 
to derive formulations on the mean (or unconditionally averaged) field response 
of specimens with a random substructure, is extended to obtain formulations on 
conditionally averaged response measures for two-phase mixtures. The condition in 
the averaging refers to the location of the field point, in one or the other of the 
phases. The obtained formulation has the structure of a theory for interacting 
mixtures of nonlocal continua. The formulations are then investigated in a two-
scale microscale/macroscale limit; specifically we determine the conditions necessary 
for the obtained formulations to reduce to local formulations which can be inter­
preted to provide bases for physical theories. It is argued that for weakly coupled, 
two-phase mixtures for which both phases are connected over distances that are 
measured on the macroscale, the mixture theory-type formulation is local in the 
limit whereas the mean-field formulation is not. In the presence of strong coupling, 
or for mixtures in which one of the phases is connected only for distances measured 
on the microscale, both type formulations are local in the two-scale limit. 

Introduction 
In a series of papers, Beran and McCoy (1970a,b) and McCoy 

(1972a, 1973) presented formulations expressed in the mean, 
ensemble averaged, field responses for material specimens 
which on one scale of observation-—a microscale—are modeled 
as classical, linear continua with property measures described 
by stochastic processes. By classical continua are meant those 
expressed by local balance and constitutive laws. The deri­
vations were formal, using a procedure that may be termed a 
projection. The obtained formulations were identified with the 
same local balance laws as apply on the microscale and with 
nonlocal effective constitutive laws. Details were presented for 
the cases of the statical response of linearly elastic solids, 
(Beran and McCoy, 1970a) for electrical conduction, (Beran 
and McCoy, 1970b) and for the propagation of elastic waves 
in one (McCoy, 1972a) and three (McCoy, 1973) dimensions. 

For specimens with geometries which are observable on a 
second scale, much larger than the microscale, one can argue, 
using the prescriptions provided for calculating parameters in 
the effective constitutive laws, that these parameters are in­
dependent of the specimen geometries and of the details of 
any specimen forcings. This independence allows for the de-. 
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termination of the parameters through canonical experiments 
in which only mean-field responses are to be measured. The 
formulations can thus be interpreted to provide physical the­
ories expressed in the mean response measures. Further ar­
guments, this time that the range of the nonlocality of the 
constitutive laws are observable on the length scale defined by 
the heterogeneity, can be used for the two-length scale exper­
iments to approximate the effective constitutive laws with ones 
that are local. The results of this approximation are intuitively 
satisfying effective modulus formulations. The mean-field re­
sponse, which varies on the macroscale, is now interpreted to 
be a spatially averaged response. The formulation has affected 
a separation of length scales in which the smaller scale material 
heterogeneity appears in a formulation of a response measure 
which varies on the larger scale of the specimen geometry, via 
parameters which are canonical in not depending on any ex­
periment description which applied to the larger length scale. 
This separation of length scales is crucial for the development 
of computationally useful predictive algorithms of the response 
of composite materials, for example. 

For specimens which are weakly heterogeneous, the infinite 
series prescriptions for calculating the parameters of the ef­
fective constitutive laws can be truncated giving theories that 
are specific; i.e., require only a limited number of specific 
statistics of the microstructure heterogeneity. For these spec­
imens the arguments that the range of nonlocality of the ef­
fective constitutive laws is measured on the microscale was 
explicitly demonstrated and, moreover, it was shown that the 
microscale length is made precise by two-point correlation 
functions defined on the material heterogeneity (Beran and 
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McCoy, 1970a,b). Using these specific formulations it was 
possible to investigate the nature of the physics described by 
them. Thus, for example, Beran and McCoy (1970c) demon­
strated that a strain gradient theory did not represent a con­
sistent generalization of the classical theory of linear elasticity 
for materials with weakly heterogeneous random substruc­
tures. As another example, McCoy (1972b) demonstrated that 
elastic solids with weakly heterogeneous random structures 
would not support "optical branches" of waves of lengths 
measured on the macroscale. The conclusion of McCoy (1972a, 
1973), however, that the concept of a dynamical effective mod­
ulus theory applied only for long wavelength—low frequency 
propagation and that the proper dynamical effective moduli 
and mass density are equal to the statical effective moduli and 
the averaged mass density, respectively, are not dependent on 
a weakly heterogeneous assumption. 

In this paper we return to a number of issues related to the 
macroscale response of material specimens with a randomly 
heterogeneous microstructure. This time we restrict the micro-
scale heterogeneity to a mixture of two phases and extend the 
projection procedure to obtain formulations expressed in con­
ditionally averaged response measures, the condition being that 
the observation point lies in one or the other of the two phases. 
Reflecting the formal nature of the derivation procedure, which 
depends only on the algebraic structure of the underlying field 
equations, the formulations are accomplished using an abstract 
operator notation. Once completed, however, the abstract for­
mulation is considered in the context of a specific application 
to make it more intuitive. In this way one can identify it with 
theories of mixtures of nonlocal continua. 

With the abstract formulation expressed in conditionally 
averaged response measures in hand, we next demonstrate the 
recovery of the unconditionally averaged response measure 
formulation obtained by the projection procedure, as usually 
applied. The demonstration follows from the recognition that 
the projection to obtain the unconditionally averaged response 
refers to a space with fewer degrees-of-freedom than does the 
projection to obtain conditionally averaged responses. Thus, 
the formulation expressed in the unconditionally averaged re­
sponse can be achieved by a further projection of that required 
to obtain the formulation in the conditionally averaged re­
sponse. Turning this statement around, the formulation in 
terms of the conditional averages can be said to be more com­
plete. If not for the fact that this more complete formulation 
is also more complex, the suggestion might be to eschew the 
formulation in terms of the unconditional average and always 
first obtain the conditionally averaged measures to subse­
quently calculate the unconditionally averaged response if this 
is desired. That one does not do so is simply a matter of 
computational convenience. 

The derivation of the formulation expressed in conditional 
averages and the recovery, therefrom, of the earlier result is 
independent of any questions of length scales. Questions of 
length scales were introduced in the earlier studies when con­
sidering the interpretation of the formulation on the mean-
field response as a physical theory, which required that it be 
self-contained. It is the possibility that one can ignore the 
prescription for calculating the parameters in the effective con­
stitutive laws and elect instead to obtain them by accomplishing 
physical experiments requiring the measuring of the mean-field 
responses only, which is central to the step by which a math­
ematical formulation can also be interpreted as a physical 
formulation. The existence of two widely separated length 
scales and its consequence, that the parameters in the effective 
constitutive laws are canonical in not depending on specimen 
measures which are observable on the larger scale, provided 
this possibility for the earlier formulation. We, therefore, in­
troduce the questions of length scales in the context of the 
formulation expressed in the conditional averages and of the 
recovery of that expressed in the unconditional average. An 

interesting conclusion obtained is a possibility of locality in 
the two-scale mixture formulation limit, while the formulation 
expressed in the unconditional average remains nonlocal. Since 
nonlocal formulations are in general less convenient for com­
puting than are local formulations, the formulation in terms 
of conditional averages might be the more convenient one even 
if one is interested in ultimately predicting the unconditionally 
averaged response. More fundamental than convenience, the 
possibility exists that the mixture theory formulation could be 
interpreted as a physical theory while the effective constitutive 
law formulation might not. 

For what type two-phase microstructures would the mixture 
theory formulation become local in the two-length scale limit 
while the effective constitutive law theory remains nonlocal? 
The answer to this is first in the strength of the coupling of 
the described physics for each of the two phases, and then in 
the definition of length scales on the heterogeneity. Thus, to 
retain nonlocality in the effective constitutive law theory in 
the two-length scale limit requires weak coupling in the de­
scribed physics which implies strong heterogeneity in the ma­
terial parameters. Assuming weak coupling, the questions of 
length scales and how they are defined arise. Thus, one can 
distinguish between geometric length scales and connectivity 
or topologic length scales. As discussed in the paper, it is 
possible for these two type lengths to differ widely. For weakly 
coupled two-phase microstructures for which the topologic 
lengths for both phases are measured on the macroscale; i.e., 
the scale determined by the specimen geometry and forcing, 
while the geometric lengths define the microscale, the mixture 
theory formulation is local and the effective constitutive theory 
formulation nonlocal in the two-length scale limit. The reason 
is the conditions for which a nonlocal effective constitutive 
theory obtains in the two-length scale limit are just the con­
ditions required for two coupled, but identifiable, solution 
modes. The mixture theory formulation has a structure that 
enables description of the two modes in a local context. The 
effective constitutive theory can only describe them in a non­
local formulation. For strongly coupled two-phase microstruc­
tures or weakly coupled microstructures for which the topologic 
lengths of one of the phases and the geometric lengths are 
measured on the microscale, both formulations could be local 
in the two-length scale limit. "Could be" because for such 
microstructures there remains a possibility of a "tunnelling" 
which could result in a nonlocal effective constitutive law the­
ory. 

The lack of connectivity of one of the phases over distances 
that are larger than a microscale length, essentially blocks or 
localizes the solution mode that is primarily associated with 
this phase. The phenomenon is related to the localization of 
the response of a dynamical system comprised of weakly cou­
pled subsystems. In the present context, localization of the 
response is not achieved since the connectivity of one of the 
phases, and hence of a solution mode associated with it, is 
assumed to extend over macroscale lengths. Thus, only one 
solution mode is blocked and the local effective modulus theory 
describes the unblocked mode. The localization of the response 
of weakly coupled dynamical systems is of current interest in 
a number of studies of structural acoustics (Hodges and Wood-
house, 1983; Pierre and Dowell, 1987). In these studies the 
localization is interpreted to a classical mechanics analog of 
an Anderson localization (Anderson, 1958). 

Since the projection procedure and the extension presented 
herein do not have the status of rigorous mathematics, the 
arguments presented and the conclusions obtained therefrom 
require further investigation. In a study to be reported sub­
sequently, Gillette (1991) has considered the issues raised in 
the context of a two-phase mixture of acoustic media using 
asymptotic and computational analyses. This more specific 
study is correspondingly less formal. The advantage of the 
formal study is in the suggestion of generality of a derivation 
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procedure which uses only the algebraic structure of the un­
derlying formulation. The objectives of asymptotic, numeric, 
and/or rigorous analyses which might follow would be to ex­
plore the limits of validity of the formally obtained results. 

The structure of the paper is as follows: In the next section 
we briefly review the projection method to obtain a mathe­
matical formulation expressed in the unconditionally averaged 
response field. Then, in the following section, we introduce 
the restriction to a two-phase microstructure and extend the 
projection method to obtain mathematical formulations ex­
pressed in conditional averages. A demonstration that the 
mathematical formulations are consistent and that those ex­
pressed in conditional averages are simply more complete fol­
lows next, followed by a section treating the two-scale limit 
and the interpretation of the derived formulations as physical 
theories. A final section of remarks on the studies required to 
add a degree of mathematical rigor to the formal results of 
the present study concludes the paper. 

A Formulation on the Averaged Response Field 
Restricting consideration to a linear system and introducing 

the notion of a reference material, we assume that the point-
by-point response of the material specimen on one scale of 
observation, which we term a microscale, is governed by the 
symbolic equation 

u = u0 + G08Cu. (1) 

Here, u denotes the response field; u0 denotes the response 
field in the reference material assumed to be deterministic; 8C 
denotes a local operator that represents the "interaction" of 
the response field and material heterogeneity; and G0 denotes 
a nonlocal operator that describes the "propagation" of the 
effects of the local interaction due to material heterogeneity, 
to points removed from the center of interaction. The "forc­
ing" of the problem appears via u0, the response field in the 
reference material. The G0 operator is also defined for the 
reference material; algorithmically it is described by a Green's 
function and hence incorporates homogeneous boundary con­
ditions applied to the material specimen. Randomness enters 
the formulation through the local interaction operator, 8C. 

The tensorial rank of the response field, the nature of the 
local interaction operator, and the dimensions of the space on 
which the formulation applies all depend on the application. 
As an example, we make reference to determining the response 
of a randomly heterogeneous, linearly elastic solid. The gov­
erning equations are obtained from the requirements of equi­
librium, compatibility, and a generalized Hooke's law. 
Neglecting inertia effects and employing a dyadic notation we 
write, 

V-T(x) = f(x), (,2a) 

V X e ( x ) x v = 0 , (2b) 

and 
T(x) = C(x):e(x). (2c) 

These equations are to be solved subject to prescribed con­
ditions on the boundary of the specimen. Equivalent integral 
and integro-differential equation formulations can be obtained 
on introducing a (homogeneous) reference material, by writing 

C(x) = C0 + 8C(x), (3) 

and on defining a dyadic Green's function, Go(x, x ' ) . This 
function gives the displacement u at the field point x, that 
results from an arbitrarily directed point force acting at the 
source point x ' . 

The Green's function is to satisfy homogeneous boundary 
conditions, as dictated by the original problem specification. 
Using this Green's function, the following integro-differential 
equation can be directly written on the displacement field of 
the specimen 

u(x) = u 0 (x)- G0(x, x ' ) : CV{-(8C(x'): e(x')))dx', (4a) 

where 

e = - ( v « + u v ) . (4b) 

In this equation, u0(x) is the displacement field that would exist 
in the specimen made from the reference material; the forcing 
of the specimen is described by uo- The integration is over the 
region of the specimen. 

An integral equation formulation written on the strain field 
is obtained from Eq. (4a) on taking a symmetric derivative on 
both sides and on accomplishing an integration by parts. We 
write this equation as 

e(x) = e0(x) + I G$\x, x>): (8C(x'): e(x'))dx\ (5) 

where e0(x) is the strain field in the reference specimen and 
Go4) (x, x ' ) is a two-point quartic field, obtained from the 
dyadic Green's function G0(x, x ' ) . For a precise definition of 
Go4)(x, x ' ) in terms of G(x, x) the reader is referred to McCoy 
(1981), for example. We note that Go(x, x) must be understood 
in a generalized function sense. A comparison of the specific 
Eq. (5) and the symbolic Eq. (1) shows the algebraic structure 
of the two equations to be the same. We shall carry out the 
manipulations to be accomplished on the level of the symbolic 
equation since it is only the algebraic structure of the underlying 
formulation that enters these manipulations. 

A formulation on the average of the field response across 
an ensemble of random materials specimens can be obtained 
from Eq. (1) by a technique that can be termed a projection 
(Fishman and McCoy, 1980, 1981; Keller, 1962, 1964). 

To proceed we first average, or project, Eq. (1) and write 

{u) = uQ + G0(bCu) 

= u0+GQ{8C)(u) + G0<8C'u'), (6) 

where the angular brackets denote the averaging and a prime 
denotes the fluctuating part of the indicated quantity. We can 
write, for example, 

{u)=Pu 

and 

u' = (I-P)u, (7) 

where P denotes the projection operator and / the identity 
operator. Equation (6) is not a closed equation on <w>, pre­
senting the familiar closure problem of all statistical continuum 
calculations. In the projection method this problem is solved 
by first operating on Eq. (1) using (I-P), to obtain 

u' =G08C'{u)+G0(8C)u' +GQ(I-P)8C'u', (8) 

which we interpret as an equation on the fluctuating, u', re­
sponse field. The forcing in this equation is the G08C <«> 
term. Solving Eq. (8) would give u' in terms of <w> which can 
then be used to form (8C'u' > in Eq. (6). The result of these 
operations is the desired closed equation on <«>. 

Accomplishing this program we write 

u'=NG08C'<,u>, (9) 

where the N operator is defined as 

N=(I-G0(8C)-GQ(I-P)8C')-1. (10) 

Next, we form 

{8C'u') = {8C'NG08C')(u), (11) 

and finally write for the equation on 

(u) = Uo + GoM(u), (12) 

where the M operator is defined as 

M=(8C) + (bC'NG06C). (13) 
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To be noted is the obvious conclusion that, in general, the M 
operator will be nonlocal. In the context of a randomly het­
erogeneous, linearly elastic solid assumed to be governing on 
the subscale, Eq. (12) has the following explicit form, 

<e(x)>=e0(x)+J44)(x, x'): 

x fjc(4)(x„ x2): <e(x2)>dx2W (14) 

where C^4\xi, x2) is a two-point quartic field. By association 
with Eqs. (2) and (5), it is clear that this equation is equivalent 
to the following formulation, 

V-<r(x)>=f(x), (15a) 
VX<e(x)>X V = 0 , (156) 

and 

<T(X)> = jc<4)(xi, x2): <e(x,»dx,. (15c) 

Equations (15) are readily identified with the equations gov­
erning a nonlocal, linearly elastic solid. 

In the more general context, a comparison of Eqs. (1) and 
(12) allows the further conclusion that the equations that gov­
ern the averaged response field for a material with a random 
substructure differ from those that govern the random response 
field only in that a random, local, interaction operator is to 
be replaced by a deterministic, nonlocal, interaction operator. 
It is natural then to term M operator in Eq. (12) an effective 
interaction operator, and to term the formulation an effective 
interaction formulation. The term effective constitutive law 
also applies to the formulation. 

It is obvious that the derivation of the effective interaction 
formulation is formal. Any attempt at a strict mathematical 
justification on the manipulations involved would necessitate 
statements as to the nature of the operators that describe the 
underlying physical process. Referring to Eq. (10), the presence 
of the projection operator would seem to make clear that N 
can only be made explicit in certain asymptotic regimes. Still, 
the result of the derivation is physically suggestive of a nonlocal 
continuum formulation expressed in the averaged field re­
sponse. We accept the derived Eq. (12) to provide a micro-
structural basis for physical theories of nonlocal continua. 

Formulations on Conditionally Averaged Response 
Fields 

In the formulation of the last section no specific reference 
was made to the fact that the material of interest is a mixture 
of two homogeneous component phases. Further, the for­
mulation is expressed in terms of the unconditionally averaged 
response field. In this section we consider a formulation suit­
able for a two-phase mixture, expressed in terms of condi­
tionally averaged response field measures that incorporate 
restrictions that the observation point is located in one or the 
other of the two component phases. 

To accomplish the restriction to a two-phase material we 
introduce two functions of position, denoted by g-,(x); i= 1, 
2, and defined to equal unity if the point located by the position 
coordinate x is in the / phase and equal to zero if the point is 
not in the /' phase. The restriction to a two-phase material is 
incorporated by expressing the local interaction operation, 5C, 
as 

2 

8C=^8Cigi(x). (16) 
; = i 

We introduce this expression in a rewrite of Eq. (1), in a slightly 
expanded form. Thus, 

2 

u(x) = u0(x)+G0(x,xl)J^SCigi(xl)u(xl). (17) 
; = i 

We next emphasize a distinction that the observation point for 
evaluating the response field measure is in one, or the other 
of the two phases by introducing a subscript to u. Equation 
(17) then is equivalent to the following pair of equations1 

2 

Ui(x)=u0(x)+G0(x, Xi^SCjgjix^UjiXi); xci. (18) 
y=i 

The notation x c i denotes that the observation point x is to 
be located in the / phase. For any single manifestation of the 
ensemble Qf mixtures, U\ (x) and u2(x) are defined only over 
disjoint portions of the total space covered by the mixtures. 
Note that according to Eq. (18), the values of u-,{x) for A: points 
that do not lie in the portion of space for which Uj(x) is defined 
do not enter the formulation. Our objective in this section is 
to derive a formulation expressed in 

< « , ( * ) > = < « , ( * ) > , C I = < K ( * ) > * C / . (19) 

conditional averages of the response field taken over suben-
sembles that have the observation point in the appropriate 
single phase. The conditions that apply in a particular average 
will be indicated by a subscript to the variable being averaged, 
unless otherwise indicated. While for any single manifestation 
a particular w,(x) is defined only over a portion of the total 
space covered by the mixtures, the average of u,(x) is defined 
over the total space. 

Taking conditional averages of Eq. (18), we write 
2 

(Ui(x))=uQ(x)+Ga(x, Xi)^Cj(gj(xi)Uj(Xi))xCi- (20) 
y = i 

Equation (20), one for each ;', apply for all points covered by 
the mixtures. Note the condition for averaging the interaction 
terms at the point, X\, is that the observation point, x, be in 
one or the other of the two phases? On writing 

Uj(x1) = (.uJ(Xi))+uJ(xl) (21) 
where the average here is conditional on X\ Cj, Eq. (20) be­
comes 

2 

(uf(x))=u0(x) + G0(x, Xi)26Cy(<S./(*i)>*c/<";(*i)> 
y = i 

+ <gj(xi)uj(xi))xci). (22) 

The two-point average (gj(Xi))xci, can be identified with the 
conditional probability that the interaction point, xu is in the 
j phase given that the observation point, x, is in the ;' phase. 
Equations (22) are the analog of Eq. (6) of the last section. 
They do not constitute a closed system on <W/(x) > due to the 
presence of {gj{xi)Uj(x\))xCi- Accordingly, we proceed as 
before and derive equations that govern u[ (x), the fluctuating 
component of the single-phase response measures. 

Subtracting Eq. (22) from Eq. (18), we obtain 
2 

U( (X)=G0(X, Xi)^Cj(gj (Xi l x C / ) < M y ( ^ i ) > 

y=i 

+ (I-Pxa)gj(xi)uj to)); xci, (23) 

where 

gj (Xi \x<Zi)=gj(Xi)- {gj(xy))x(li (24) 

and the projection operation is an averaging that incorporates 

'A subscript could be introduced to the G0(x, x{) operator allowing for the 
possibility of a different reference material depending on the phase in which the 
observation point is to be located. This added flexibility might have some utility 
in future calculations, but does not appear to add anything to our treatment. 

2The average <,gj(xi)uj(Xi)) xCi is a two-point probability measure. To em­
phasize this we can write 

< £ ; ( * i ) M * i ) > * c i = <£((*)«/(•*! ) " y M > * c / 

= <g>>-'<gi(x)gj(.xi)uJ(xl)>, 

where the averages on the right-hand side of the last equality are unconditional. 
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the condition that the observation point be in the / phase. 
Equations (23) are to be interpreted as an equation to determine 
the ui (x), each defined in the appropriate phase, in terms of 
the "known" forcing, 

2 

F(x) = G0(x,xl)J]8Cjgj(x, \xCi)<Uj{Xi)). (25) 

The forcing is defined for all points covered by the mixture, 
in any single manifestation. The functional expression for F(x) 
depends on the phase in which the field point, x, is located. 

The solution of Eq. (24). is formally accomplished by a pair 
of operators that are the analog of the N operator of the last 
section. We write 

u[ (x) = W,(x, Xi)F(xx);xci, (26) 

emphasizing in our expanded notation that the N, are nonlocal, 
in general. Using Eqs. (20) and (26), we form 

2 

(gJ(x1)uj(x,))xci=^]5Ck<tgj(xl)Nj(x], x2)G0(x2, x3) 

gk(x3\x2Cj))xci<uk(x3)>, (27) 

to substitute in Eqs. (22). The closed system of equations 
expressed in <«,(x)> is written 

2 

<Ui(x) > = w0(x) + G0(x, Xi) ^8CjMij(x,, x2\ x) (uj(x2) >, 

(28) 

where 

M,j(xx, x2; x) = (gj{x,))XCib(x1-x2) 
2 

+ ^]SCk<gk(xl)Nk(x1, x3)G0{x3, x2)gj (x2lx3Ck))xCh (29) 
* = i 

where 5(x) is the Dirac distribution. The coordinate denoted 
by x3 in Eqs. (29) is a dummy variable. The nonlocal operator, 
Mij (Xi, x2\ x), is a mapping of a function < Uj (x2) > to a function 
of X\\ the mapping depends on the location of the point pair 
X\, x2 relative to the field point x. There is no counterpart of 
this dependence in the formulation expressed in {u(x)), the 
unconditionally averaged field response. We shall return to 
this difference presently. 

Equations (28) are a significant new result of this paper. 
These demonstrate that for a two-phase mixture one can obtain 
a closed formulation expressed in conditionally averaged re­
sponse fields in much the same manner as earlier demonstra­
tions that one can obtain a formulation expressed in the 
unconditionally averaged response field. Moreover, the for­
mulation obtained can be recognized to have the "structure" 
of that for a mixture of "interacting continua," (Bedford and 
Drumheller, 1983) a recognition that is possibly more trans­
parent in the context of a specific application. 

In the context of a randomly heterogeneous, linearly elastic 
solid assumed to be governing on the subscale, Eqs. (28) have 
the following explicit form 

<e,(x)>=e0 + JGo4)(x, x,): Yi\cf{xu x2; x)<e,<x2)>tfx2; 

( = 1 , 2 , (30) 

where the C/y'(xi, x2; x) are three-point quartic fields. The 
presence of the observation point x, along with the dummy 
source points X) and x2 introduces a complication to a direct 
identification of Eqs. (30) with a continuum theory formu­
lation. To eliminate this problem we average, or smooth, the 
equations over a localized region of x. This is suggested by an 
observation that the dependence of the quartics on the precise 
location x, relative to Xi, x2, is limited to Ixl values that are 
within a correlation length of these points. This observation 
follows from their definitions and the footnote following Eq. 

(20). Assuming, then, the remaining terms in Eq. (30) vary 
slowly with changes in x on this scale, the quartics can be 
replaced by their local averaged values which are independent 
of x. The smoothed equations can then beseen to be equivalent 
to the following formulation 

V .<r , (x )>= / (x ) - v j c $ ( x , x,): «e2(x,)> - <e,(x1)»c?x1, 

V-<T2(x)> = / ( * ) - V Jcfffo, x,): «e2(x,)> - <£l(x,)»dx1> 

(30a) 

V(£ , (x)>XV=0, 

V<e2(x)>X V = 0 , (306) 

and 

<n(x)>= j(Ci4?(x, x0 + C$(x, x,)): <€i<x1)>dii, 

<r2(x)> = j(C2?(x, x,) + C2?(x, x,)): <e2(x,)>tfx,. ( 3 0 c ) 

Equations (30a) have the interpretation of momentum balance 
laws for two "interacting," linearly elastic continua. Equations 
(30b) and (30c) have the interpretation of compatibility and 
effective constitutive laws for the two continua. It is clear that 
nonlocal operators are necessary to describe both the inter­
action of the continua and the effective constitutive laws. We 
note that the coupling terms in Eqs. (30a) are in the ratio of 
the volume fractions of the component phases, i.e., (g\). This 
can be concluded either directly from the definitions of df2 

and C$ or from multiplying the first of Eqs. (30a) by (g\), 
the second by <g2> and by adding. Comparing the result with 
Eq. (15a) shows that for consistency, the coupling terms must 
vanish in this sum. 

A condition on the location of the field point in one or the 
other of the two phases is not the only one that might be 
imagined in defining partial response field measures. Thus, 
for example, one might also investigate a class of experiments 
in which the forcing of the two-phase mixture is a singular, 
or point, forcing. The response field u(x, xs) can, then, be 
interpreted as a function of both the source and the field points. 
Conditional averages based on either, or both, of these points 
being in one or the other of the two phases can be discussed. 
We write, 

<«(,)(x, xs)) = (u(x, xs))xCi, (31a) 

and 

<u^(x, xs)) = (u(x, xs))xCi (31b) 
JCJCJ 

as additional partial response field measures. Deriving deter­
ministic equations that these measures satisfy is rather trivial, 
in view of Eqs. (12) and (28), since the source point location 
enters the calculations only as a parameter. Thus, we imme­
diately write 

<u0 ,(x, xs))=u0(x, xs) 

+ G0(x, x,)MU)(xu x2; xs)<u0)(x, *,)>, (32a) 

and 

(.uf(x, xs))=u0(x, xs) 
2 

+ G0(x, x^Y^CkM^(xu x2\ x, xs){uf(x2, xs)>. (32b) 
k=\ 

The MU) and M $ operators are obvious extensions of the M 
and Mik operators of Eqs. (12) and (28), respectively. We note 
that there is no coupling across they index, the one indicating 
the source point phase. We also note that the nonlocal map­
pings described by Mu)(xu x2; xs) and MUil(xx, x2; x, xs) 
depend on xs and x, as well as on the dummy locations x\, x2. 
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Recovery of Unconditionally Averaged Response Field 
Formulation 

The projections that resulted in formulations on condition­
ally averaged response measures can be termed incomplete, 
where that on the unconditionally averaged <u> is complete. 
We consider, next, completing the projections of the formu­
lations on the conditionally averaged response measures to 
obtain that governing <«>. Two such developments are con­
sidered; one starting with Eqs. (28), written on the <w,(x)>, 
and one starting with Eqs. (32a), written on the <w(,) (x, xs) >. 
The developments are different since there is a coupling be­
tween the equations governing the <u,->, and not between those 
governing the <«(,>>. 

The manipulations to obtain a formulation expressed in 
{u{x) > starting with Eqs. (28) are similar to the developments 
of the last two sections. Thus, the projection operation ex­
pressed in the equation 

2 

< " ( * ) > = 2 <*/(•*» <«/(•*)>. ( 3 3 ) 

i = i 

is applied to Eqs. (28) to obtain 
2 

(u(x))=u0(x) + GQ(x, x^^dCjMjiXi, x2)<Uj(x2)), (34) 
y'=i 

where 
2 

Mj(xu x2) = Y^<Si(x))Mij(xu x2\ x). (35) 
i = i 

The presence of the {uj(x)) term in Eq. (34) presents the 
familiar closure problem, which we address in the same manner 
as previously. Thus, we write 

(Uj(x)) = (u{x)) + uj(x) 

and subtract Eq. (34) from Eqs. (28) to obtain 

(36) 

u/(x) = G0(x, xx)^bCjM<j(xu x2; x)[{u(x2)) + uj (x2)], 
; = i 

(37) 

where 

Mfj (Xi, x2\ x) = My (Xj, x2\ x) - Mj (xx, x2). (38) 

Equations (37) are now interpreted to determine u) (x) in terms 
of {u(x))\ to be used in Eqs. (36) to determine {Uj{x)) in 
terms of {u(x))\ to be used in Eq. (34) to obtain the closed 
equation on <w(x)>. The result is an equation with the alge­
braic structure of Eq. (12) with the following expression for 
the effective interaction operator contained therein: 

2 

M(xu x2) = ^dCjMjiXu x4) 
• / ' = ! 

&(XA-X2) 

+ S S ^ / * ( j f 4 ' *3)G0(x3, x2)8CiMli(x3, x2\ x) (39) 

In this equation, Njk is the operator that inverts Eqs. (37) to 
determine u) in terms of <«>. 

It is clear the Eqs. (37) might not provide for a unique 
prescription for u'j, anymore than Eq. (8) might not provide 
for a unique prescription for u', in the projection method as 
usually applied. This point is not an issue, however. What is 
an issue is whether the formulism expressed in <M>, which 
results, does provide for a unique prescription for it. To answer 
this question one must look to the resulting formulism as 
obtained in the context of a specific application. McCoy (1971) 
considered one investigation in the context of the equations 
of linear elastostatics. We shall not address this question fur­
ther in this study, and simply assume that lack of uniqueness 
is not an issue. 

The manipulations to obtain a formulation expressed in 
(u(x, xs)) starting with Eqs. (32a) follow a different route, 
since the equations on the <w(,)(x, xs)) are uncoupled. Thus, 
we first formally invert Eqs. (32a) to write . 

< « ( / V , xs)>=(I-GoMu))-lu0(x, xs). (40) 

The projection operation 
2 

<K(X, xs)) = J]<gi(xs)><u{i)(x, xs)) (41) 
1 = 1 

is now applied to Eqs. (40) to obtain an equation to govern 
< u (x, xs) > of the same algebraic structure as the formal inverse 
of Eq. (12), i.e., 

(u(x, xs)) = (I-G0M)~,u0(x, xs). (42) 

Equating the two we obtain an operator equation to determine 
the effective interaction operator 

2 

(I~G0M)~i = J]<.gi{xs)>(I-G0M
ii)(x1,x2;xs))^. (43) 

; = i 

In the next section we consider this derivation of the for­
mulation on the mean-field response, < u (x) >, via intermediate 
formulations on conditionally averaged responses in a two-
length scale limit. The objective there is to gain insight as to 
the properties of the effective interaction operator and their 
dependence on the configuration statistics of the two-phase 
mixture. We close this section by considering the further pro­
jection of Eqs. (32b) on the conditionally averaged {u^(x, 
xs)), to obtain a formulation with the algebraic structure of 
Eqs. (28) on the conditionally averaged <w,(x)>. The manip­
ulations directly follow those above, and we obtain the fol­
lowing operator equations to determine the Mij(xu x2\ x), 

I-GoZfiCjMuj 

= J]<gk(xs)}ll-G0J]dCjMff)(xuX2;x,xs)) . (44) 
y = l 

A Two-Scale Limit and the Interpretation of Derived 
Formulations as Continuum Theories 

An asymptotic regime of important technological interest 
applies for a two-length-scale scenario in which the scale for 
measuring variations in 5Cis small when compared to the scale 
for measuring the specimen geometry and variations in the 
specimen forcing. In this section we investigate the derived 
formulations in this regime. Our principal interest is the be­
havior of the effective interaction operators in the two-scale 
limit—how do they simplify and on what do they depend— 
and in what sense can we interpret the obtained formulations 
as bases for continuum theories. 

The issue of interpreting the obtained formulations as bases 
for continuum theories represents a change in perspective, 
which warrants comment. To this point in our treatment the 
objective of the calculations presented can be characterized to 
be the solution of a well-defined mathematical problem; de­
termine the average (conditional or not) response of an en­
semble of two-phase material specimens. The solution 
procedure is in two steps. The first step was to derive from a 
stochastic description of the equations governing the response 
in each manifestation of the ensemble, a deterministic descrip­
tion of equations governing the averaged response of the en­
semble. The second step would be to solve the formulations 
derived in the context of a particular physical experiment. To 
make the derived formulations specific requires one to invert 
certain stochastic field equations. The solutions of these equa­
tions determine the effective interaction operators that appear 
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in the formulations that govern the averaged response. The 
change in perspective is now to eschew the stochastic field 
equations in terms of which the effective interaction operators 
are defined. Instead, we now seek to determine these opera­
tors—or actually to determine the values of the constants that 
make a suitable parameterized representation of these spe­
cific—"experimentally" by matching physical data with pre­
dictions of the formulations that govern the averaged response. 
It is to the extent to which this perspective can be validated 
that allows the formulations on the averaged response to be 
interpreted in terms of physical theories. 

The efficacy of this new interpretation will depend on the 
class of physical experiments over which the effective inter­
action operators are invariant and on the ease with which these 
operators can be parameterized. Thus, with reference to Eq. 
(12) as a basis for a continuum theory on the unconditionally 
averaged response field, its derivation suggests that the M 
operator is invariant under changes of the specimen forcing, 
w0, but depends on the specimen geometry, through Go- Ac­
tually, the Moperator also depends on the nature of any forcing 
that is applied at the boundary, through G0. While the lack 
of dependence on M on the specimen forcing would allow for 
some predictive capability of Eq. (12) interpreted as a theory, 
a conclusion that the effective interaction operator changes 
along with a change in the specimen geometry certainly is very 
restrictive. Fortunately, it can be argued that this dependence 
is unimportant for many experiments in the two-scale asymp­
totic regime. The key to these arguments is in an assumption 
(Beran and McCoy, 1970a,b) that the range of the nonlocality 
of the Moperator is to be measured on the smaller, i.e., micro-
scale on which variations in 8C are measured. Then, the ar­
gument is that the dependence of the M operator on specimen 
geometry will only be significant within a layer of the specimen 
boundary surface which is also to be measured on the mi-
croscale. Ignoring this layer, M depends only on the material 
properties of the constituent phases and on the microstructure 
geometry. The operator can truly be termed a "material" 
operator. We note that the two-length-scale condition can also 
be used to argue an ergodicity that equates the statistical av­
erage of the response field with a spatial average, thereby 
obtaining a completely deterministic interpretation. We also 
note that to zeroth order in this asymptotic limit, the effective 
interaction operator is local. The interpretation of M as a 
material operator and its approximation as a local operator 
are thus closely tied. 

A direct demonstration that the nonlocality range of M is 
to be measured on the microscale requires an explicit repre­
sentation of the operator. In earlier studies (Beran and McCoy, 
1970a,b; McCoy, 1972a, 1973) this was considered by writing 
Eq. (10) as 

N=(I-G0<8C))-l(I-(I-G0<.5C))~lG0(I-P)8C')-\ 
(45) 

which formally can be written 
Co 

N=(I-G0(8C))-1J]((I-G0(8C)) -1G0(I-P)8C')"-

(46) 

Using Eq. (46) in Eq. (13) results in the desired explicit rep­
resentation as an infinite series in which the substructure ge­
ometry appears via multipoint moments of all orders, defined 
on the variations in 8C. Moreover, the series collects terms 
in powers of the strength in the variations in 8C, enabling its 
truncation for weakly inhomogeneous substructures. While the 
entire analysis suffers from lack of mathematical rigor, it can 
be used to suggest the validity of some general conclusions in 
the limit of weak homogeneity. The conclusions reached in the 
earlier studies were in agreement with the desired intuitive 
arguments, and, moreover, provided a precise method for de­

termining the length of the microscale. Thus, the statistical 
moments, or correlation functions, defined on 8C served to 
define it. 

The results of the last section can provide for an indirect 
investigation of the nonlocality range of M, which is not limited 
to the asymptotic regime of weak inhomogeneity. Consider 
the derivation of the formulation on the unconditionally av­
eraged response for an ensemble of specimens subjected to a 
point forcing based on formulations on the conditionally av­
eraged responses for two subensembles of specimens in which 
the point forcing is located in one or the other of the two 
phases. Equation (43) provides the prescription for obtaining 
the effective interaction operator for the unconditionally av­
eraged formulation in terms of the effective interaction op­
erators for the conditionally averaged formulations. The 
question we pose is the following: Assuming that conditions 
apply such that the effective interaction operator for the con­
ditionally averaged formulations can be approximated as local 
in the two-scale limit, does it necessarily follow that the ef­
fective interaction operator for the unconditionally averaged 
formulation can also be approximated as local? Clearly the 
answer to this question must be no. Indeed, the prescription 
of Eq. (43) would appear to require that it is necessary that 
the effective interaction operators in the conditionally averaged 
formulations be approximately equal to each other as well as 
be approximated by local operators for the effective interaction 
operator for the unconditionally averaged formulation to be 
approximated by a local operator. 

One can speculate on two-type microstructures for which 
this would be so. One would be a two-phase mixture in which 
one of the two phases can be identified as inclusions dispersed 
throughout the second-phase matrix. At distances sufficiently 
removed from the point forcing, it is intuitive that the response 
in any specimen in the ensemble will not depend on the forcing 
location phase. In the two-scale limit, the response of the single 
inclusion in which any point forcing is located itself will result 
in what would appear, at a sufficiently large distance, to be a 
point force acting in the matrix. This scenario implicitly accepts 
that the above-referenced, sufficiently large distance is to be 
measured on a scale of the size of the inclusions, and assumes 
a sufficiently large separation distance between inclusions so 
as to exclude the effects of what might be termed a tunnelling. 
Sufficiently large, in this last reference, is to be measured on 
a different, much smaller scale than that determined by inclu­
sion size. 

The second type microstructure for which the effective in­
teractions in the conditionally averaged formulations would 
be approximately equal would be one in which the two phases 
are strongly coupled. By a strongly coupled two-phase mixture 
is meant one in which the transport, of whatever flux quantity 
is being modeled, across the interface separating the two phases 
is of the same order as the transport across a surface within 
either of the two phases. A weakly inhomogenous two-phase 
mixture would be strongly coupled by this definition. Thus, 
the properties of a weakly coupled two-phase mixture cannot 
be addressed by investigating the explicit series representation 
for M which follows from the representation in Eq. (46). 

However, for weakly coupled two-phase mixtures for which 
both phases are connected for separation distances that are 
measured on the scale of the specimen, the effective interaction 

, operators for the conditionally averaged formulations can dif­
fer greatly according to the phase in which the forcing point 
is located. By a connected phase over some distance is meant 
that two points in the phase separated by the distance can be 
joined by a continuous curve that lies completely in the phase. 
For weakly coupled mixtures of two phases which are con­
nected over distances which are measured on the scale of the 
specimen, then the effective interaction operator for the un­
conditionally averaged response can be expected to remain 
nonlocal in the two-scale limit. 
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Left to be investigated is whether the mixture theory-type 
formulation, which applied for conditional averages based on 
the location of the observation point and for an arbitrary 
forcing, contains nonlocal effective interaction operators in 
the two-scale limit for weakly coupled, two-phase mixtures of 
connected phases. We can investigate this issue indirectly by 
considering the projection of the formulation for the condi­
tionally averaged response to a point forcing where the con­
dition requires the phases of both the forcing and observation 
points to obtain the formulation for the conditionally aver­
aged response where the condition requires only the phase of 
the observation point. The investigation follows a reasoning 
similar to the above, but concentrating on Eq. (44) instead of 
Eq. (43). A conclusion that locality in the formulation for both 
the forcing and observation point phases specified implies lo­
cality in the formulation for only the observation point phase 
specified, for the two-phase mixture of interest, follows from 
the stated restriction to a weak coupling. The weak coupling 
limit implies that the important flux paths connecting the forc­
ing point and the receiving point are to continuously lie in a 
single phase. Thus, the off-diagonal M\f and My operators 
are to be far less significant than are the operators with identical 
indices. Thus, in the presence of weak coupling of phases, 
locality in those MJ/' operators that significantly influence the 
transport of flux through the specimen in the two-scale limit 
implies locality in those My operators that have a significant 
influence. 

The nonlocality identified with reference to Eq. (12) in re­
ducing from an extended formulation in which the forcing 
phase is specified is not significant with reference to Eq. (28). 
The reason is that the nonlocality identified with reference to 
Eq. (12) required a mixture for which the coupling terms in 
Eq. (28) are necessarily weak. Moreover, the operators in the 
direct terms in Eq. (28) do not contain the nonlocality identified 
with reference to that in Eq. (12). Referring to Eq. (39), there 
is a nonlocality introduced in the infinite series sum that is in 
addition to any contained in the various M operators that 
appear therein. 

The fact that a weakly coupled local mixture theory applies 
for the conditionally averaged response in the two-scale limit, 
whereas the formulation on the unconditionally averaged re­
sponse must remain nonlocal for the identified conditions, is 
a significant conclusion of this paper. Not only can a mixture 
theory formulation be obtained from projecting a more fun­
damental description on the microscale, its importance as a 
predictive model can be argued even for experiments in which 
the partial response fields, i.e., the conditionally averaged 
fields, are not directly measurable. The importance is in the 
convenience of the formulation, i.e., weak coupling and local, 
when compared to the nonlocal formulation required for the 
full-response field, i.e., the unconditionally averaged field. 
Possibly more important than convenience, however, are the 
questions to be raised when interpreting the obtained for­
mulations as bases for physical theories. We refer back to the 
discussion of the tie between locality of an effective interaction 
operator and its interpretation as a "material" property. 

What about the significance, or utility, of a strongly coupled, 
local mixture theory? As a predictive model for partial response 
field measures for an experiment in which local balance and 
constitutive laws apply on a microscale, this formulation can 
be useful. If, however, there is no interest in the partial response 
field measures themselves, but only as an intermediate step to 
obtaining an estimate of the full-field response, the utility is 
less. This is because the condition of a strong coupling implies 
locality is a properly obtained formulation to govern the full-
field response. 

Concluding Remarks 

The mathematical arguments presented have been formal, 
and none of the resulting formulations have the status of rig­

orously derived mathematical results. Providing such a status 
would clearly require more detailed statements of both the 
underlying physical process to be modeled and the nature of 
the heterogeneity. Again, we make reference to Gillette (1991). 
Although to my knowledge a mathematically rigorous ap­
proach to the questions addressed has not been attempted, the 
foundation for this would appear to be available. 

Homogenization deals with the partial differential equations 
encountered in studying the physics of heterogeneous materials 
with a periodic structure, in the limit of the characteristic length 
of the period vanishing. The subject has a long history, tracing 
back at least to Poisson (1822). Modern treatments are given 
by Babuska (1976), Bensoussan et al. (1978), and Sanchez-
Palencia (1980). These treatments are applicable to hetero­
geneity that is deterministic, as well as periodic. Keller (1977) 
is generally credited with suggesting the application of two-
scale asymptotic analysis to heterogeneity that is described by 
stochastic processes. A specific recent application of this type 
analysis to a heterogeneity that need not be deterministic is 
the derivation of Biot's equations of poroelasticity (Biot, 1956), 
by Burridge and Keller (1981). Like the present paper, the 
above-referenced applications of two-scale asymptotic analysis 
to random heterogeneity does not address questions of the 
nature of the convergence of the approximations introduced. 
It is in answering these questions that the derivations would 
be elevated from an exercise in formal mathematics to rigorous 
analysis. 

Elevation of an homogenization to the status of rigorous 
analysis would begin with a precise identification of two widely 
different length scales. While this step may be relatively 
straightforward in the context of material heterogeneity which 
is deterministic and periodic, the identification of the micro-
scale is far less certain for material heterogeneity which is 
stochastic. Further with regard to a stochastic homogenization, 
our ability to identify the microscale would appear to be greater 
for experiments in which material heterogeneity results from 
a dynamic process. The dispersion of an additive by the small-
scale structure of a turbulent flow field would be an example 
of such an experiment. 

For material heterogeneity which is stochastic and for which 
the identification of an underlying dynamic process is not 
possible, the situation is much more problematic. Transport 
processes in composite materials, or through porous media, 
would fall in this category. In the context of such experiments, 
it would be necessary to determine whether the microscale 
lengths are properly identified with the geometric properties 
of material heterogeneity, or with the topologic properties, or 
with both. Characteristic lengths given by multipoint moments 
or multipoint probability functions would be useful measure 
of the former, but not the latter. Consider, for example, one 
such characteristic length to be the separation distance between 
two points, in a two-scale medium, required for the events 
defined on the phases of the two points to be statistically 
independent. Denote this length by /. For a reasonably well-
mixed composite material, / would most properly be identified 
with the size of the inclusion phase; for a porous medium it 
would be most properly identified with a pore size. Thus, / is 
a geometric length. Now consider another characteristic length 
to be the separation distance between two points such that 
there is a vanishingly small probability of connecting any two 
points in the neighborhoods, of dimension /, of the two spec­
ified points by a line that remains entirely in one or the other 
of the two phases. This would be a topologic length, and it is 
hard to see it determined from any multipoint probalibity 
function. 

The calculations and arguments presented in this paper sug­
gest that for a certain class of two-phase materials, the proper 
structure of the homogenized equations would depend on 
whether the topologic lengths of one or of both phases can be 
described as macroscale lengths. 
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We can cite two experimental studies by Plona (1980) and 
Johnson and Plona (1982) that relate to the calculations pre­
sented in this paper. First, Plona demonstrated the existence 
of two compressional modes of momentum transport in a 
water-saturated porous solid composed of sintered, fused, glass 
beads. The second compressional mode observed by Plona 
confirmed a prediction of the above-referenced theory of Biot 
(1956). In the second study, the experiment was repeated both 
for the case in which the glass beads were fused and for the 
case in which they were not. Only one compressional mode 
was observed in the absence of fusing, with a wave speed that 
corresponds to neither of the two wave speeds that corre­
sponded to neither of the two wave speeds observed for the 
fused beads. Further, no shear mode was observed when the 
beads were not fused. Superficially these results would appear 
to be in agreement with the arguments presented. Thus, the 
fluid contained in the pores of the manufactured medium is 
singly connected, independent of the fusing of the beads, and 
would provide for a mode of momentum transport by com­
pressional waves. The singly connected solid frame formed by 
fusing the glass beads would provide for two possible modes 
of momentum transport, by compressional waves and by shear 
waves. Thus, the three modes observed when the beads are 
fused are to be expected. In the absence of the fusing, the 
beads are, in principle, not connected, which might be argued 
to eliminate the modes of transport which are primarily through 
this phase. Since the volume fraction of the beads was 38 
percent, however, which is typical for a dense packing of 
spheres, it would appear to be unlikely that the solid phase 
cannot support any momentum transport by itself. Rather, the 
reason for observing the second compressional mode and the 
shear mode probably is a result of the "interface" between 
the water bath and the "porous material" sample. That is, the 
reason for not observing the waves is probably not because 
the waves cannot be supported in the absence of the fusing; 
it is because the experimental arrangement did not excite them. 
This does not explain the strong dependence of the wave speed 
of the single wave observed on the fact that the beads were 
fused, however. 
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Elastodynamic Local Fields for a 
Crack Running in an Orthotopic 
Medium 
The dynamic stress and displacement fields in the neighborhood of the tip of a crack 
propagating in an orthotropic medium are obtained. The approach deals with the 
methods of linear algebra to transform the equations of motion into a first-order 
elliptic system whose solution is sought under the assumption that the local dis­
placement field may be represented under a scheme of separated variables. The 
analytical approach has enabled the distinction between two kinds of orthotropic 
materials for which explicit espressions of the near-tip stress fields are obtained. 
Some results are presented graphically also in order to compare them with the 
numerical solution given in a quoted reference. 

1 Introduction 

A number of powerful analytical approaches for the solution 
of a propagating crack problem in an anisotropic elastic me­
dium are available. 

Among the most notable of these there is the Stroh's for­
mulation (1962) which provides an elegant method of treating 
steady-state problems in anisotropic elasticity. 

A modified version of the Stroh's method has been applied 
by Atkinson (1964) and by Atkinson and Head (1966) to de­
velop the steady-state model of a propagating crack in an 
anisotropic medium. 

One of the most general features, common to plane elas­
todynamic solutions for moving cracks through an elastic solid, 
is the representation of the spatial dependence of the elastic 
fields in the neighborhood of the crack tip, under a scheme 
of separated variables. 

This result has been well established by Freund and Clifton 
(1974) in the case of a crack moving nonuniformly in an iso­
tropic medium. 

A work that directly relates to the present analysis is that 
of Achenbach and Bazant (1975) in which the above repre­
sentation has been used to obtain elastodynamic near-tip fields 
for traction-free cracks running in isotropic and orthotropic 
materials. For the case of isotropic materials they found the 
closed-form solution for the spatial dependence of the elastic 
fields, whereas a numerical approach was used for the ortho­
tropic case. 

In the present paper the problem of a crack propagating at 
a time-dependent velocity in an orthotropic medium is revisited 
to obtain closed-form expressions for the near-tip elastic fields. 

In solving the problem, use is made of an approach recently 
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proposed by Piva (1987) and by Piva and Viola (1988) to 
transform the equations of motion into a first-order elliptic 
system which is then solved following the initiative of the 
previously cited authors. 

In addition, the method of solution allows to distinguish 
between two kinds of orthotropic materials for which signif­
icant differences on the near-tip stress field are pointed out. 

2 Mathematical Preliminaries 
Consider an infinite orthotropic elastic body and a crack 

moving with a time-dependent speed c(t) along the x-axis of 
a Cartesian coordinate system 0(x, y, z) whose axes are of 
elastic symmetry. By referring to coordinates (x, y) attached 
to the moving crack tip and following the considerations re­
ported by Achenbach and Bazant (1975), the system of equa­
tions governing the elastodynamic displacement field in a 
deleted neighborhood of the crack tip may be written as 

d2u „„ d2v d2u n 

d2v d2u 

dx2 dxdy 
+ aitf = °> 

(1«) 

(lb) 

where u = u(x, y, t) and v = v(x, y, f) are the displacement 
components and 

2/3 = 

2 0 , -

C\2 + C66 

c , i ( l - M , ) ' 
c12 + ^66 

c66(l-M
2
2) 

c66 

'cu(l-MJ)' 

« r 
c22 

c66(i~M2
2Y 

The coefficients c,y are parameters related to the elastic cos-
cu/p, v\ = tants, Mi = cz(t)/vi, Mi = c^(t)/i/2, uf 

c66/p, and p is the mass density. 
The stress-strain equations for an orthotropic elastic body 

are 
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du dv 
^ = c „ ^ + c 1 2 - , 

du dv 
^ = c 1 2 - + c 2 2 - , 

( du dv 

a-y + Yx 

(2a,b,c) 

in which a^, ayy, and axy are Cartesian stress components. 
According to a previous paper (Piva, 1987), the system of 
equations (la,b) may be rewritten as 

a* a$ „ 
I-—+A - - = 0, 

where / i s the 4 x 4 identity matrix, * is a 4 x 1 matrix valued 
function with real entries $k {k = 1, 2, 3, 4) (which are related 
to the displacement components as follows): 

du du dv dv\ T 

dx' dy' dx' dy) 

and A is a 4 x 4 constant matrix, given by 

(4) 

A = 

0 a 20 0 
- 1 0 0 0 
20! 0 0 a, 
0 0 - 1 0 

The characteristic equation of (5) is 

in which 

m4 + 2aim2 + a2 = 0 

2d\ = a + a , - 4(3(3!, a2 = aa.\. 

(6) 

In the subsonic case, Eq. (6) provides four distinct (either 
complex or purely imaginary) eigenvalues which occur in con­
jugate pairs. 

In order for all roots of (6) to be purely imaginary, the 
orthotropic material must satisfy the conditions 

a 2 >0, a,>V«2. 

a2>0, la,l <Vo 2 , 

Eq. (6) has complex roots. Without loss of generality, it is 
always possible to choose the eigenvalues 

mi=yi + iy2, m2= - I , , y 2 >0 

where a bar denotes complex conjugation, with 

7i = [ ( V ^ + ai)/2]1 / 2 , 7 2=[(V^- f l i ) /2 ] 1 / 2 . 

In this case, Eq. (3) may be rewritten as 

(3) with 

dx dy 

/ 7 i - 7 2 

72 7 i 
0 0 

\ 0 0 

= 0, 

0 
0 

- 7 i 

72 

0 
0 

- 7 2 

- 7 i 

* = i r ' * , C=R~lAR 

The matrix R, which enters into (\\a,b), is 

(10) 

(Ha,*) 

R = 

- 2 0 ? 4 -2/3<73 2004 -2 j8f t 
2002 200, 2002 - 2 0 0 , 
- 7 2 
0 

-7i 
1 

- 7 2 
0 

7i 
1 

(12) 

/ 
(5) where the following contractions have been used: 

m, . . . 
Qi + 'Qi=——j> <?3 + m=mitei + m)-

In what follows, the integration of Eqs. (7) and (10) will be 
performed by referring to a system of moving polar coordinates 
(r, 9) attached to the crack tip and assuming, as suggested by 
Achenbach and Bazant (1975), that the local displacement field 
may be represented as '' 

u{r,d,t)=ryT(t)U(d),v{r,d,i) = r<T(t)Vtd), (\la,b) 

in which 7, U(6), and V(6) are the unknowns. 
The solutions will be sought under traction-free conditions 

on the surface 6 = ± TT of the crack—and symmetry or skew-
symmetry conditions for the displacement field accordingly, 
as mode I or mode II fracture are respectively studied. 

and two eigenvalues /«, 
with 

ip\ and m2 = ip2 can be chosen 

Pi = ld- (ai-a2)
l/2]W2,P2=[ai+ (a\-a2)

lnfn, 

positive constants. 
In this case, Eq. (3) may be transformed to (Piva, 1987) 

T d* d* 
I — + B — = 0, 

dx dy 

where 

V = p-l$, B = P{AP 

and 

P = 

0 

20p, 

a-Pi 

- P i 

\ 0 

2M 
a-p2 0 

20j?2 
a-pl 

-Pi 

0 

20p2 

a-pl 

0 

0 

1 / 

(7) 

(8a,b) 

(9) 

When the elastic properties of the material are such that 

3 Purely Imaginary Eigenvalues 
Substituting (13) into (4), and using the chain rule of dif­

ferentiation with respect to polar coordinates, leads to 

(14) 

where 

$ = r 1 , - | r ( / ) / ( t f ) , 

/y cos d £/(i?)-sin d U'(§)} 

_ I 7 s i n & U(d)+cos & £/'(«?) 
J( ) _ 7 sin;? K(i?)-s int? V'{&) 

ly sin d K(tf)+cos & V (&) 

(15) 

in which a prime denotes differentiation with respect to the 
argument. Hence, from (8a) it follows that 

* = r-'-,T(t)h(d),h(d)=p-1f(d). (16) 

The system (7) may be decomposed into two independent 
systems 

• + Bi—— = 0, j = l , 2, 
dx dy 

(17) 

where 

^ (" = * ' ] , ^ ) . » * 3 R - I ° ~Pi 

*J ' ' U 0 t 
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The general solution to (17) is obtained by introducing new 
variables 

n = r[gi(d)]i/2, ^ = tg-{ ( — J , / = 1, 2, (18a,Z>) 

with 

&•(#) =cos2 !? + (sin2 d)/p2. (19) 

In view of (18a,b) and (19) the functions ^i')(x,y) defined 
above become 

* ( ' V / , #,) = r7-int)Hil)(di), i= 1, 2, (20) 

In order for the solutions (25) to satisfy the symmetry con­
ditions 

U'(0)=V(0) = 0, (30) 

for the mode I fracture or the skew symmetry conditions 

[/(0)=K'(0) = 0, (31) 

for the mode II, it has to be valid that H^P = i/0
(2) = 0 or 

H$ = H$> = 0, respectively. 
In order to apply the traction-free conditions on the surface 

of the crack, the relevant stress components are obtained by 
combining (20) with (8a) and putting into {lb,c). The result is 

where 

H(n(&,) = [g,[n&i)\rTl-hwm&i)\, (21) 

7 - 1 

<r,, = c « r 1 ' - 1 7 ' ( O [ / 2 * f r ( 0 ) M V ) 

and hm[6(6d] follows from (166). 
Using the chain rule of differentiation, one obtains 

d*( / ) „ d*( , ) sin #i d*(/) 

= COS O; — — — , 
dr,- r, dd. 

°x? = c66r'>~1T(t)[llgl-T(d)^\d) 

giTWH^^)], (32) 

+ l3g22T(.0)H?>{d)h (33) 

dx 

dVin sin d, d*1" cos #,• dtr 

{22a,b) 
in which 

/«') 

dy Pi dr, npi ddj 

Inserting (20) into (22a,b), substituting into (17), multiplying 
the result by rf ~7, and considering the limit as r — 0, gives 

dHu) 

Ru) = ( i)RMHU){^h i = lf 2> ( 2 3 ) 

where R^ and R^ are the following orthogonal matrices 

sin!?,- cos i? A (,) _ / c o s !?,- — sin t9; 

-cos dt sin &•,)' 2 \sin d,- cos #,• 

A=Pi 

h=Pi 

2/3 

a - P i 

2g 
a - p 2 

iU=^(^4Y 
/ c66 c66 \u-pij 

2ft?2 

C66 C66 \ a - / 7 2 

, C22 C12 

In view of (24a,b), the system (23) reduces to 
(24a,b) 

dH[ (<) 

d§< 
( T - l ) / , / / 1 " , / , 

0 - 1 
1 0 / ' 

whose solution can be represented as 

H m-{H® Htt)\sm(y-W)- (25) 

The constants of integration H0J
U) = HjU)(0), j = 1,2, will 

be determined in order to satisfy the appropriate boundary 
conditions. Combining (15) with (166) and (21), the expressions 
for the functions U(6) and V(d) introduced in Eqs. (13a,b), as 
well as for their derivatives, are obtained as follows: 

7 - 1 
2&P\g\ 2 (A) 

U(d)= f-2- [H['\d) sin d+pi^id) cos d] + 
y(a-_pi) 

2PP2g2~T(fl\ 
+ : jr1 VffW) s i n ^+P 2 M 2 ) (^ ) cos 0], (26) 

y(a-p2) 
7 - 1 

20Plgl 2 
U'(§) = j — [H\l)(d) cos d-piH^Xd) sin d] + 

a-px 
7 - 1 

2|8/>2g2 2 ($ \ 
+ r—^ [M2) (#) cos 0 -p2Hf\d) sin 0], (27) 

a - p 2 
7 - ' 

g l 2 ( $ \ 
K(#) = — [H2

l)(i}) sin tf-p,/^!?) cos 0] + 

The traction-free conditions ayy(± TT) = axy(±-K) = 0 on the 
surface of the crack yield a system of homogeneous equations 
for the unknown costants H$ and H$ or H$P and H$\ for 
the mode I or mode II, respectively. The necessary and suf­
ficient condition to avoid the trivial solution is 

D(M2) sin2Y7r = 0, (34) 

where D(M2) = l^U - l2l3 is the Rayleigh function for the 
orthotropic medium. When the crack velocity is subsonic and 
smaller than the Rayleigh wave velocity, the smallest root of 
(34), allowing the strain energy density to be integrable in a 
neighborhood of the crack tip, is 7 = 1/2. 

The constants of integration are then determined, up to an 
arbitrary multiplier, and satisfy the following relations 

M2) h H® h 

for mode I and mode II, respectively. 
Hence, the asymptotic expressions of the relevant stress com­

ponents (32) and (33) become 

KAt) 

\2-KrD(M2) 

hhK,(t) 

[2wD(M2) 

hhgi 
1/4 W cos ^ 

/ i te2" 1 / 4 ( t9)cos^ 

1 / 4 ( ^ ) s i n ^ 

•g2-1/4(i»)sin-

(36) 

(37) 

for mode I fracture and 

U*KnU) 

y 7 - 1 

& 2 (0) 
[M2>(i?) sin i>-p2H\2)(d) cos d], (28) 

ll-KrD(M2) 

K„(t) 

(2*~rD(M2) 

, - 1 / 4 W s i n ^ 

- & - 1 / 4 ( i » s i n -

hhgi 
1 / 4 ( t ? ) cos^ 

7 - 1 - iMi 
V'(d)=g{T (d)[piH\l)(d) sintf + //2 ' )cos??] + 

+ g2V (d) [p2M2) W&iad + HP cos d]. (29) 

- 1 / 4 ( ^ ) c o s | 

(38) 

(39) 

for mode II, where the usual definitions of the stress intensity 
factors Kj(t) and Ku(t) have been assumed. The expressions 
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Fig. 1 Variation of D(M2) for steel aluminium 

.2 .4 .6 

Fig. 2 Variation of 0(7W2) for graphite epoxy. 

for the displacement components may be obtained through 
(26) and (28) with appropriate values of the functions H/'\d), 
Uj = 1, 2. 

It is worth noting that the asymptotic expressions (36)-(39) 
are highly influenced by the behavior of the Rayleigh function 
D(M2). In Fig. 1, this function is represented for a steel-
aluminium composite whose elastic coefficients, under plane-
strain conditions, are 

^ = 3 . 9 5 2 , ^ = 
c66 c66 

= 4.155 £12. 

C66 
1.959. 

In Fig. 2, the above function is represented for a distinctly 
orthotropic material, i.e., for a graphite-epoxy composite for 
which 

— =3.504, — = 29.822, — = 1.723. 
c66 c66 C66 

It should be noted also that the trends are similar; an increase 
of orthotropy reflects into a remarkable increase of the values 
of the Rayleigh function. 

In order to compare the above obtained analytical results 
with the numerical solution given by Achenbach and Bazant 
(1975), the stress component a „ was derived and combined 
with Eqs. (36), (37) and (38), (39) to get the polar stress com­
ponents aM and a^ for mode I and mode II fracture, respec­
tively. 

The quantities ogg(r/c66y0)
>n and Ore(r/c66y0)

l/2 have been 
graphically represented in Figs. 3-4 versus the angle 0, for two 
values of M2 in mode I and mode II fracture. 

Fig. 3 Angular variation of a„ in mode I fracture (according with Fig. 
2 in Achenbach and BaZant, 1975) 

The constant y0, one half of the specific energy of crack 
extension, was obtained (see Eq. (47) of Achenbach and Ba­
zant, 1975) as follows: 

(P\h-Pih) 

7o = 
4c6 6D(M2) 

2c66D(M2) 
„2" -Pi 

_kP±_ 
Oi-p\ 

mode I 

Kji(t), mode II. 

According to the nomenclature of the quoted paper, the 
curves have been represented for several values of the ratio k 
= Exx/Eyy = cn/c22- Taking E = min{cu , c22), the values of 
Gxy/E = c^/E and Exy/E = cn/E were chosen as those for 
an isotropic material; i.e., as (1 - 2 P ) / 2 ( 1 - c) and v/{\ — 
c), respectively, where v is the Poisson ratio. Solid lines have 
been plotted for v = 0.3 and dotted lines, corresponding to 
the isotropic case (k = 1), have been represented for several 
values of the Poisson ratio. It appears that the results are in 
accordance with the corresponding ones reported in Figs. 2-
3 of the above-mentioned paper. 

The effects due to the increase of material anisotropy are 
shown also in Figs. 4-5, which refer to graphite-epoxy and 
steel-aluminum composites. The dimensionless stress compo­
nents oee(2-wr)U2/K(t) and a^lvr^/Kit) have been repre­
sented versus the angle 6 for several values of M2 in mode I 
(solid lines, K(t) = K[(t)) and mode II fracture (dotted lines, 
K{t) = K„(t)). 

4 Complex Eigenvalues 
The system (10) can be decomposed as 

- + C , ( Y I , 72) -7— = 0, 1=1, 
dx dy 

(40) 

in which 
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^ ( l ) = / ' / ' l ^(2)=/V'3\ n_,_ „ . W / 7 l , , , C 1 ( T l l 7 2 ) = l ' ' ?2 

V4/ \72 7i 

and C 2 (7 1 ( 72) = C i ( - 7 i , 72). 
The general solution to (40) is obtained by introducing new 

variables 

n = r\g,{#)]w\ di=tg~l[f,(d)], i=l, 2, 

where 

gi(d)= (cos2 !? + /2 sin2 d + etyril2 sin2 $),/-,{$) 
72/

2sin ff 

cos$ + e,7i/ sin # 

(41) 

(42) 

with 

e/=<r1> jzi^cTf+Ti)-1. Jl, / = 2' 
Combining (11a) and (14) with (41a,b) and (42a,b) gives the 

following local representation 

*w(r„ t?,) = / - r 1 r ( / )G < ; ) ( ! ?, ) . (43) 

Using again the chain rule of differentiation, the system (40) 
becomes 

dGu) 

— = ( 7 - l ) / . G ( , ) , (44) 

whose solution may be expressed as 

Gi ! > -G 0 ? \ / cos (7- l ) i> / 
G(S G$J\sin(x-l)di / = 1 , 2 . (45) 

Fig. 5 Angular variation of <rM in mode I and mode II fracture for graphite-
epoxy and steel-aluminum composites 

By referring to the matrix of transformation (12), the expres­
sions for the displacement functions 1/(0) and V(d), as well as 
for the derivatives, may be obtained in the same way as in the 
case of imaginary eigenvalues. 

The expressions (2b,c) for the relevant stress components 
become 
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Fig. 7 Variation of D,(M2) for materials I and II 

oyy = c66r->~'nt) )g2
1T<,d)[dlG?)(d) +d2G<ZH&)} 

axy = c66r^lT(t) )g2
1TW){diGf)(§)-diG2

2)(d)} 

7-1 

(46) 

with 

and 

+ gi~(»)ld3G\l)(d)+d4G2
J)(d)] , (47) 

^66 C 6 6 C 6 6 

J3 = 20q2 - 72) c?4 = 2/3?i - 7i. 

In view of the traction-free conditions on the surface of the 
crack, the solutions (45) are nontrivial if and only if 

A(M2)sin277r = 0, (48) 

where D} {M,) = d\d3 - d2d4 may be thought again as the 
Rayleigh function for the orthotropic medium. Similarly, to 
the previous section, the appropriate solution to (48) is 7 = 
1/2 and the following relations hold 

dy °" 

for mode I and mode II, respectively. 
Equations (46) and (47) then take the following explicit forms 

<-Tj2 — , ^ 0 1 > " 0 2 -

d3 

K,(t) 

242vrDi(M2) 
grlM«» Z>i(M2)cos 

0, 

+ (dtd4 + d2d3) sin 

+g21Mm A (M2) cos y - (dxd4 + d2d3) sin -± 

K,(t)(d\ + dl) 

' 2-4l^rDx(M2) 
- l / 4 / - o \ "2 - 1 /4 / o\ ! 

g2 "4(#)C0S " T - g l (^)COS y 

, (49) 

(50) 

Material I 

Material II 

Cll/C66 

2.0 

3.0 

C22/C66 

1.5 

3.0 

C12/C66 

1.0 

2.0 

for mode I fracture and 

Kn(t)(d\ + dl) 

2y/2%rDl(M2) 

KirV) 

g^WcOsf 

2V27r/-Z)i(M2) 

Sf"4(t»)cos-

gf1 / 4(tf)| A ( M 2 ) c o s - | 

(51) 

(dld4 + d2d3) sin 0i 

+ &"V) A(M 2 )cos -^+(dld4 + d2d3)sin -j- (52) 

for mode II fracture. 
It should be remarked that the angular variation of the above 

stress components differ substantially from those shown in 
(36)-(39). The Rayleigh function A ( M 2 ) is shown in Fig. 7 
for two kinds of orthotropic materials whose elastic coeffi­
cients are such that the eigenvalues of Eq. (6) are complex 
conjugate. Due to the difficulty of finding experimental results 
concerning such materials, fictitious elastic parameters, which 
allow the condition \ax\ < \Ja~2~ to be satisfied, have been 
taken as in Table 1. 

It is evident the different behavior of the function D,(M2) 
with respect to that shown by the function D{M2) in Figs. 
1-2. 
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Dynamic Response of an 
Orthotopic Half-Space With a 
Subsurface Crack: In-Plane Case 
Scattering of elastic waves by a subsurface crack in an orthotropic half-space sub­
jected to a surface line load of arbitrary angle of inclination is studied. Green's 
functions are developed and used along with the representation theorem to reduce 
the problem to a set of simultaneous singular integral equations in the Fourier 
transformed domain. Solution to these equations is then obtained by expanding the 
unknown crack opening displacement (COD) in terms of Chebyshevpolynomials. 
Numerical results are given for specific examples involving orthotropic materials. 

1 Introduction 
Scattering of elastic waves by subsurface cracks has been 

the subject of intensive study in the recent years because of its 
importance in seismology and nondestructive evaluation (NDE) 
applications. Achenbach and Brind (1981a,b) studied the 
response of the crack normal to the free surface in an isotropic 
half-space. Achenbach and his co-workers (1983,1984a,b) later 
extended their previous studies to obtain the stress intensity 
factor and resonance effects for cracks parallel and inclined 
to the free surface. Yang and Bogy (1985) studied the response 
of an interface crack in a layered half-space. Gracewski and 
Bogy (1986a,b) extended the work of Yang and Bogy (1985) 
to obtain the response of an interface crack in a layered half-
space submerged in water. In most of these studies response 
due to continuous surface loads was considered; only Gracewski 
and Bogy (1986b) considered the response due to arbitrary 
wavefronts and Gaussian beams. Corresponding problems of 
surface-breaking cracks also received due attention (Datta 
(1979), Mendelson et al. (1980), Stone et al. (1980), Kundu 
and Mai (1981)). Antiplane problems, because of their relative 
mathematical simplicity, have been the subject of intensive 
investigation (Bostrom (1987), Kundu (1987a) and references 
therein). Problems of subsurface multiple cracks have also been 
investigated mostly numerically in the recent years (Zhang and 
Achenbach (1988) and references therein). 

Although most of the attention of the investigators have 
been devoted to the isotropic materials only, recent widespread 
use of composite materials warrant the investigation of the 
response of orthotropic or anisotropic materials with cracks. 
Helmholtz decomposition, which simplifies the two-
dimensional problems for isotropic materials, is not valid for 
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composite materials. Although for static problems involving 
orthotropic materials a parallel decomposition was developed 
(Georgiadis and Papadopaulos (1987)), no such simplifying 
decomposition has been developed for dynamic problems yet. 
So these problems have to be solved in terms of displacements 
in the frequency domain. Kassir and Bandyopadhyay (1983) 
studied the response of a central crack in an infinite orthotropic 
medium. Kuo (1984a,b) studied the response of cracks at the 
interface of two dissimilar orthotropic or anisotropic half-
spaces. Ang (1988) solved the problem of a crack in an 
orthotropic layer sandwiched between two orthotropic half-
spaces. In all these studies the external loads were applied only 
at the crack surfaces. 

Traditionally, internal cracks are considered to be open so 
that,it does not transmit any traction. Although analytically 
we can solve a problem assuming a relation between tractions 
and displacements across the crack plane (Achenbach and Nor-
ris (1982), Thompson and Fiedler (1984)), finding such rela­
tions experimentally for a particular problem can be very 
difficult or even impossible. 

In the present paper, response of a subsurface crack parallel 
to the free surface in an orthotropic half-space is considered. 
The incident wave field is generated by a line load on the surface 
acting at an arbitrary angle. Crack surfaces are considered to 
be smooth and stress-free—in other words, contact and 
transmission of stresses across the crack is neglected. A 
corresponding antiplane problem was solved by Karim and 
Kundu (1989). The solution to this in-plane problem will help 
us understand the ultrasonic nondestructive evaluation of 
nonisotropic materials and composites which are becoming 
increasingly more common. This solution can act as a Green's 
function for computing the acoustic material signature (AMS) 
of an orthotropic solid with crack. Comparing AMS of cracked 
and uncracked composites, internal cracks may be detected. 
This application is currently under investigation. 

In the analytical formulation a coupled set of integral equa­
tions are obtained from the frequency domain representation 
theorem (Mai (1972)). Alternatively, these relations can be 
obtained by using Betti's reciprocal theorem (Neerhoff (1979)). 
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Fig. 1 Geometry of the problem; an orthotropic half-space containing 
a subsurface crack 

In these integral equations, unknown COD's are expanded in 
a complete set of Chebychev polynomials. The unknown coef­
ficients of these expansions are obtained by satisfying the stress-
free boundary conditions at the crack surfaces. As a sample 
problem, the surface response of a cracked half-space at dif­
ferent points is studied. 

Surface response computation for a line load excitation is 
computationally more difficult. This is due to the fact that 
unlike a plane wavefront, in this case, the incident field is 
expressed as an infinite integral over the wave number. 

2 Problem Formulation 
A homogeneous, orthotropic, linearly elastic solid, which 

occupies the half-plane y > 0, contains a subsurface crack 
parallel to the free surface as shown in Fig. 1. The crack with 
traction-free surfaces, having a length of 2a, is located at a 
depth h. The in-plane line load, T = 8(x)f(t), is applied at 
the origin of the Ay-coordinate system as shown in the figure. 
The applied load makes an angle 8 with the vertical direction. 
The Fourier transform of f(t) is given by F(o>). 

To solve this problem of our interest we need to solve two 
fundamental problems (1) a flawless half-space subjected to a 
line load at the boundary, and (2) the Green's functions cor­
responding to internal unit loads in x and j-directions. The 
representation theorem is then used along with the Green's 
function to obtain scattered displacement field. 

2.1 Flawless Half-Space Subjected to a Line Load at the 
Boundary. The geometry of this problem is very similar to 
Fig. 1, the only difference is that there is no crack. The time-
harmonic in-plane stress field of time dependence, e~ml, acts 
as a line load at an angle of inclination, 6, at the origin. 

Constitutive equations of the material can be written in the 
reduced matrix notation as 

<jk=Ckjej (k,j=l, 2, 6) (1) 

where a repeated subscript indicates summation and CkJ is the 
stiffness tensor. For orthotropic materials, Cl6, C26, Q i , and 
C62 are equal to zero. The engineering strains, e,-, in Eq. (1)> 
are defined by 

e, = u,x, e2=v,y, e6 = u,y+v,x (2) 

where u and v are displacement components in the x and y 
directions, respectively, and a comma (,) indicates partial de­
rivative. Equations of motion of the problem are given by 

CUUm+ C66U,yy+ (Ci2+ C66)V,Xy = PU„, (3«) 

C22v,yy + C66v,xx + (C12 + C66)u,xy = pv,„ (3b) 

Fig. 2 A line load in a half-space: (a) line load in horizontal direction, 
(b) line load in vertical direction 

where p is the density of the elastic material. 
Solutions of these coupled equations in the Fourier trans­

formed domain (co) can be written as 
2 

(4a) 

(4b) 

where Pj is the y'th root with negative real part and/or positive 
imaginary part of the following equation 

C22C66p
4+pHk2^ + IC^C^k2 + C22po>2 - k2CnC22 + C66pu>2) 

+ (p V - ^C66pco2 - ^Cn/xo2 + k4CuC66) = 0. (5) 

Aj are the unknown functions of k and o>. They are determined 
by using boundary conditions and are given in the Appendix, 
and 

Sj = -
k*C, ~PjC66- pw 

ikpj(Cl2+C66) 
(no summation ony). (6) 

2.2 Green's Function: A Line Load in a Flawless Half-
Space. A number of Green's functions are available in the 
literature (Xu and Mai (1987) and references therein) for 
isotropic materials, in terms of displacement potentials. But 
none of these can be used for orthotropic materials directly. 
So, in this section, two new Green's functions are developed 
for unit load in the x and ^-directions. 

The geometry of this problem is shown in Fig. 2. A time-
harmonic line load is acting at a point P(xp, yp) as shown in 
the figure. Unit loads along the x and ^-directions can be 
considered as a body force corresponding to a delta function 
S(x - xp, y - yp, t). Equations of motion for this problem 
should be the same as Eqs. (3), with the additional body force 
term in Eq. (3a) for a unit load in the x-direction and in (3b) 
for a unit load in the y-direction. Solution to these equations 
can be written as 

I>jW 
y'=i 

e'^Vdk (la) 
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^{X'y) = h i UaSt^-^+C+S?^-^ 

+ 2 DfSje"^ e'^-^dk (lb) 

where a = 1 for a unit load in the x-direction and 2 for a unit 
load in the /-direction and 

Sf=±Sj /=1,2 

conditions this stress field should be equal to the negative of 
the incident stress field that can be obtained from Eq. (4). 
Hence, 

-iC2l j " kFl(k)\y=yp=h
<\ Hx)e,k(x-xp) + ikddxdk 

-iC2i \ kF2(k)\y=yp=h | t(x)emx~xp) + ikddxdk 

plp2ai(Ci2+ C66) 

2C66(aia6-a2a5) 

PiP2a2(Ci2 + C66) 
2C6 6(a1a6-a2a5) 

2a3 

Bt 

Ct = 

+ cv 

+ c,. r dF4(k) 

dyP 

y=y„ = i< 

y=yp = h " - « 

\ <$>(x)emx-xp) + ikddxdk 
J -a 

\ ^(x)eik{x-xp) + lkddxdk 
J -a 

(8) 

= - ( {Ax(ikC2X + C22Stfx)^
h 

+ ^2(//cC21 + C 2 2 S 2 p 2 ) e P 2 V f a ^ (12a) 

with " + " for y > yp and " - " for y < yp. Expressions of 
a\ through a6 are given in the Appendix. B% C% are obtained 
by using the fact that for a unit load in the x-direction, there 
will be a unit jump in o° while U°, V°, and a2, are continuous 
across the y = yp plane. Similarly, for a unit load in the y-
direction there will be a jump in of, while U°, V°, and of are 
continuous. These conditions give rise to two 4 x 4 matrices 
which are then inverted to obtain B% C%. Constants Df (a, 
j = 1,2) can be obtained from the boundary conditions and 
are given in the Appendix. Superscript G in U, Kand a indicates 
that displacements and stresses correspond to the Green's func­
tions. 

2.3 Application of Representation Theorem. From the 
frequency domain representation theorem (Mai (1972)) one 
can obtain the scattered displacement field (lf(xp, yp), Vs(xp, 
yp)) in the form 

nd+a 

Cfy s fyP 

+ Q6 [ 
tJ - r , 

[ 4>(x)elk(x~xp) + ikddxdk 
y=yD = h • ) - » 'P 

dF2(k) 

dyP 

k{x~xn)+ikd :p)+,kadxdk 

iC66\ kF3(k)\y=y=h\ Hx)eiHx-xP) + ikddxdk 

iC66 J kFdk)\y.yp.h\ t(x)eikix-xp) + ikddxdk 

= - f {A^dPi + ikS^ 

i a + a 

[<l>{x-d)a\,\y=h + ̂ (x-d)a\\y=h]dx (9a) 
d~a 

Sd+a 

[4>(x-d)a\\y=h + ̂ (x-d)al
2\y=h[dx (.9b) 

where a2, a"* (a = 1,2) are the stress fields corresponding to 
a unit load acting in the a-direction; in other words, they are 
stress fields corresponding to the Green's functions obtained 
from (7a) and (lb). <f>(x - d) and 4*(x - d) are crack opening 
displacements (COD) along the x and /-directions, respectively, 
and are defined as 

<t>(x-d) = U(x-d,h+)-U(x-d,h~) 
\P(x-d) = V(x-d,h+)-V(x-d,h~). u u ; 

Combining Eqs. (1), (7), and (9) and after some simplifications 
one can write 

« r,d+a nOO 

Us(xp,yp)=—\ <j>{x-d)\ FAWy-^-Vdkdx 

1 nd+a «oo 

+ T - fax-d) F2(k)\y=he
lk(x-Xp)dkdx (11a) 

27T J r f _ a J . ^ 

* nd+a r,Ca 

V(x„jp) = — <Kx-d) F3(k)\y=he
ik(x-Xp)dkdx 

27T Jd_a J _ „ 

1 nd+a /»00 

+ T- iix-d) F4(k)\y=he
ik{x-Xp)dkdx (116) 

27T J J „ J ^ m 

+A2C66(p2 + ikS2)e
p^}elkxPdk. (12b) 

In the above equations the only unknowns are the crack open­
ing displacements 4> and fa which are obtained in the next 
section. 

3 Computation of the Crack Opening Displacement 
Functions 

In order to evaluate the crack opening displacements, <j>(x) 
and i/<x) are expanded in a complete set of Chebyshev poly­
nomials, 

</>(*) = 2 tt2" j . / \ , • a 2 n + l J. / \ 
•z- fan(x) +1 ——- fan+1 (x) 
2n 2n+\ 

T - fan (X) + I T — — fan+\(x) 
2n 2« + 1 

(13) 

where 

expressions of functions Fj(k),j- 1, 2, 3, 4 are given in the 
Appendix. 

The scattered stress field can be obtained from the displace­
ment field of Eq. (11). To satisfy the stress-free boundary 

4>2n(x) =sin(2« arcsin(x/a)) 

fan(x) = sin (2n arcsin(x/a) J 

4>2n+1 (x) = cos ((2« + l)arcsin(x/a)) 

fan+1 (x) = cos ((2« + 1 )arcsin(x/a) j . (14) 

To obtain the unknown coefficients a„ and y„, both sides of 
Eq. (12a) are multiplied by <l>m(xp) then integrated from xp = 
- a to Xp = a, and both sides of Eq. (126) are multiplied by 
fan(xp) then integrated from xp = - a to xp = a. After some 
algebraic manipulation an infinite set of linear equations is 
obtained to solve for a„ and y„. 
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'Fi(k) )=Mk) 
«=i 

f](M„,„a„ + VV,„„7„)=/2(A:) (15) x H W.(*»)|<ft-
*—: « = even 0 

sm(kd~kx) 
y = h,yp = 0 

F2(k) 

where 

Mk) = /,„ ( lAl{ikC21 + C12Slp,)ep>h 

+ ^ 2 ( /*C 2 1 + C22STp2)e?2H} J-^± eikddk 
k 

Mk)=lm [AxCuipt + ikSiW 
•> -a, 

+ A2C66(p2 + ikS2)e
p2"} ^ ^ e

mdk (16) 

12 h„jn(ka)}dk+i \ ?*yp-
/i = odd ^0 k 

sin(kd-kx) 

cos (kd-kx) 
y=h,yB=a 

X S (7«-A,(^«))* (20a) 
« = even 

^ ( * ) sin(ta/-/:.x:) 
\y = /i,yB = 0 

Km 

M„ 

Nm 

-r 
-r 

-i: 

-CWV 
^ i ( * ) 

n • F2(k) 

7T 5F2(A:) 

7T 3 F 3 W 

• > > , = * " ^ 

x 9F4(Ar) 

y=yD = i'. 

y=yp = hA 

- C« *V 
F 3 W 

C, 66 
A^ a ^ 

^ ' J - D " * 

^ = ^ D = A 

- C66iir 

k 

F,(k) 

y=yD = h. 

y=y„ = h-

Jm(ka)J„(ka)dk 

Jm(ka)J„(ka)dk 

Jm(ka)J„(ka)dk 

Jm(ka)Jn(ka)dk (17) 

/„ X 2 |a^,(*«))*+i - ^ 

r X 2 {«„./„(*«) ]«/*+! J_ ^ ^ 

and Jm is the Bessel function of first kind of order m, and 
/ for odd m 

- i for even m. 

Matrices K, L, M, and Nare all symmetric. In addition, when 
(m + n) is even, then Kmn = Nmn = 0, and when (m + n) is 
odd, then Lm„ = Mmn = 0. 

Equations (15) have an infinite series in their expressions. 
However, they can be terminated after a finite number of terms °° ^ FAk) 
without introducing any significant error (Kundu (1985)). Then x ^ {y„J„(ka)}dk- \ —-— 
a„, y„ can be obtained from a finite set of linear equations. n=odd ° 

3.1 Computation of Surface Displacements. The total 
displacement components U and V are given by 

u=u'+us 

cos(kd-kx) 
y = h,y„ = 0 

cos(kd - kx) 
y = h,y„ = 0 

s'm(kd-kx) 
y = h,yp = 0 

CO 

X 2 hJn(ka)}dk. (20b) 

Then Eqs. (19) and (20) are added to obtain the total surface 
V= V'+ Vs (18) displacement. 

in which U' and V are displacement components in absence 3.2 Computational Aspects. The next task is to compute 
of any crack given by Eq. (4), whereas the scattered field the integral expressions in Eqs. (16), (17), (19), and (20). Nu-
components Us and Vs represent the change in U' and V due merical techniques to obtain such integrals and methods used 
to the presence of the crack. U" and Vs are given by Eqs. (9a) to verify convergence and accuracy of the computer programs 
and (9b), respectively. After some mathematical simplifica- were discussed in several previous papers by the authors (Kundu 
tions one can write the displacement components C/and Kat and Mai (1985), Kundu (1986), Kundu (1987b), Karim and 
any point B(x, 0) on the surface in the following manner Kundu (1988)). 

1 f°° 
V(x,0) = — (Ax+A2)e

,kxdk (19a) 
2-7T J_a 

4 Results and Discussions 
1 f°° 

V(x,0) =— \ ASe'kxdk (7=1,2) (19ft) T n e m e t n ° d discussed above has been implemented in a 
' 2 T J_„ ' FORTRAN program. Results are given for a graphite-epoxy 

composite specimen which is used widely in aircraft industries. 
Response of the cracked half-space to different impact loadings 
are shown in Figs. 3 through 8. The following function is 
considered as the loading function: 

(l6Pt2(t-T)\-4 0<t<T 

and 

Us(x,0) = "'lfl* 
(k) 

cos(kd - kx) 
y = h,yD = a 

x 'Yi {unJn(ka))dk 
n = odd 

At)' 
1° t>T 

(21) 
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-1.00 -0.33 0.33 

CRHCK LENGTH!MM) 
1.00 -0.33 0.33 

CRfiCK LENGTH!MM) 

Fig. 3 Spectral amplitude (In mm-ftsec) of crack opening displacements 
at a frequency 0.04 MHz for F(u) equal to 10. Left and right columns 
show the displacements along the x and y-directions, respectively. Thin 
and thick curves are for d = 0 mm and 2 mm, respectively, (see Fig. 1). 

D^.OO 0.60 

FREQUENCY (MHZ 

Fig. 4 Surface displacements along the x-direction in an orthotropic 
half-space. The half-space is excited by a line load at d = 2 mm with 
an angle of inclination, 6 = 45 deg and pulse duration time 7 = 2 psec. 
The top and bottom rows show the surface displacements at x = 5 and 
15 mm, respectively (see Fig. 1). Left and right columns give spectra and 
time histories, respectively. The thick curves show displacements in 
presence of the crack while thin curves are for a flawless half-space 

l l . O O 

- t ' . O O 0'.60 1.20 '0.00 
^FREQUENCY (MHZ) 

6.25 12.50 18.75 

TIME (MICRO SEC) 
Fig. 5 Same as Fig. 4, but computed displacements are along the y-
direction 

t . O O 0.60 
FREQUENCY (MHZ) 

1.20 '0.00 6.25 12.50 

TIME (MICRO SEC) 

Fig. 6 Surface displacements along the x-direction for a load applied 
at d = 2 mm, with the pulse duration time T = 2 psec. Top, middle, and 
bottom rows are for angles of inclination equal to 0 deg, 30 deg and 90 
deg, respectively. Left and right columns give spectral amplitudes and 
time histories, respectively. Thick curves are for the cracked half-space 
and thin curves are for the flawless half-space. 

Aw 
t .OO 0.60 
FREQUENCY (MHZ) 

6.25 12.50 

TIME (MICRO SEC) 

Fig. 7 Same as Fig. 6, but computed displacements are along the y-
direction 

whose Fourier transform is given by 

T CO 

6T ./ , 12 
CO \ CO 

CO \ CO 
• (22) 

In the above equations, P defines the peak value of the plate 
surface excitation load. In subsequent calculations, Figs. 4 
through 8, P is set equal to 10. r is the duration of the impact 
load. Sharpness of the impact time history can be increased 
by either decreasing r or increasing P. Results are given for T 
= 2 micro seconds. The following material properties of the 
graphite-epoxy composite (Kuo (1984a)) are used for all sub­
sequent analyses: 

992 / Vol. 58, DECEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.00 8.33 16.67 
TIME (MICRO SEC) 

25.00 0.00 8.33 16.67 

TIME (MICRO SEC) 

Fig. 8 Vertical displacements of x = 5 mm at the surface of an ortho-
tropic half-space (left column) and an isotropic half-space (right column). 
For all plots d = 0 mm and 0 = 45 deg. The top row is for a = 1 mm, 
h = 0.5 mm, the middle row is for a = 2 mm, h = 0.5 mm, and for the 
bottom row a = 1 mm, h = 0.25 mm. Thick curves are for the cracked 
half-space and thin curves are for the flawless half-space. 

C„ = 138.4408 GPa 

C22= 14.5365 GPa 

Ci2 = 3.0530 GPa 

C66= 5.8565 GPa 

p = 7.44gm/cm3. (23) 

For the sample problem considered in Figs. 4-7, the half-crack 
length is taken as 1 mm, depth of crack h is taken as 0.5 mm, 
and distance of the crack center from the point of application 
of the load is taken as 2 mm. These dimensions are of the 
same order of magnitude as generally obtained in impact tests 
(Joshi and Sun (1985)). 

It is shown in Figs. 4-7 that spectral values of surface 
displacements become very small after 1-MHz frequency for 
the excitation load considered here. So numerical computations 
are carried out up to 1.2-MHz frequency at an interval of 
0.04MHz. The crack opening displacement (COD) along the 
crack length is shown in Fig. 3 for 0.04-MHz frequency and 
F(w) equal to 10. For any other value of F(a>), all graphs in 
Fig. 3 should be appropriately scaled. F(ui) is set equal to 10 
only to make sure that COD values along the .y-axis are not 
too small and the computer doesn't use any scaling factor along 
the y-axis while plotting these curves. 

The left column shows the variation of displacement along 
the x-direction ([/) while the right column shows the same in 
the ^-direction (V). Three rows correspond to three angles of 
inclination (8), which are 0 deg (top row), 45 deg (middle row), 
and 90 deg (bottom row). In each plot two curves are drawn, 
the thick curve shows the COD of the sample problem described 
above, while the thin curve is for a similar problem where the 
load is shifted horizontally just above the center of the crack 
(d = 0 mm). From the problem geometry and the direction 
of applied load it is obvious that for d = 0, the problem is 
symmetric for 8 = 0 deg and antisymmetric for 6 = 90 deg. 
Hence, for 8 = 0 deg, one should expect symmetric V and 
antisymmetric U, whereas for 6 = 90 deg, Kand U should be 
antisymmetric and symmetric, respectively. This is what we 
get in our computation also. However, in the COD plots (thin 

curves of Fig. 3), both [/and Vappear to be symmetric for 8 
= 0 deg (top row) and 8 = 90 deg (bottom row). This is 
because the modulus or absolute value of COD amplitudes are 
plotted in these figures; hence, both symmetric and antisym­
metric curves appear to be symmetric in the figure. For a 45 
deg inclination (middle row) and other angles of inclination 
(not shown), COD plots are neither symmetric nor 
antisymmetric. 

In a few more words let us explain clearly what is meant by 
antisymmetric .[/ and V. If the horizontal displacement is 
positive (towards right) at a point (+x, 0) and negative (towards 
left) but of the same magnitude at another point ( — x, 0), then 
we call it an antisymmetric U. So antisymmetric [/really means 
a horizontal motion of the half-space which is symmetric about 
the .y-axis. Hence, we get antisymmetric U for the symmetric 
loading (8 = 0, d = 0). Since [/displacements are parallel to 
the crack faces, the problem of overlapping or penetration of 
crack faces does not arise for symmetric or antisymmetric U. 
However, for antisymmetric V, this problem definitely comes. 
This is due to the fact that for an antisymmetric V, if the 
vertical component (V) of the crack opening displacement is 
positive for, say x > 0, then for x < 0, V should be negative, 
meaning penetration of crack faces one into another. However, 
as mentioned in the next section, under Concluding Remarks, 
if the crack has some nonzero width, the crack faces may go 
through antisymmetric vertical displacements without touching 
each other. Similar types of symmetric and antisymmetric COD 
plots are obtained at other frequencies as well, but because of 
the page limitation, those plots are not presented in this paper. 

In Figs. 4 through 7, thick and thin curves indicate the 
surface response of an orthotropic half-space with and without 
cracks, respectively. Left and right columns give spectral am­
plitudes and time histories, respectively. In Figs. 4 and 5, 
variations of u and v on the surface of the half-space are shown. 
Top and bottom rows indicate the displacements at x equal to 
5 and 15 mm, respectively (see Fig. 1). It should be noted here 
that for both Figs. 4 and 5, the percentage difference between 
the peak values of surface displacements with and without the 
subsurface crack is more at x = 5 mm than that at x = 15 
mm. Intuitively also one should expect it, since the effect of 
crack decays as the distance from the crack increases. 

Horizontal (w) and vertical (v) displacements at x = 5 mm 
are plotted in Figs. 6 and 7 for three different angles of in­
clination 8, which are 0 deg (top row), 30 deg (middle row) 
and 90 deg (bottom row). It can be seen in these two figures 
that as the external load changes its orientation from vertical 
(8 = 0 deg, top row) to horizontal position (6 = 90 deg, bottom 
row) u increases and v decreases. Qualitatively, we can justify 
these results since a horizontal force should produce more 
horizontal displacement, whereas a vertical force should pro­
duce more vertical displacement as long as the Poisson's ratio 
of the material is less than unity. 

It should also be noted here that the peak displacement 
increases with the presence of the crack. This is because a 
cracked half-space is more flexible than an uncracked half-
space; hence, a cracked half-space gives larger displacement. 
In Figs. 4 through 7, the difference between surface motions 
of cracked and uncracked composites is found to be very small. 
However, this difference can be significantly increased for a 
smaller value of h and a larger value of a as shown in Fig. 8. 

To investigate the effect of the crack length (2a) and depth 
(h) on the surface motion, the vertical component of the surface 
displacement at x = 5 mm is plotted in Fig. 8 for 8 = 45 deg 
and d = 0. The top row is for a = 1 mm and h = 0.5 mm, 
the middle row is for a = 2 mm and h = 0.5 mm, and the 
bottom row is for a = 1 mm and h = 0.25 mm. The left 
column shows the surface displacements for an orthotropic 
half-space whose material properties are given in Eq. (23), and 
the right column shows surface motions in an isotropic (epoxy) 
half-space. Material properties of epoxy are taken as follows: 
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C u = 5.81 GPa 

C22 = 5.81 GPa 

C12 = 2.90 GPa 

C66= 1.45 GPa 

p=1.20gm/cm3 . (24) 

It can be seen in this figure that increase in the crack length 
(middle row), as well as decrease in the crack depth (bottom 
row), increases the difference between the surface motions of 
cracked and uncracked half-spaces. A comparison between the 
left and right columns shows that a crack in an isotropic solid 
(right column) alters the surface motion comparatively more 
than a crack along the fiber direction in a composite solid (left 
column). So it is relatively easier to detect a crack in an isotropic 
solid. Intuitively, one can explain this observation in the fol­
lowing manner: A crack in an isotropic material makes it 
anisotropic, since due to the presence of a crack, the gross 
stiffness of the material perpendicular to the crack length de­
creases, whereas its stiffness along the crack length remains 
unchanged. Similarly, in a fiber-reinforced composite solid, a 
crack which is parallel to the fibers does not change its stiffness 
along the fiber direction, but reduces its gross stiffness in the 
perpendicular direction. So the stronger direction (the fiber 
direction) remains equally strong but the weaker direction (per­
pendicular to the fiber) becomes more weak after the crack is 
introduced. Since elastic waves propagate more quickly and 
easily along the fiber direction, material properties in that 
direction should have a stronger effect on the surface motion. 
So a slight change in stiffness in the direction perpendicular 
to the fiber does not have much effect on the surface motion 
as can be seen in Figs. 3 through 7. However, when cracks are 
too big or too close to the surface, their effects can be clearly 
observed as in the middle and bottom rows of Fig. 8. 

5 Concluding Remarks 

In this paper the surface displacement of a cracked ortho-
tropic half-space is computed when it is excited by an impact 
load of arbitrary inclination at a point on the surface. The 
nature of computed results qualitatively agrees with the ex­
pected form. However, we could not compare our results with 
any other published result since no analytical or numerical 
results are available in the literature for any problem with 
geometry and loading similar to this one. 

In this analysis traction-free crack surfaces are considered; 
in other words it is assumed that the crack surfaces do not 
come in contact with each other. However, under dynamic 
loading the crack surfaces should come in contact with each 
other and introduce nonlinearity in the problem. Under certain 
situations these crack surface tractions may significantly alter 
the surface displacements computed here. However, under 
some other real situation, such as a subsurface crack of nonzero 
width being excited dynamically by an ultrasonic signal, the 
crack surfaces may vibrate and yet may not come in contact 
with each other. The assumption of stress-free crack surfaces 
is justified under such situations. Then the response computed 
with this simplifying assumption should be close to the actual 
response. 

In most of the results presented in this paper the difference 
between cracked and uncracked half-space response is found 
to be very small. The possible reason behind it has been qual­
itatively explained at the end of the previous section. However, 
this difference significantly increases if the crack length is 
increased or the depth of embedment of the crack is decreased. 
It is also observed in this paper that the effect of the crack is 
relatively stronger in an isotropic solid. 
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A P P E N D I X 

Expressions of Ah DJ, (a, j = 1, 2), (/' = 1 to 6) in Eqs. 
(4), (7), and (8) are given.in this section. Values of functions 
Fj(k), (k = 1 to 4) in Eq. (11) are also defined here. 

- a22F{bi)cosd + a2\F{io)smd 

Lt = -

where 

and 

A,=-
Cf 11 <̂ 22 °12#21 
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(Al) 

(A2) 

-a2lR3 + ClnR4 

«11«22 —«12«21 
(A3) 

where 

«l l«22-Ol2«21 

Ri = -B{epiyPau - C{ep^Pan 

R2 = Bi e"iypa2l + Of ep^Pa22 

R3=- B2~ e ^ a , i - C2 e"^Pal2 

• R4 = B2 e»<yPa2l + C2 e"^Pa22 (A4) 

a^Pii/fCn-Cttpl-pw2) 

fl2=^2(^
2Cn - C 6 6 p i - p o o 2 ) 

ai = C22C66(p]~P2) 

ct4=-ik(Cl2 + C66) (A5) 

a5=p1(,p
2
2Cl2 + k2Cn-p^2) 

a6=p2(pjCl2 + k2Cn-po>2) 

F, (k) = C^Btp^-^ +p2Cfep^-yp* +D\pl(fi
y 

+ D\p2^) + ikC66(BtS^y-yp^ + CtS2^
y-yp* 

+ D\S^y+D\S2e
p*>) 

F2{k) = ikC2l ( S j V i ' ^ V + Ctert"-^ +D\<?v 

+ D2e"^) + C22(BtS^ple
p^y-yp{ + Ct S^e"^-^ 

+ Z>|S1p1^i-" + £>2,S2p2eW) 

F3(k) = CK{B}pxi?&-V +p2Cl^y-yp' +D\p^y 

+ &2p2e
pV) + ikC^BZS^-'p1 + C ^ e ^ - V 

+ D\S^y + DiS2<?y) 

F4(k)=ikC2i{B2
+epi,y-yp,+C}ep^y~yp] +D2

ie
piy+Dl

2e
p^) 

+ C22(BiS\p^y~yp' + GSuhfri"-^ 
+ D\Sxp^y + DiS2p2(?v). (A6) 

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 / 995 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Norio Hasebe 

Hideaki Irikura 

Takuji Nakamura 

Department of Civil Engineering, 
Nagoya Institute of Technology, 

Gokisocho, Showaku, Nagoya 466, Japan 

A Solution of the Mixed Boundary 
Value Problem for an Infinite Plate 
With a Hole Under Uniform Heat 
Flux 
A general solution of the mixed boundary value problem with displacements and 
external forces given on the boundary is obtained for an infinite plate with a hole 
subjected to uniform heat flux. Complex stress functions, a rational mapping func­
tion, and the dislocation method are used for the analysis. The stress function is 
obtained in a closed form and the first derivative is given by such a form that does 
not contain the integral term. The mapping function is represented in the form of 
a sum of fractional expressions. A problem is solved for a crack initiating from a 
point of a circular hole on which the displacement is rigidly stiffened. Stress dis­
tributions and stress intensity factors are calculated. 

Introduction 
Florence and Goodier (1960) analyzed thermal stresses due 

to uniform heat flux for an infinite plate with a hole of ovaloid 
form by using the dislocation method. The writers analyzed 
thermal stresses due to a uniform heat flux for an infinite plate 
with a kinked crack (Hasebe et al., 1986) and a circular hole 
with a crack (Hasebe et al., 1988a) by using a rational mapping 
function and the dislocation method. Further, a solution of 
the displacement boundary value problem under uniform heat 
flux was given by Hasebe et al. (1989). 

The first purpose of the present paper is to obtain a general 
solution of the mixed boundary value problem for thermal 
stresses in an infinite plate with a hole due to uniform heat 
flux. Without losing generality, the boundary condition is given 
for the situation that a part of the boundary is free from 
external forces and the rest of the boundary is constrained by 
vanishing displacements. Complex stress functions and a ra­
tional mapping function represented in the form of a sum of 
fractional expressions are used for the analysis. A strict so­
lution can be obtained in closed form for the shape represented 
by the rational mapping function. The mixed boundary value 
problem for the thermal stress is more difficult to solve com­
pared to the boundary value problem for the external force or 
the displacement. It seems that a general solution of this prob­
lem has not been obtained. 
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The second purpose is to solve a problem for a crack ini­
tiating from a point on a circular hole where displacements 
are constrained. This problem is a model of a crack initiating 
from a point on a rigid stiffening ring or a circular rigid in­
clusion. It is assumed that the heat flux does not flow through 
the surface of the rigid ring and crack. The case without a 
stiffening ring is the same problem as for a crack initiating 
from a circular hole (Hasebe et al., 1988a), which is an extreme 
state where the rigidity of the ring is equal to zero. Another 
extreme state is the case when the ring is rigid. The stress state 
for an elastic ring must be intermediate to these two states. 

The stress distributions and the stress intensity factors are 
obtained for the heat flux in an arbitrary direction. The dis­
tributions of temperature and heat flux are the same as those 
in Hasebe et al. (1988a). 

Mapping Function and Temperature Analysis 
The infinite region with a circular hole and a crack as shown 

in Fig. 1 is analyzed. The conformal function that maps the 
infinite region to the outside region of the unit circle is ex­
pressed as follows (Bowie 1956): 

1 1 
2sin2

7 K
+ f + COS27 + a + 1 ) 

P
2<y - 2/V 

i+-
f 

(i) 

In Fig. 1 and Eq. (1), a is the radius of the circular hole, c 
is the crack length, 7 is a parameter with regard to the crack 
length, and C/« = COSY/(1 -C0S7). The rational mapping func­
tion is formulated as follows (Hasebe et al., 1987; Hasebe and 
Ueda, 1980): 
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Fig. 1 Analyzed region under heat flux and the associated unit circle 

-£"?<; ^-~i Eb 
(2) 

where E2$ = EQ/2, and N=24. The heat flux and the temper­
ature are expressed by the complex temperature function \p(£) 
(Hasebe et al., 1986, 1988a), 

Qx~iqy= -k 
^'(f) 
" ' ( f ) ' 

QU,n=\[W+m\ (3) 

where A: is the thermal conductivity; qx and qy are components 
of the heat flux in the x and /-directions; qr and <7e are com­
ponents of the heat flux in the_ orthogonal curvilinear coor­
dinates expressed by co(f); 9(f,f) is the temperature. For the 
uniform heat flux q through the unit area, i/<(f) is given as 
follows: 

1W»=-fU.re-" + yeB (4) 

where 5 is the angle between the direction of heat flux and the 
x-axis (see Fig. 1). 

Method of Analysis 
Using the complex stress functions </>(f) and i/<(f) which are 

regular in the region S+ outside the unit circle, the stress com­
ponents are expressed as (Muskhelishvili 1963) 

V(f)~ 
ox + oy = 4Re 

"'(f) 

" ( 45§] ' + ^ 
°7 — ax + 2jTXJ) = 2 ' 

"'(f) (5) 
Og + 0> = Ox + dy 

oB-or+2hri = fV ( f ) 
I f l V ( f ) 

{oy-ox + 2hxy). 

The boundaries on which the external forces and the displace­
ments are applied are denoted by L and M, respectively. The 
boundary conditions on L and M are given by 

«(ff) f 
(j) + ===(j,'(a) + tl/(a) = i\(px+ipy)ds onZ, 0(o 

K*(ff)-==0'(ff)- lH<O = 2G(U + H>) 

(6) 

-2Ga ' j^(f)"' (f)rff onM (7) 
where a is f on the unit circle; px and /?y are external forces in 
the x and .y-directions, respectively; ds is an increment of the 

integration contour along the boundary; u and v are the x and 
j'-components of the displacement, respectively; G is the shear 
modulus. Using Poisson's ratio v and the coefficient of thermal 
expansion a0. «> and a' are expressed as-follows: 

K = 3-4V, a ' = ( l + y)a0 for plane strain 
(8) 

K = (3 - p)/(l + y), a' = a0 for generalized plane stress. 

The second term in the right-hand side of (7) gives the dis­
placement due to uniform heat flux. The mixed boundary value 
problem where px,py, u and v are given (Hasebe, 1979; Hasebe 
et al., 1988b) and the problem for thermal stress can be ana­
lyzed separately. Hence, without losing generality, px=py = 0 
and u = v = 0 may be given in (6) and (7). Since a traction-free 
boundary exists, iKf) is given by analytic continuation as fol­
lows: 

^f)=-<Wi/f)-^r5r</>'(f)-
w (f) 

(9) 

Substituting (2) and (4) into the second term of the right-
hand side in (7), and integrating it, the term log f will be 
obtained as a part of the result. This log f is the dislocation 
of displacement. To remove this dislocation, the following 
functions are considered (Florence and Goodier, 1960): 

</>,(f)=,41ogf, </.1(f)=JBlogf (10) 

where B=A, because the dislocation of the resultant must be 
removed when (10) is substituted into (6). The valued required 
to remove the dislocation of displacement is (Hasebe et al., 
1986, 1988a), 

. a0qGR 

2k 
• E0(f] Etf-t + EafP-Ejse-A (11) 

(12) 

where 

R = (1 + v)/(l - v) for plane strain 

R=\ + v for generalized plane stress. 

The stress functions to be obtained are expressed as 

<£(f) = <«f) + 02(f), l M J W i « ) + ife(fl. (13) 

From (6), (9), (10), and (13), the boundary condition on L 

*2+(ff)-02"(ff) = O (14) 

because px=py = Q\ in (14), the superscripts + and - indicate 
the values of 02(f) on the unit circle approached from the 
region S+ and S", respectively (see Fig. 1). From (7), (9), (10), 
and (13), 

K02+(O) + 02~(CT)= - ( l + K>41ogo--2Ga' U(<r)o>' (a)da 

a0qGR 

2k 
( 1 + K ) 2 2 

^0^25 eH 

E f t ft-

• 2 (E0e~ is - •£ ei6 ) Ek {logo - logfo - a)} + const. (15) 

Therefore, a Riemann-Hilbert problem for (14) on L and (15) 
on Mis obtained and its solution is (Muskhelishvili, 1963) 

H(o) 
02(f) = 

x(fK 
2m]Mx(o)(a-$) do+Q(S)xit), (16) 

in which H(a) represents the right-hand side of both (14) on 
L and (15) on M. However, since the right-hand side in (14) 
is zero, the integral in (16) is carried out on M. The function 
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Q( f) is an unknown rational function and the Plemelj function 
x(f) is expressed by 

x(fl=(r-«)"«--fl)1 (17) 

where a and /3 are the coordinates corresponding to the junc­
tures of L and M (see Fig. 1); m = 0.5 - /(log/c)/(27r) where the 
index 0.5 was determined from the condition of continuity for 
displacements and discontinuity for stresses at the junctures 
of L and M. The branch of x(f) is chosen so that x(f)/f— 1 
for f~*oc. The integral in (16) is described in Appendix A. 

The function Q (f) is determined from the regular condition 
in S+ for <Kf) in (9). Substituting (10), (13), and (16) into (9), 
the irregular terms in S+ can be written out as 

l M ) = -
u ( / / f M w(//f) 

02 (f) 

- x ( / / f ) Q ( / / f ) + regular term = 

- x ( / / f ) Q ( ' / f ) +regular term (18) 

where flt = E*Aj7(ft7; ft = 1/&; At = &' («) (Hasebe, 1984; 
Hasebe et al., 1988b). The function Q(f) is determined so as 
to cancel out the first and second terms of the right-hand side 
in (18), i.e., 

(A(k + Ak)Bk 

frx x(f*)(f*- f)' 
(19) 

Finally, 0(f) is obtained by using the results in Appendix A 
with (19) to give 

0(f) = /llogf-x(f) S 
(Ak+A{k)Bk 

x(f*)(r*-n 
aotfGfl 

2A: 
4 " ' ' 6 ( f 2 - x ( f ) ( f + w a + ( l - w ) / 3 ) ] 

*-= 1 

£ o e - ' ^ + ^ e
; 5 

f* 
x(D 

1 +^Vpji+x«-) 
f*-rvx(r*r) 

x'(0)f-x(0) 

-tM 

- i 

x(PY 

^jiogr-iogcr-f*) 

rfa (•ft 

+ x(f) -TT7 « 
Jo x(<0(°—f) 

(20) 

Since the first derivative of the integral term in (20) is given 
by (35) in Appendix B, the first derivative of 0(f) is expressed 
in a form that does not contain an integral term. Using 
Ak = 4>i(£k) (k=l, 2, . . .TV), and solving 2A^ simultaneous 
equations with respect to the real and imaginary parts of Ak, 
the unknown constants Ak are determined. Since the first and 
second derivatives of 0(f) are obtained, the stress components 
are obtained without numerical integration. However, in order 
to obtain the displacement, the numerical integration for the 
integral term in (20) is required. From (20), a solution of the 
boundary value problem subjected to external forces only is 
given by a — /3 (Hasebe et al., 1986, 1988a). A solution of 
the displacement boundary value problem is given by a—/3, 
X«*)~ - KX(&), X(0)- - «x(0) and x ' ( 0 ) - - «x'(0) (Hasebe et 
al., 1989). A solution for the elliptical rigid inclusion with a 
debond can be obtained by substituting Ek = 0, f* = 0 (Ar= 1, 
2, . . J V ) , £ o = ( « + 6 ) / 2 a n d £ 2 5 = ( a - 6 ) / 2 i n t o ( 2 ) a n d ( 2 0 ) , 
where a and b are the semi-axes of the ellipse. 

Stress Distribution 

Since it is assumed that the heat flux does not pass through 

Fig. 2 Stress distribution: K = 2, cla = 1.0, 6 = 0 deg 

0 2 

0/aqGR 
' k 

T*y ® v2!> 
-He 

\ A \ 
x/a 

eEI=a 

Fig. 3 Stress distribution: K = 2, cla = 1.0, 5 = 90 deg 

the boundary, the distributions of the temperature and the 
heat flux are the same as those in Hasebe et al. (1988a), in 
which examples of the temperature and heat flux were shown 
for the crack length c/a=\. In the present paper, the stress 
distribution is also shown for c/a = 1 and K = 2. 

Figure 2 shows normal stress o>, tangential stress ag, and 
shearing stress T^ oh the boundary, as well as ax and ay on the 
x-axis for 5 = 0 deg. The normal stress ar attains a maximum 
at point D for ar>0, and so a debonding initiates at this point 
if it occurs. On the other hand, a crack possibly initiates and 
grows in the x-axis for x>0 due to ay>0. Figure 3 shows the 
stress distribution for 6 = 90 deg and ax=ay = 0 in the x-axis 
due to antisymmetry. The stress distribution for the heat flux 
in an arbitrary direction can be obtained by superposition of 
the stresses for 5 = 0 deg and 90 deg. 

Stress Intensity Factor 
The stress intensity factors (S.I.F.) Kj and Kn are obtained 

by using the complex stress function 0(f) and the mapping 
function o;(f) as follows: 

K,-Xn=-
2V^rV2V(fo) 

Vu"(f0) 
(21) 

where X is the angle between a crack and the x-axis; f0 is the 
coordinate at the crack tip. In the present case, X = 0 and f0 = 1. 
The following nondimensional S.I.F. are used: 

F, + iFa= 
K,+ iKtt 

aoClGR
 VT(C ' /2 ) 3 

(22) 

where C '= (2« + c) /2 . 
Figure 4 and Table 1 contain the values of F, for 5 = 0 deg 

and F//=0 due to symmetry. The values of c/a and a/c are 
plotted as the abscissa, and thus, S.I.F. are shown for the 
crack length a, where 0 < a < <x. When 5 = 0 deg, F,> 0 and so 
the crack possibly grows. From Fig. 4, the influence of K on 
the nondimensional S.I.F. is known. Since S.I.F. takes the 
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Fig. 4 Nondimensionai stress intensity factor F,: S = 0 deg 

Table 1 Nondimensionai stress intensity factors F, for 6 = 0 deg and 
F„ for S = 90 deg for K = 1.0, 2.0, and 3.0 

c/a 

a/c 

0 . 0 1 

0 . 0 2 

0 .04 

0 . 0 5 

0 . 1 0 

0 . 2 0 

0 . 3 0 

0 .40 

0 . 5 0 

0 . 6 0 

0 .70 

0 . 8 0 

0 . 9 0 

1.00 

0 . 9 0 

0 .80 

0 .70 

0 . 6 0 

0 . 5 0 

0 . 4 0 

0 . 3 0 

0 . 2 0 

0 . 1 0 

0 . 0 5 

0 .04 

0 . 0 2 

0 . 0 1 

0 . 0 0 

F i ( S = 0 - ) 

K = 1 . 0 * = 2 . 0 AT = 3 . 0 

0 . 1 7 9 6 0 . 2 0 9 1 0 . 2 3 3 3 

0 . 2 4 9 3 0 . 2 8 9 6 0 . 3 2 2 7 

0 . 3 3 6 4 0 . 3 8 9 5 0 . 4 3 3 2 

0 . 3 6 6 3 0 . 4 2 3 5 0 . 4 7 0 5 

0 . 4 6 3 0 0 . 5 3 1 3 0 . 5 8 7 5 

0 . 5 2 9 3 0 . 5 9 9 1 0 .6564 

0 . 5 3 2 8 0 . 5 9 5 1 0 . 6 4 6 1 

0 . 5 1 2 0 0 . 5 6 5 0 0 . 6 0 7 8 

0 . 4 8 2 1 0 . 5 2 5 6 0 . 5 6 0 3 

0 . 4 4 9 4 0 . 4 8 4 2 0 . 5 1 1 5 

0 . 4 1 6 8 0 . 4 4 3 9 0 . 4 6 4 6 

0 . 3 8 5 6 0 . 4 0 8 0 0 . 4 2 1 1 

0 . 3 5 6 5 0 . 3 7 1 1 0 .3814 

0 . 3 2 9 5 0 . 3 3 9 3 0 . 3 4 5 4 

0 . 3 0 2 2 0 . 3 0 7 4 0 . 3 0 9 7 

0 . 2 7 1 8 0 . 2 7 2 3 0 . 2 7 0 7 

0 . 2 3 8 0 0 . 2 3 3 9 0 . 2 2 8 4 

0 . 2 0 0 8 0 . 1 9 2 3 0 . 1 8 3 3 

0 . 1 6 0 4 0 . 1 4 8 2 0 . 1 3 6 1 

0 . 1 1 7 6 0 . 1 0 2 7 0 . 0 8 8 6 

0 . 0 7 4 3 0 . 0 5 8 6 0 . 0 4 4 1 

0 . 0 3 4 2 0 . 0 2 0 7 0 . 0 0 8 3 

0 . 0 0 5 3 - 0 . 0 0 2 3 - 0 . 0 0 9 1 

- 0 . 0 0 1 0 - 0 . 0 0 4 4 - 0 . 0 0 7 4 

- 0 . 0 0 1 3 - 0 . 0 0 3 9 - 0 . 0 0 6 1 

- 0 . 0 0 1 1 - 0 . 0 0 2 1 - 0 . 0 0 2 9 

- 0 . 0 0 0 5 - 0 . 0 0 0 9 - 0 . 0 0 1 2 

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 

F i 1 J = 9 0 ' ) 

AT =1 .0 * = 2 . 0 * = 3 . 0 

0 . 0 5 8 0 0 . 0 8 7 7 0 . 1 1 4 5 

0 . 0 7 6 7 0 . 1 1 7 8 0 . 1 5 4 9 

0 . 0 9 5 4 0 .1507 0 . 2 0 0 3 

0 . 0 9 9 1 0 .1586 0 . 2 1 1 9 

0 . 0 9 5 8 0 . 1 7 1 0 0 . 2 3 7 4 

0 .0334 0 . 1 1 8 5 0 . 1 9 0 3 

- 0 . 0 4 9 1 0 .0374 0 . 1 0 7 0 

- 0 . 1 3 1 9 - 0 . 0 4 7 4 0 . 0 1 6 9 

- 0 . 2 0 8 6 - 0 . 1 2 7 3 - 0 . 0 6 8 8 

- 0 . 2 7 7 6 - 0 . 1 9 9 7 - 0 . 1 4 7 0 

- 0 . 3 3 8 3 - 0 . 2 6 4 0 - 0 . 2 1 6 6 

- 0 . 3 9 1 1 - 0 . 3 2 0 3 - 0 . 2 7 7 7 

- 0 . 4 3 6 8 - 0 . 3 6 9 5 - 0 . 3 3 1 1 

- 0 . 4 7 6 3 - 0 . 4 1 2 1 - 0 . 3 7 7 6 

- 0 . 5 1 3 7 - 0 . 4 5 2 9 - 0 . 4 2 2 2 

- 0 . 5 5 2 7 - 0 . 4 9 5 7 - 0 . 4 6 0 1 

- 0 . 5 9 2 4 - 0 . 5 3 9 9 - 0 . 5 1 7 6 

- 0 . 6 3 1 4 - 0 . 5 8 4 2 - 0 . 5 6 6 4 

- 0 . 6 6 7 5 - 0 . 6 2 6 3 - 0 . 0 1 3 2 

- 0 . 6 9 6 4 - 0 . 6 6 2 2 - 0 . 6 5 3 8 

- 0 . 7 1 1 2 - 0 . 6 8 5 0 - 0 . 6 8 1 0 

- 0 . 0 9 9 9 - 0 . 6 8 2 8 - 0 . 6 8 2 2 

- 0 . 6 4 1 9 - 0 . 6 3 4 2 - 0 . 6 3 5 4 

- 0 . 5 8 4 7 - 0 . 5 8 1 4 - 0 . 5 8 2 4 

- 0 . 5 7 0 3 - 0 . 5 6 7 7 - 0 . 5 6 8 6 

- 0 . 5 3 7 8 - 0 . 5 3 6 6 - 0 . 5 3 7 1 

- 0 . 5 1 9 6 - 0 . 5 1 9 0 - 0 . 5 1 9 3 

- 0 . 5 0 0 0 - 0 . 5 0 0 0 - 0 . 5 0 0 0 

extreme value, the crack growth is arrested in a certain length. 
If the fracture toughness value of a material is larger than the 
maximum value, then the crack does not grow. Negative values 
of Fj change to positive values when the direction of heat flux 
becomes reversed, i.e., <5 = 180 deg. Figure 5 and Table 1 con­
tain the values ofFn for 5 = 90 deg and F, = 0 due to symmetry. 
When a/c = 0, the value of Fu converges to - 0.5 and this value 
corresponds to the value of Fn for a crack only (Sih, 1962). 
S.I.F. for the heat flux in an arbitrary direction can be obtained 
by superposition of Fj and Fn for 5= 0 deg and 90 deg. 

Conclusions 
The complex stress functions $(f) and t/>(f) for the mixed 

boundary value problem are given by (20) and (9), respectively. 
Since the first derivative of the integral term in (20) is given 
by (35), 0'(f) is given by the form without integral term. 
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Fig. 5 Nondimensionai stress intensity factor F„: 5 = 90 deg 

Therefore, the numerical integration is not required for the 
calculation of stress components. Substituting Ek=lk = Q) 
(£=1,2, . . . ,AO,£o=(« + &)/2and£,

25=(fl-&)/2into(20), 
the solution is obtained for an elliptical hole with the semi-
axes a and b. The solution of free or clamped boundary value 
problems can also be obtained by a limiting operation for (20). 
Shifting the coordinates of the junctures a and (3 in (20), the 
position of clamped ends can be changed freely. Thus, both 
a crack and a debonding initiated from a circular rigid inclusion 
can be analyzed. Changing the coefficients of the mapping 
function in (2), other shapes can be also analyzed. For example, 
the case of a crack initiated from a rectangular hole is analyzed 
by using the mapping function in Hasebe and Ueda (1980). A 
mapping function of a comparatively arbitrary shape can be 
found in the form of (2). The stress distributions and the stress 
intensity factors for the heat flux in an arbitrary direction are 
obtained by superposition of the results for 5 = 0 deg and 90 
deg. In this paper, the stress intensity factor Kt is produced 
by the heat flux for 5 = 0 deg. Since Kj has the maximum value 
and AT/—0 as c—oc, a crack is arrested at a certain length. If 
the fracture toughness value of a material is larger than the 
maximum value of Kj, then a crack does not grow. However, 
if the fracture toughness value depends on temperature, then 
the information of temperature distribution is necessary for 
the crack growth. From the stress state before the crack ini­
tiation, a debonding occurs on the side that the heat flux meets 
(x/a = - 1) and a crack initiates on the opposite side (x/a =1). 
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A P P E N D I X A 

Integral of Equat ion (16) 

Substituting the right-hand side of (15) into H(a) in (16), 
changing the integral on M into the contour integral around 
M, and using the residue theorem, the integral of each term 
is obtained as (Muskhelishvili, 1963) 

da 1 

2*i J ax+ (<7)(ff- f ) ( f*-ff) 

(1+«)«*-OVx( f ) X(ft) 

1 1 

a2da 1 

2TT/ Jax(ff)(o—f) 

K 

x(n 
(f+/wa + ( l - w ) ( 3 j 

1 r*3 
da 1 xW+xffl) 

rY(o> 

(23) 

(24) 

(25) 
2m J „ X ( * ) ( O T - J V l + < f x ( f ) 

where the following relation on M i s used: 

x - ( f f ) = - K X
+ ( f f ) . (26) 

The integral containing the logarithmic function is carried 
out in the following manner. As shown in Fig. 6, considering 
the contour integral around the branch lines a/3 and Of*, 

logo—10g(o—f*) 
da + r 

j 

x+(ff)(ff-n 
f*[logff-log(a-J*)] + 

logo—log(o—ft) 

x~»(o- f ) 
da 

X(<7)(ff-f) 
da + 

[logo—Iog(o—f*)] ~ 

logo—log(o—ft) 

da 

x(o-)(o-f) 
da, (27) 

where the integral between the contour 0a and a0 is omitted 
because they cancel each other. The superscript + refers to 
the integral for Of* and - does for f*0. In this case, 

[logo- - log(<7 - f t)]+ + 2*7 = [logo- - log(a - m -. (28) 

Arranging (27) by (26) and (28), the following expression is 
obtained: 

K J„ 

logo—log(o—fQ 

x + ( f f ) ( ^ - f ) 
da — 2m' 

1-wi 

Jo : 

da 

X(f) 

X(ff)(ff~f) 

[ logf- log(f-f t ) ] . (29) 

The integral of the right-hand side in (16) becomes the right-
hand side in (20) except the first and second terms by using 
(23), (24), (25), and (29). 

A P P E N D I X B 

First Derivative of Integral Term in Equat ion (20) 

The following differentiation is considered: 

d_ 
da 

1 

y(a)(a-n 

I 

Vf 
1 1 

( f - « ) ( f 

y(°)(°-SY 

m(a-

X(a)(a-IY 

-0\ + a / 3 ) - f 
x(o") (o- f ) 

(30) 

where ( f - a ) (f-/3)/x(f) = l/y(f). If (30) is integrated with 
respect to a from a and b and arranged by using the following 
expression, 

da 

K x ( f f ) (o- f ) 
=/( f ) , 

then 

where 

/ ' ( f ) + # ( f ) / ( f ) + G ( f ) = 0 

\—m 

f - a 

G(f) = 

f-/3 
1 1 1 

« • - « ) « - - 0 ) _ > ( 6 ) ( * - f ) J ( « ) ( f l - f ) 

The solution of the differential equation (32) is 

exp[fJfY(f)rffl/(f)+jG(f)exp[f//(f)rff)c?f=C1 

(31) 

(32) 

(33) 

(34) 

where C{ is an integration constant. Noting that 
exp[{//( f )rff] = C2x (f) (C2 is an integration constant) and dif­
ferentiating both sides in (34) with respect to f, the following 
equation is obtained: 

^ l [ x ( f ) / ( f ) ] = x(f)G(f). (35) 

Through (31), (33), and (35), the first derivative of the in­
tegral term in (20) is obtained for a = 0 and b = ft. 
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Generalized Variational Principle of 
Plates on Elastic Foundation 
The theory of variational principle is enhanced by using the Lagrange multiplier to 
establish a generalized variational principle for plates on an elastic foundation. In 
the first part of this paper, the principle of minimum potential energy is introduced 
in which the integral equation is employed as the variational constrained condition. 
In the second part, it is shown that the generalized variational principle with two 
variational functions can be established. This represents, to the authors' knowledge, 
the first treatment of the variational principle with these types of equations. 

1 Introduction 
The behavior of beams and slabs on elastic foundations have 

been of great interest to structural and geotechnical engineers 
for many years due to their extensive application in the analysis 
and design of foundations. The majority of analytical work 
in this area has been done by using the classical Winkler model, 
such as Hetenyi (1946) and Westergaard (1948), where the 
coefficient k, called subgrade reaction of the foundation, is 
employed. Vlasov and Leont'ev (1966) developed a unique two-
parameter model using a variational approach; the mode re­
quired an estimation of the parameter y, which controls the 
decay of stress distribution within the foundation. Jones (1977) 
established a relationship between y and the displacement char­
acteristics. Vallabhan and Das (1988) made further study on 
the determination of y for various loading conditions. 

In this paper, plates on elastic foundations are investigated 
by using the Lagrange multiplier to establish a generalized 
variational principle with two variational functions: 
deflection w and foundation reaction p. The functional sta­
tionary values, expressed in terms of a group of differential-
integral equations, are equivalent to the basic equations and 
boundary conditions. The variational principle approach with 
these types of equations has not been shown in the publications 
by Washizu (1975), Shames and Dym (1985), or Landau and 
Lifshitz (1986). 

In the first part of this paper, the principle of minimum 
potential energy for plates on elastic foundations is introduced, 
and the integral equation is employed as the variational con­
strained condition; in the second part, it is shown how the 
generalized variational principle with two variational functions 
can be established. 

2 Basic Equations and Boundary Conditions 
As we all know, the basic equations of Kirchhoff's thin plates 

on elastic foundations are expressed as follows: 

Dv2v2w(x,y)-q(x,y)+p(x,y)=0 (I) 

w(*o0 = { { Ptt,ri)k(x,y;lt,v)dZdr, (2) 

wherep is the foundation reaction, k is the displacement func­
tion at point (x, y) when a concentrated load is applied at point 
(£, j]), and S is the surface area of the plate under investigation. 
The plate boundary is C = C\ + Ci + C3, where C\ represents 
built-in edge, C2 represents simply-supported edge, and C3 

represents free edge. 
The corresponding boundary conditions are: 

at built-in edge Q : 
w = w, 

dw dw 

dn dn' 

at simply-supported w = w, M„ = M„, 
edge C2: 

at free edge C3: •=•. -= dM„, 
Mn = Mn, V„=Vn = Q„ + -

ds 

and at the corner: R„ = R„ 

(3) 

(4) 

(5) 

(6) 

where w is the plate deflection along the boundary, Qn_is the 
shearing force on the normal surface on the_boundary, M„ and 
M„s are the bending and twisting moments, V„ is the summation 

of shearing forces Q„ and —, and R„ is the concentrated 
as 

force at the corner point on the boundary. 
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3 Undetermined Variational Functions 
The minimum potential energy of a plate on an elastic foun­

dation with two undetermined variables w and p can be ex­
pressed as 

M i> ( V 2 W ) 2 - 2 ( 1 - A 0 
d2w d2w ffw\T 

dx2' by2 \dxdy) 
[dx dy 
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- \ \ qw dx dy + - \ \ pw dx dy+ a> 
JS J 2 Js J J C 2 + c 

- (() Vnwds-j]Rn,k 

In Eq. (7), w and p must satisfy the variational co 
condition, i.e., Eq. (2). By applying variation to tl 
mental !!„, in Eq. (7), the functional variation may 
sented in the following form: 

SIIW= 1 \ (DV2V2w-q)5w dxdy 

M„ — ds 
dn 

• X 

V w — ow ds 

- ^ i £ v 2 w 6 w * + ( i - ^ i [ [ c ° s 2 a S 
d2w . , d V 

+ 2 cosa sma 1- sin a —r 
dx9y dy2 dn 

8w 

Fig. 1 

, / 3 2 w 1 dw\ , . r /32w 
where A - — represents the increment of —— 

\dsdn ps dsjk
 y \bsdn 

1 dw\ 
at the corner point k on the boundary C. It is assumed 

Ps OS J 

here that there are / number of discontinuous corner points, 
and 8wk is the value of Sw at corner point k. From the expres­

sions V„, R,„ we can see that - (1 - fi)D 

(d2w d2w\ 
- cosa sma I —5- - —-5-

{dx2 by2) 

2 • 2 ^ 32wl d „ 1 ) 
a - sin a) ——- — Sw ids 

d2w _ J_9jv\ 
dsdn ps dsj 

M„s, and that AM„S is the increment of twisting moment which 
is also equal to the concentrated force at the corner point of 
the plate, 

-^v-^j j j In order to simplify Eq. (8), we use the following relation: 

? ^"dn5wds~J V><5wds-TiKn,k$wk -[ \wSpdxdy = ^\pdwdxdy. (9) 

/ 2 • 2 , d w 

+ (cos a - sin a) 
dxdy 

rearranging and collecting terms 

5IIW= I I {DV2V2w-q)8wdxdy 

2 J s J 

Equation (9) can be proven in the following. 
Substituting w from Eq. (2) in Eq. (9) where w must satisfy 

the variational constraint condition, the left-hand side of Eq. 
(9) becomes 

2 J J J J P^,i))k(x,y£,ri)dZdri 5p (x,y)dx dy. 

c3 

c2 + c3 

K + D 

+ i + C 3 r + i 3 r v 2 v v + ( 1 _ M ) ^)J ] 6 w 
A 2 ,± tb2w_\ dw\ 
dn ds \dsbn ps ds J 

Sw ds 

Since the definite integration and the variables are not re­
lated, the above term can be expressed as 

2 J J J \p(x'y)k^'r>'>x»yVdxdy 8p{%,7j)dl; dt). 

-u 
( d2w 1 dw\ „ 

7 - r - - - - ^ )Sw 
dsdn ps ds J 

i 

ds-J]R„tk5wk 
k=l 

(DV2,72w-q)bw dx dy + - 1 (p8w+wSp)dx dy 

Since k(x, y; £, r/) = &(£, r/; x, y), the above term can be 
further expressed as 

1 
2 

j j j ]p(x,y)k(x,y;£,i))dxdy 5ptt,v)di; dr,. 

h® M„ + £) + \y )JH„-
J c2 + c3 

2 , , > a V 
j*V w + ( l - / x ) - ^ «(£)* 

Exchanging the order of integration, the left-hand side of 
Eq. (9) finally becomes 

J j J j bp(Z,ij)k(x,y;>i,ri)dZ dv 

-{^n 
p(x,y)dxdy. (10) 

° 2 
— V2w 
dn 

3 (d2w 1 dw\ 

ds \dsdn ps ds j 
dw ds 

ds \dsdn ps ds I \ 

' between the normal to the 

Now, substitute the variation of Eq. (2) with 

Sw(x,y) = j j 8p(£,ri)k{x,y;£,ri)dZ di\ 

on the right-hand side of Eq. (9), which is equal to Eq. (11). 
Thus, Eq. (9) is proved. 

Now, substituting Eq. (9) in Eq. (8), we get 

1 9 a • u where — = —, a is the angle 
Ps ds 

periphery and the x-axis as shown in Fig. 1 
and and 

' Jl»_ld_w\ f d 
£[ \bsdn Ps ds)k J ds 
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w= \ \(DV2V2w-q+p)8w dx dy 

L + \ \Mn+D 2 , , , d w 

,xV2w+(l-ii)-^ » > 

d2w 1 dw\. 
7 — — V ^ 

\dsdn ps ds J 

ds V„ + D 
dn V w 
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+ ( ! - * * ) • 
9 I d2W 1 dw 

ds \dsdn ps ds 
8w ds 

Substituting Eq. (14) in Eq. (13) and following Eq. (8), we 
have 

. d2w 1 dw\ -

Since 8w is arbitrary, Eq. (8) is equivalent to 

DV2V2w-q+p = 0; 

dwk. ( i i ) 
<5n„, o= 

I u 
DV2V2w-q + - (p + \) 

w — 

on the boundary Q 

Mn=-D JtV W+( l - / l )—-2 
9« 

J p(£,r,)k{x,y£,r,)didr, 

+ 2 J J w- j j MH,y)k(x,y,Z,ri)dZdv 

Mn+D 

8w dx dy 

8\(x,y)dx dy 

bp(x,y)dx dy 

dn 
V„=-D 

on the boundary C3 

M „ = - £ > 

at the corner point k 

V2w + ( l - /x) 
9 dlw Id 

d2w 
M V z w + ( l - ^ ) ^ -

ds \dsdn ps ds 

, and 

c2 + c3 

9 V 
dn2 dn, 

_9_ 2 n -, d /9 2 w 1 9w 
9n ds y359« ps 9s 

5w ds 

R„=-(1-H)DA 
d w I dw 
dsdn ps ds 

In Eq. (15), 5w, dp, and <5A are independent, thus, 5nwjJ = 
0 is equivalent to 

In the foregoing equations, w and p must satisfy Eq. (2). 
Now we are able to derive the undetermined variables for 

the generalized variational principle with two variational func­
tions w and p . The functional of the principle can be expressed 
in the following form: 

DV2V2w-q + - (p + \ ) = 0 

w-

nw,p=uw+
l- J { 

j \jptt,v)k(x,y;Z,7,)dadri = 0 

J ^MH,r,)k(x,y,!i,V)d!idr, = 0 

(16) 

(17) 

(18) 

w(x,y) and 

[\p(i.v )k(x,y£,r,)d£dr, \{x,y)dxdy (12) 

where X(x, y) is the undetermined Lagrange multiplier and is 
a function of the variables x and y; it is not a constant inde­
pendent of x and y. From Eq. (2), after the variational con­
straint is released, the integral equation is still a functional 
constraint condition. Actually, Eq. (2) can be written as 

G{x,y) = w(x,y)~ J ^ p(Z,r,)k(x,y,Z,r,)dZdr, = 0. 

Thus, according to the variational principle, the use of the 
Lagrange multiplier \(x, y) is appropriate. 

The variation of Eq. (12) can be written in the following 
form: 

dIlWtP = Snw + ̂  j j \(x,y)8w dx dy 

~ H J I I toU'lWX'r'ZrtW d-q \(x,y)dxdy 

+ 2 J J * J J P^'^kix^^v)^ dr, 

V„=-D 

M„=-D 

d 

nvlw+ U - A O ^ I 

dn 

, s 9 I' d2w 1 dw 
V zw+ ( l - /x ) — • 

/?„ ,*=-i>( l -M)A 

ds \dsdn ps ds 

9 w 1 9vv 

9s9n /os ds 

(19) 

(20) 

Comparing Eqs. (17) and (18), with respect to any point (x, 
y), it can be shown 

j \ lPa,v)-M^v)]k(x,y^,v)d^ dv = 0 (21) 

and we have 

Mtv) =I*S,v) or Mx,y)=p(x,y). (22) 

Substituting Eq. (22) in Eq. (12) 

nWlp = n w + - J j w - j j p(£,r))k(x,y,Z,ri)d£d7i 

xp(x,y)dxdy (23) 

b\{x,y)dxdy or 

(13) 

where Snw in Eq. (13) is the same as shown in Eq. (8), except 
the functions w and p are independent and do not satisfy Eq. 
(2). 

Considering the third term on the right-hand side of Eq. 
(13) and using the same analogy in Eq. (11), we have 

n»,P = \ J jz>j(V 2w) 2-2( l- ,*) d2wd2x /d2w\2' 

dx2 dy2~ \dxdy) 
\dx dy 

\qwdxdy+\ \ pw dxdy--\ \ \ \ ptf.y) 

\ \ j j 5ptt,v)k(x,y,a,r,)dH dr, 

= \ J J j J m,n)k(x,y,Z,r,)dZ dr, 

"c2 + c3 

M„ — ds 
dn 

\(x,y)dx dy 

dp(x,y)dx dy. (14) 

k(x,y,^,r,)d^ dr, p(x,y)dx dy+ 1 
J c: 

- \ Vnwds-J]Rn,kwk. (24) 

Equation (24) is the functional of the generalized variational 
principle for plates on an elastic foundation with two unde-
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termined variables w and p. The application of Eq. (24) can 
be illustrated by using an example shown in the publication 
of Cheung and Zienkiewicz (1965). Based upon the foundation 
flexibility matrix [f/\, reaction column matrix {p}, plate de­
flection column matrix (w}, and the plate stiffness matrix [K] 
in the publication, we are able to establish the generalized 
variational principle with two variational functions in the fol­
lowing form 

nw,p = ̂ {w}T[K][w} - {q)T{u} 

+ {p}T\w}-\{p]T\ff]\P\- (25) 

From 8U„p = 0, the corresponding governing equations for 
the finite element analysis can be obtained. 

4 Summary and Conclusions 
The theory of variational principle is further enhanced by 

introducing the functional of the generalized variational prin­
ciple for plates on an elastic foundation. In practical appli­
cation, it can be shown that, using Eq. (24) and interpolation 
functions of deflection w and reaction p, the corresponding 
governing equations can be established based upon the ordi-
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nary variational procedure. The authors have found that it is 
very convenient for finite element analysis of plates on an 
elastic foundation. 

In addition, the corner conditions for plates have also been 
given in terms of deflections. This presentation has not been 
shown in any of the previous publications. 
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Stability Analysis for the Head-
Disk Interface in a Flexible Disk 
Drive 
This paper describes the modeling, theoretical formulation, and eigenvalue analysis 
for a combined system of a spinning flexible disk and a pair of head and suspension 
systems that contact the disk at opposing points on its two sides. In the analytical 
model a constant friction force between the sliders and disk and the slider pitch 
motion, as well as its transverse motion, are taken into account. From the eigenvalue 
analysis it is found that pitch stiffness and moment of inertia of the heads induce 
instability above the critical rotation speed similarly to the transverse stiffness and 
mass. This instability can be effectively stabilized by increasing the external damping 
which is spinning with the disk. It is also found that the friction force makes all 
forward modes unstable over the entire rotational speed range. The friction induced 
instability can be effectively suppressed by increasing the transverse stiffness and 
mass and it can be stabilized by the pitch damping and the external damping. The 
characteristics of instability due to the friction force qualitatively agree well with 
experimental results reported previously. 

Introduction 
Flexible disk storage systems have been widely used as con­

venient input/output devices in data processing systems, es­
pecially in small personal computers. To meet user demand 
for convenient removable media, smaller size and larger ca­
pacity flexible disk drives have been developed in the past 20 
years. Recent progress in the performance-to-cost ratio in com­
puters and hard disk drives increases the need for development 
of a high speed and large capacity flexible disk storage system 
with more than ten megabytes. 

The most difficult problem encountered in developing a new 
flexible disk drive is to obtain a stable and reliable scanning 
condition between the medium and recording head. The disk 
and head suspension often exhibit vibrations which cause not 
only malfunctions in the read/write signal but also a remark­
able reduction of recording medium life. Until now this vi­
bration has been suppressed through trial and error by changing 
the tribological characteristics of the medium, the slider con­
tour and its suspension system. Therefore, efforts to under­
stand the mechanism of vibration related to the head and 
flexible disk interface through analysis and to find a stable 
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scanning condition has recently become of great concern for 
many researchers. 

Vibrations of a spinning flexible disk induced by a point 
contact stationary head was investigated by Benson and Bogy 
(1978), Ono et al. (1986), and Ono and Maeno (1987). Benson 
and Bogy (1978) discussed different stationary deflection pat­
terns of a spinning flexible disk depending on its thickness and 
the position of the head. Ono et al. (1986) analyzed stationary 
disk deflections associated with critical speeds for 8, 5.25, and 
3.5-in. flexible disks, but they found qualitative discrepancies 
between theory and experiment. Ono and Maeno (1987) found 
that the steady deflection and vibrations of a 3.5-in. flexible 
disk induced by a point contact head can be qualitatively pre­
dicted by taking into account a residual compressible stress in 
the circumferential direction and an initial deflection of the 
disk. 

As for the vibration of a coupled system of a spinning flexible 
disk with a head and suspension, Iwan and Moeller (1976) 
analyzed the instability of a spinning disk due to coupling 
effects of a translational mass, spring, and damper. They found 
three different instability regions above the critical speed due 
to the attached mass, spring, and damper, respectively. For 
the investigation of unstable head vibrations, Good and Low-
ery (1985) used finite element modeling and free vibration 
analysis of an actual disk and head assembly system. They 
included head pitch and roll motion as well as transverse mo­
tion and could get good agreement with experiment for the 
dominant mode frequencies, but they did not analyze the in­
stability. A comprehensive experimental study of unstable vi­
bration of an actual 5.25-in. flexible disk and head was reported 
by Kohno et al. (1989). Since the unstable vibration observed 
by them is related to the head pitch motion and appears to 
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Fig. 1 Model of flexible disk and head assembly system; (a) Spinning 
flexible disk, head assemblies, and fixed coordinate system; (b) Model 
of upper and lower head assemblies 

occur far below the lowest critical speed, it appears to be 
unrelated to the instability phenomena predicted by Iwan and 
Moeller (1976). Jiang and Chonan (1989) theoretically obtained 
many unstable regions below the lowest critical speed for a 
coupled system of a flexible disk and a translational mass and 
spring. However, the unstable vibrations observed by Kohno 
et al. cannot be explained by the results obtained by Jiang and 
Chonan, because the relationship between unstable frequency 
and rotational speed is qualitatively different in the two studies. 
In addition, the pitch motion of the head was not considered 
in their analysis. Moreover, the unstable regions below the 
critical speed in Jiang and Chonan appear to result from mis­
treatment in their theoretical formulation of a stationary force 
applied to the spinning disk by the head. 

In view of the discrepancy between theory and experiment 
for the unstable vibration related to head-to-medium interface 
as stated above, an effort is made here to develop a more 
accurate model of a flexible disk and head assembly system 
which has the potential to eliminate this discrepancy. This 
paper presents the theoretical formulation and eigenvalue anal­
ysis for an extended model where the pitch motion of the head 
and friction force between the heads and medium are taken 
into account. Although an actual head-to-medium interface 
and suspension system are more complex than the present 
model, it is hoped that this work will contribute to a better 
physical insight into unstable vibrations in the head-to-medium 
interface in flexible disk systems. 

Analytical Model and Theoretical Formulation 
Figure 1 portrays an analytical model of a coupled system 

of a spinning flexible disk and upper and lower head assem­
blies, together with the fixed coordinate systems O-xyz, O-rdz 
and physical parameters considered in this model. In order to 
simplify the analytical model while not losing important factors 
relevant to the instability phenomena, the following assump­
tions are made with respect to the head-to-medium interface 
and head assemblies. 

1 Identical upper and lower heads are sliding on the disk 
with equal and opposite static loads Fz0 and with no initial 
static disk deflection. 

2 The upper and lower head sliders move together as a 
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Fig. 2 The pitch moment of inertia and small pitch stiffness effects 
on the natural frequency (/0 = 1^, kt = 10xk w [ft = 31.6 Hz]) 

rigid body in the transverse and pitch directions in contact 
with the disk. The lower head slider is stiffly supported in the 
transverse direction, whereas the upper one is loaded on the 
disk by a flexible spring through a suspension arm. Thus, the 
effective transverse mass mz is the sum of the two slider masses 
ms and the mass of the loading arm mi in a normal operating 
condition. The pitch moment of inertia 1$ is related to the two 
head sliders whose mass center G is in the middle plane of the 
disk. The head sliders are not allowed to move in the direction 
parallel to the disk surface. The roll motion of the head slider 
about an axis in the circumferential direction is not coupled 
to other motions and can be omitted for the stability analysis. 

3 The suspension system of the two head assemblies is 
modeled as a simple transverse spring with stiffness coefficient 
kz and damper with damping coefficient cz together with a 
pitch moment spring k$ and damper c^. They are uncoupled 
from each other. 

4 The acting and reacting forces and moment between the 
disk and a pair of head sliders are transverse force Fz, friction 
force Fe and pitch moment M. They are concentrated at the 
mass center G of the two head sliders. 

5 The friction force Fe is constant and given by 2fj,Fz0, 
where fi is the friction coefficient. 

Even when the disk is rotating in air without any constraint 
such as a liner, the surrounding air has some inertia and damp­
ing effects on the disk vibration, especially in the high-fre­
quency region. Estimation of these effects is not easy and is 
itself a subj ect to be studied. The mass effect of the surrounding 
air may be equivalently understood not only as an additional 
spinning mass of the disk, but also as a stationary mass which 
is attached to the disk like the two heads. However, because 
of the difficulty of its qualitative estimation, the mass effect 
of the surrounding air is neglected here. Although the esti­
mation of the damping effect of the surrounding air is also 
difficult, we simply regard it as two kinds of homogeneous 
external damping; one of them is spinning with the disk (cO 
and another is stationary (c2). 

From the infinitesimal analysis, the equation of motion of 
the disk can be written in terms of transverse displacement w 
and with respect to the stationary coordinate system (r, 8), as 

T (d a \ 2 (d d\ dw 
pH{3t+"do) w+c\lt+0>Ye)w+C2JI 
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The parameters p, H, E, and v are the density, thickness, 
Young's modulus, and Poisson's ratio of the disk. <5(:) is the 
Dirac delta function. The coupling position between heads and 
disk is assumed to be r = £ and 0 = 0. When the spinning 
disk is clamped at the inner radius r = a and free at the outer 
radius r = b, the in-plane stresses a, and ag due to the cen­
trifugal effect are given by 
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From Fig. 1 (b), the dynamic transverse force Fz and pitching 

moment M are, respectively, given by 

„ d w dw 
F'=-m'l?-C^-k'V' 

d^/dw\ d / 9 w \ 

~~I*aii\rde)~c*at\rde)~k* 
dw 

(3) 

(4) 

Equation (1) looks like an inhomogeneous equation but be­
comes a homogeneous equation after substitution of equations 
(3) and (4) into equation (1). 

A particular solution of the disk deflection for this homo­
geneous system is assumed in the form of a Fourier sine and 
cosine series expansion as follows: 

w = J ] <.G,(r,t)cosie + Ki(r,t)sml6). (5) 

In the case of a freely spinning disk, the sine and cosine func­
tions represent circumferential eigenmodes. In the case of the 
coupled system of the disk and head assembly, each eigenmode 
deviates from a harmonic function, but can be approximately 
expressed as a linear combination of harmonic functions. Re­
garding the mode functions' dependence on r, Gh and K/ are 
obtained by the finite element method as described in a previous 
paper (Ono et al., 1986). This implies that the radial mode 
functions, which are decomposed into harmonic functions, are 
assumed to be approximately represented in the third-order 
polynomial function space within the region of each element. 

Substituting the disk deflection (5) into the basic equations 
(1), (2), (3), and (4), we can get a set of partial differential 
equations for G/(r,t) and K/(r,t). Based on the finite element 
method, we next transform these differential equations with , 
respect to r into matrix algebraic equations for the state vector 
at the nodes of the finite number of elements. When the element 
number in the r direction is denoted by N and the harmonic 
functions are taken into account up to / = L, the degrees-of-
freedom of the final matrix equation for this coupled system 
becomes 2(1 + 2L)N. Since the coefficient matrices of this 
second-order time-derivative equation are asymmetrical, the 
eigenvalue analysis was carried out by using an available library 
program of generalized eigenvalue analysis. 

For the purpose of comparison with the theoretical and 
experimental works published previously, a 5.25-in. flexible 
disk is chosen for computer calculation, although the calcu­
lated data of the most prevailing 3.5-in. disk will be more 
interesting than for the 5.25-in. disk from a technical point of 
view. For the physical parameters of the disk, the following 
values are used in the calculation: E = 4.9 x 109 N/m2 , v = 
0.3, p = 1.3 xlO3 kg/m3, H = 0.078 mm, a = 17.5 mm, b 
= 65.0 mm, and %/b = 0.75. 

As for the .head and suspension parameters, the mass ms 

and pitching moment of inertia 1$ of the two sliders are esti­
mated as 4 .0x l0~ 4 kg and 1.60xl0~9 kg m2, respectively. 
The effective transverse mass mz including both slider mass 
ms and the loading arm mass m\ are estimated as 4.0x 10~3 

kg; ten times larger than ms. Then, 4.0 x 10~3 kg and 1.60 x 10"9 

kg m2 are, respectively, considered to be representative trans­
verse mass and pitch moment of inertia, which we denote 
henceforth by mz0 and 1^. Since the transverse mass mz and 
pitch moment of inertia 1$ are not easily changed, their nominal 
values, mz0 and 70O. are usually used in the following calcu­
lations. 

On the other hand, the stiffness and damping of the sus­
pension cannot be definitely estimated, since different man­
ufacturers may choose quite different values. Especially, the 
stiffness can be changed so easily that its value may be selected 
from the view point of stability. Therefore, the effects of 
stiffness on the eigenvalues were investigated by using several 
different values in the calculation. In order to get better phys­
ical insight into the frequency characteristics of the coupled 
system, we first note the natural frequencies of the different 
subsystems. The lowest values of the transverse stiffness kzo 
and pitch stiffness k^ are chosen to be 15.8 N/m and 
6.32 x 10~6 Nm/rad, respectively, so that the transverse natural 
frequency fz (= \lk^/mz/2-w) and the pitch natural frequency 

/0 (= V ^ / / ^ / 2 i r ) of the two head assemblies both become 
10 Hz, when mz is equal to m^ (= 4.0x 10"3 kg) and 1$ is 
equal to 1^, (= 1.60 X 10"9 kg m2), respectively. 

The effect of the suspension damping is one of the most 
important concerns in this study, because it is well known that 
the singing noise has been often stabilized by the addition of 
some damping material to the suspension. Since it is not easy 
to increase the damping factor by a large amount, the effects 
of transverse and pitch damping are examined with the non-
dimensional damping ratio having the value 0.1. The effects 
of the external damping Q and c2 are also investigated by 
choosing their values properly. 

From the viewpoints of both computing efficiency and ac­
curacy, the maximum number L of the order of the harmonic 
functions and the finite element number N is chosen to be 15 
and 5, respectively. Eigenvalues are generally expressed in the 
form a ± 2irfj, where j = y/ — \. The real part a and the 
frequency/are plotted and discussed. The notation («,/) rep­
resents the «th nodal circle and /th nodal diameter mode. Its 
forward and backward travelling components are expressed by 
the subscripts / and b, respectively. 

Calculated Results and Discussion 
(1) Pitch Moment of Inertia and Stiffness Effects. The 

coupling effects of a spinning disk and a pitch vibration system 
have not been investigated previously, and the effects of the 
pitch parameters in the real head assemblies are weak compared 
with those of the transverse parameters. Therefore, a coupled 
system, which includes only pitch moment of inertia and stiff­
ness, is discussed first. Figure 2 shows the natural frequencies 
/ o f the coupled system (open circles) where the pitch moment 
of inertia 1$ is equal to 70O and the pitch stiffness k^ is equal 
to 10 x k#0. Since the pitch frequency of the head and suspen­
sion system/^, is 31.6 Hz in this case, the amount of kj, is 
regarded as fairly small compared with actual cases. For corn-
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co , rprn 
Fig. 3 Instability due to large pitch stiffness (lt = lt0, k<, = 103x*< 
IU = 316 Hz]) 

co , rpm 
Fig. 4 The pitch moment of inertia and large pitch stiffness effects on 
the natural frequency ((, = /*,, k<, = 103xk^ [f; = 316 Hz]) 

parison the natural frequency of a free disk is indicated in Fig. 
2 with small black dots. Since the real part of the eigenvalue 
is almost zero in this case, the a value is not shown here. 

It is seen from this figure that a nonrotating 5.25-in. flexible 
disk has the lowest natural frequencies for the zero nodal circle 
modes (0,0) and (0,1) at about 10 Hz, while the lowest one 
nodal circle mode, i.e., the (1,0) mode, starts from about 64 
Hz. Although not illustrated in Fig. 2, it was found that the 
lowest two nodal circle mode (2,0) starts from about 190 Hz 
and the lowest three nodal circle mode (3,0) from about 370 
Hz. The frequencies of the backward traveling (0,2)6 and (0,3)6 
modes become zero just above 600 rpm. This rotational speed 
corresponds to the critical speeds of the associated modes. The 
(0,4)6, (0,5)i( and (0,6)6 modes undergo critical speeds at about 
730, 860, and 1000 rpm, respectively. No apparent instability 
can be observed above the critical speeds in this case. 

As seen in this figure, the deviation of the natural frequencies 
from those of the free disk is negligible in the low and middle 
frequency ranges. However, a remarkable change of frequency 
is noted in the high-frequency range. From additional calcu­
lations to investigate the effects of 70 and k$ separately, it was 
found that a k^, of this amount does not change the frequency 
from that of the free disk. Therefore, the change of the natural 
frequency from that of the free disk in the high-frequency 
range is caused by the 1$ only. As seen in Fig. 2, the change 
of frequency from the free disk can be noted from around 100 
Hz, which is above the original natural frequency of the pitch 
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co , rpm 
Fig. 5 Instability due to transverse mass and large transverse stiffness 
(mz = ma, k2 = 10*xka, \f, = 1.0 kHz]) 

vibration system/,,,. The effect of/^ on the frequency becomes 
stronger for higher nodal-diameter modes. From a detailed 
examination of the frequency change above 100 Hz, it was 
found that the frequency change due to 1$ occurs in such a 
way that the top corner and the two upper-side frequency lines 
of each diamond or upper triangle shift downward, keeping 
the two side corners at the initial crossing points for the free 
disk. As seen from the high-frequency range in Fig. 2, all 
frequency lines always pass through the original crossing points 
of different mode lines, as pointed out by Schajer (1984). 

If the pitch stiffness k$ increases by 100 times from the case 
of Fig. 2, instability regions appear above the critical speeds 
as shown in Fig. 3. In this figure, the same symbols in the 
frequency / and the real part a represent the corresponding 
imaginary and real parts of a pair of complex conjugate ei­
genvalues. Except for the case of zero frequency, each single 
symbol in/corresponds to a conjugate pair of pure imaginary 
eigenvalues, since the corresponding a value is zero. At the 
rotational speed w where / decreases to zero, the eigenvalues 
become a pair of positive and negative reals with the same 
absolute value. This implies that one of the modes with zero 
frequency becomes unstable. Since the zero-frequency mode 
is a stationary mode, this type of instability is termed here as 
a "stationary-type instability." The overlapped symbols i n / 
also correspond to positive and negative reals with the same 
absolute value in a. This means that two modes have the same 
frequency, and that one of them is unstable. At this point the 
frequency curves of the two different modes are merged into 
one. Thus, this type of instability is termed here as a "merged-
type instability.'' 

Each stationary-type instability appears to start from near 
the critical speed described above. The rule that determines 
the onset of a merged-type instability is more complex. The 
merged-type instability apparently takes place when a reflected 
increasing frequency line and a decreasing frequency line meet 
in the neighborhood of a third line. As seen in the range 800-
1000 rpm in Fig. 3, more than one instability of different types, 
or the same type, can occur at the same rotational speed. 

From the calculated results for the case where only large 
pitch moment of inertia of 1$ = I02xl4>0 is included, it was 
found that the merged-type instabilities are also induced. How­
ever, its illustration and detail discussion are omitted here, 
because the characteristics of this instability are qualitatively 
similar to those due to the transverse mass which will be dis­
cussed later. 

Small frequency changes from those for the free disk, such 
as a veering feature (Schajer, 1984), can be noted at crossing 
points between different mode lines in Fig. 3. Therefore, it is 
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Instability due to transverse mass only (mz = m j 

also interesting to examine the effect of increased pitch stiffness 
on natural frequency. For this purpose, the low and high-
frequency ranges in the rotational speed range less than 500 
rpm are depicted in Fig. 4 for the same parameters as in Fig. 
3. From the comparison between Figs. 4 and 2, it is noted that 
the large deviation of/in the high-frequency range caused by 
moment of inertia is thoroughly suppressed by the increased 
pitch stiffness. Since the stiffness effect becomes predominant 
over the mass effect in the low-frequency range, all frequencies 
increase from the free disk values except for the (0,0) mode 
and the original crossing points of different modes. Compared 
with the frequency change due to moment of inertia, the fre­
quency change due to stiffness takes place in the opposite 
direction such that the bottom corner and the lower two-side 
frequency lines of each diamond or the bottom-side frequency 
line of each upper triangle move upward, keeping the two side 
corners fixed at the initial crossing points for the free disk. 

Moreover, it is interesting and worth noting that all fre­
quencies above about 320 Hz decrease from the free disk val­
ues. Considering that the pitch vibration system attached to 
the disk has the natural frequency of 316 Hz in this case, we 
found that a general rule of frequency change due to the com­
bination of pitch moment of inertia and pitch stiffness can be 
explained as follows: The inertia effect to decrease frequency 
and the stiffness effect to increase frequency are competitive 
with each other and the two effects are canceled just at the 
natural frequency / 0 of the pitch vibration system attached to 
the disk. The frequency of the disk below / 0 increases due to 
the dominance of the stiffness effect, while the frequency of 
the disk above/^ decreases due to the dominance of the inertia 
effect. The degree of frequency deviation from the free disk 
values in the regions below and above /^ increases with an 
increase in the pitch stiffness and inertia. Since the original 
(n,0) mode motions have no pitch component, their frequencies 
are never affected by the pitch parameters, as seen in Fig. 4. 

Although not illustrated, it was found from the additional 
parameter studies where large amounts of 1$ and Ar0 are taken 
into account separately, that the frequencies asymptotically 
approach certain limiting values with an increase in pitch in­
ertia, and these limiting frequency values are the same as are 
obtained with an increase in pitch stiffness, except the lowest 
natural frequency. The lowest natural frequency tend to zero 
with an increase in pitch inertia. These behaviors will be dis­
cussed in more detail in the case of transverse mass and stiffness 
effects. 

(2) Transverse Mass and Stiffness Effects. Next, the 
transverse mass and stiffness effects on the eigenvalues are 
investigated. Figure 5 shows the destabilized eigenvalues due 
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Fig. 7 The frequency change due to transverse mass and large trans­
verse stiffness (o: transverse mass only \mz = ma]; x : transverse stiff­
ness only (fcz = I04xkjol; •: freely spinning disk) 

to a transverse mass of mz0 and a large transverse stiffness of 
104X/Tj.0. These values are regarded as close to the effective 
mass and stiffness of an actual head assembly in normal op­
erating conditions. The natural frequency of the transverse 
mass and stiffness system fz is 1.0 kHz in this case. 

It is seen from Fig. 5 that this combination of mz and kz is 
large enough to cause instability after the critical speed. From 
additional calculated data for the cases where only mz or kz is 
taken into account separately, it was found that the eigenvalues 
in the presence of kz only are the same as in Fig. 5 in all 
frequency ranges less than 400 Hz, and therefore the stiffness 
effect is predominant in these ranges. The eigenvalues in the 
presence of mz only are found to be different from Fig. 5 in 
the low-frequency range, and are depicted in Fig. 6 for com­
parison. 

As seen in Fig. 5, both stationary and merged-type insta­
bilities again appear due to the transverse stiffness. By com­
parison of Fig. 5 with Fig. 3, one can note that the instability 
regions due to transverse stiffness only or dominant stiffness 
are fairly similar to those due to pitch stiffness. On the other 
hand, transverse mass gives rise to only the merged-type in­
stability, as seen in Fig. 6. The reason why transverse mass 
and pitch inertia do not induce the stationary-type instability 
is that the inertia effects always vanish at zero frequency. If 
a large number of modes are taken into account, the unstable 
speed region caused by the transverse mass appears to be 
bounded differently from the Iwan and Moeller (1976) results 
where a few modes were taken into account. 

It is worth noting that the frequencies / in Figs. 5 and 6 
have the same values except in the low-frequency region where 
the merged-type instabilities take place. This suggests that / 
approaches a limiting value with an increase in stiffness only, 
and that this limiting value is the same as the one which / 
approaches with an increase in mass only, except in the low-
frequency region associated with instability. 

For a more detailed examination of the changes in frequency 
due to transverse mass and stiffness, the natural frequencies 
for the two cases which include transverse mass of 10 x mz0 or 
transverse stiffness of I04xkz0 separately are plotted in Fig. 
7 with circle and cross symbols, respectively, in the low-fre­
quency and low rotational speed ranges. For comparison the 
natural frequencies of the free disk are also shown with small 
dots. It is found from this figure that the natural frequencies 
are almost equal in both cases except for the lowest frequency 
line of the case with transverse mass only. 

Regarding the mass effect on frequency, it was found from 
this figure and additionally calculated data that the lowest 
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Fig. 8 Combination effect of lt, kt, mz and M ' * = '*o. K = 103x^0 
[f„ = 316 Hz], m2 = m*,, k, = 104xka V, = 1-0 kHz] 

frequency curve is reduced toward zero frequency as the trans­
verse mass increases. At the same time the other frequencies 
decrease and approach asymptotic values in such a way that 
the top corner and two-side frequency lines of each diamond 
or triangle go down, keeping the two side corners at their 
original crossing points, similarly to the high-frequency region 
in Fig. 2. In the case where mz = m^, the / value has not 
approached the asymptotic value, because the lowest frequency 
has not become zero and the / values with circles are slightly 
larger than the ones with cross symbols, as seen from Fig. 7. 
When the spinning disk is constrained by only transverse stiff­
ness, on the other hand, the bottom corner and two-side fre­
quency lines of each diamond or the bottom side of each 
triangle rise up from the free disk lines, keeping the two side 
corners at the same positions. As the transverse stiffness in­
creases, the natural frequencies approach asymptotic values. 
In the case of Fig. 7, the transverse stiffness is so large that 
the natural frequency indicated by cross symbols is almost in 
the asymptotic state. It is seen from Fig. 7 that these limiting 
frequencies are equal except for the lowest frequency. How­
ever, it should be noticed that when both the mass and stiffness 
are combined together, the frequency changes can cancel each 
other near the natural frequency fz of the attached mass and 
spring system, because the same asymptotic state is obtained 
by the decrease or increase of / depending on the mass or 
stiffness effect. From these results it can be said that the com­
bination effects of the transverse mass and stiffness on the 
eigenvalues is also competitive rather than additive similarly 
to the combination effect of the pitch inertia and stiffness. 

As mentioned before, the same behaviors as are described 
above for the transverse parameters can be obtained for the 
pitch parameters, although the limiting frequency values are 
different and the («,0) modes are not affected by pitch pa­
rameters. 

(3) Combination Effect of Pitch and Transverse Param­
eters. An actual spinning disk in a floppy disk drive system 
is coupled with not only pitch moment of inertia and stiffness 
but also transverse mass and stiffness. So the next interest is 
to investigate the combined effects of the pitch and transverse 
parameters. Figure 8 shows the eigenvalues related to instability 
above the critical speed when the pitch parameters in Fig. 3 
and the transverse parameters in Fig. 5 are taken into account 
at the same time. 

It is worth noting that the unstable speed regions and the 
strength of the instability are markedly reduced by one fifth, 
as compared with Figs. 3 and 5. From the calculated data for 
the cases where only transverse and pitch stiffnesses are in-

0 200 400 600 800 1000 

co , rpm 

(a) Low frequency range 

(1.8), 

0 200 400 600 800 1000 

co , rpm 

(b) High frequency range 

Fig. 9 Friction effects on eigenvalues 

eluded, it was found that the instability characteristics are the 
same as shown in Fig. 8. This seems to imply that large pitch 
stiffness and large transverse stiffness can mutually suppress 
the strong instability tendencies indicated in Figs. 3 and 5. 
From the calculated results for the several cases where k$ or 
kz are further increased from the case in Fig. 8, it was found 
that the a values associated with instability change slightly but 
that the instability regions can neither be completely eliminated 
nor can they be increased again as in Fig. 3 or Fig. 5 by 
increasing k^ or kz. This implies that the combination effect 
of pitch and transverse stiffness on instability is neither additive 
nor competitive, but may be called a suppression effect. 

From the additional parameter study where only 1$ and mz 
are included, it was found that the instability characteristics 
above the critical speeds are governed by either 1$ or mz, de­
pending on their relative amounts. In other words, the com­
bination effect of the pitch inertia and transverse mass is 
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Fig. 10 Combination effect of friction force and other parameters on 
eigenvalues (1$ = lt0, kt = 10axArw, kz = kg,, Fe = 0.32 N); (a) real part 
values when m2 = ma; (b) real part values when mz = 0.1 x ma; (c) 
frequency when mz = trig, or 0.1 x m^ 

competitive and any suppression effect as shown in Fig. 8 
cannot be obtained. Therefore, a combination of two of the 
four parameters 1$, k^, mz and kz usually affects the instability 
competitively except for the combination of k^ and kz. 

The suppression effect due to the combination of k$ and kz 
may be hypothetically interpreted as follows: Modes desta­
bilized by large pitch stiffness are possibly allowed to move 
only in the transverse direction, like a symmetrical deflection 
mode with respect to the coupling point. On the other hand, 
modes destabilized by large transverse stiffness are allowed to 
rotate about the coupling point, like a skew symmetrical de­
flection mode. Therefore, the former unstable modes may be 
suppressed by the addition of a transverse stiffness constraint, 
while the latter modes may be suppressed by a pitch stiffness 
constraint. 

Since the values of pitch and transverse parameters consid­
ered in Fig. 8 are regarded as equivalent to those of an actual 
flexible disk drive in the normal operating condition, it can be 
said that the instability tendency above critical speeds can be 
largely removed by the constraints of pitch and transverse 
stiffnesses. However, the residual instability tendency cannot 
be eliminated without employing some other stabilizing means, 
such as a damping, as will be discussed later. 

(4) Friction Effect. Next we investigate the instability ef­
fect of the head-disk friction force. In the following calcula­
tion, the static head load Fa is assumed to be 0.4 N. The 
friction coefficient is considered as relatively large and is taken 
as 0.4. Then the tangential friction force Fe is 0.32 N. Figures 
9(a) and {b) show the eigenvalues in the low and high-fre­
quency ranges, respectively, for the case where only the friction 
force is applied to the coupling point. 

From the comparison of/values in Figs. 9(a) and (b) with 
those of the free disk in Fig. 2, it is found that the friction 
has an effect to change the frequencies from those of the free 
disk except for the («,0) modes. The reason for no change in 
the («,0) mode frequencies is that they have zero derivative in 
the circumferential direction so the static friction force effect 
vanishes as seen from the friction term in equation (1). The 
change of the frequencies from the free disk values and the 
veering feature near the crossing points are relatively stronger 
in the low-frequency range than in the high-frequency range. 

Fig. 11 Combination effect of friction force and other parameters on 
eigenvalues (/« = 1^, kt = lO 'x *^ , k2 = kx, F„ = 0.32 N); (a) real part 
values when m, = m*,; (b) real part values when mz = 0.1 x ma; (c) 
frequency when mz = m^ or 0.1 x m*, 

In particular, the (0, \)b mode frequency drops markedly and 
remains at zero above about 100 rpm. 

As seen from the a values of Figs. 9(a) and (b), the in­
stabilities are induced by constant friction force in the entire 
frequency range. Since the interaction between different orig­
inal modes due to friction is not so strong, the notation of the 
corresponding original mode number is indicated for the typ­
ical increasing and decreasing frequency components for con­
venience. From comparison between the a and/values in Fig. 
9, it is found that the forward, or increasing frequency, modes 
generally become unstable, while the backward, or decreasing, 
frequency modes remain stable. Near the crossing or veering 
points, the a values generally tend to zero. The steepness of 
the increasing or decreasing lines does not always result in a 
large absolute value of a. The largest positive a value appears 
in the (0,3)/ mode in the low-frequency range, although the 
eigenvalues for higher-order modes are not illustrated in Fig. 
9(a). In the high-frequency range between 300 and 350 Hz, 
on the other hand, the (1,6)/, (1,7)/, and (1,8)/mode lines have 
relatively large positive a values, while the (1,8)6, (1,9)6 and 
(1,10)6 mode lines have relatively large negative a values. It is 
interesting to note in Fig. 9(a) that all the backward modes 
have small negative a values for frequency below the (0,1)/ 
mode line, even above their critical speeds. The (0,1)4 mode 
has a particularly large negative a value. From the rotational 
speeds above which the /values for the (0,1)(, mode becomes 
zero, this conjugate eigenvalue changes to two negative values. 

In an actual floppy disk drive, the static friction force is 
imposed on the disk together with pitch and transverse pa­
rameters. Therefore, we next calculated the combination effect 
of the friction force and the large pitch and transverse param­
eters which were used for the case in Fig. 8. The calculated 
result was found to be the same as in Fig. 8 in the entire speed 
range up to 1000 rpm and in the frequency range up to 400 
Hz. The absolute value of a for any mode is reduced to less 
than 0.02 rad/s except the ones which are related to stationary 
(zero frequency) and merged-type instabilities. This means that 
the destabilizing effect of friction force is completely sup­
pressed by the combination effects of large pitch and transverse 
stiffnesses. 

Although the present analytical model may be still much 
simpler than the actual experimental set up used by Khono 
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and et al. (1989), it is interesting to compare their observed 
characteristics of unstable vibration in the flexible disk and 
head assembly system with the calculated results obtained from 
the present model. According to their observation, typical fea­
tures of unstable vibration are that the instability occurs in a 
certain rotational speed range and its frequency increases with 
increase in rotational speed. These features agree well with the 
characteristics of unstable vibration caused by friction force 
only, as shown in Figs. 9(a) and (b). In the normal operating 
condition, however, the transverse stiffness is so high, because 
of the fixed lower head, that the instability due to friction 
force can be thoroughly suppressed, as stated above. There­
fore, if we imagine that the leading and trailing disk supporters 
used in their experiment have no function to stabilize a par­
ticular mode, and that the lift of the leading disk supporter 
functions to weaken the suppressing effect of mass and stiff­
ness, then one of the interesting modes can possibly become 
unstable in a certain rotational speed region whose termina­
tions correspond to veering points; for example, the (1,7)/inode 
becomes unstable between 425 and 600 rpm and the frequency 
may change from 320 to 347 Hz with increase in the rotational 
speed, as seen from Fig. 9(b). According to their description, 
the unstable vibration may have nodes near the disk supporters 
and may be regarded as a higher-order mode like the (1,7)/ 
mode. Accordingly, it is reasonable to consider that the lift of 
the leading-side disk supporter induces some reduction in the 
transverse stiffness. For example, strong air-bearing effects 
may be developed between the lower head slider and the disk. 
If the loading arm and slider are decoupled, the effective mass 
of OTJO (= Wms) may be reduced to the slider mass ms. 

In order to investigate the possibility of friction instability 
under such abnormal conditions with reduced values of stiff­
ness and mass parameters as described above, the eigenvalue 
analysis was further carried out for the four cases which include 
friction force as in Fig. 9 and the decreased pitch and transverse 
parameter values. If the transverse stiffness decreases to kz0, 
the a values increase to more than 10 rad/s in the low-frequency 
range, but still remain less than 0.2 rad/s in the high-frequency 
range. In order to increase the a values in the high-frequency 
range, it is also necessary to decrease the transverse mass. The 
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parameter study was done for the following four cases: (1) 
kz = ktf, with the other parameters having the same values as 
in Fig. 8, (2) kz = kz0, mz = 0.1 x mz0 and the other parameters 
the same as in Fig. 8, (3) kz = kz0, k^ = I02xk4>0 and the 
other parameters the same as in Fig. 8, and (4) kz = kz0, mz 

= 0.1 x ma, k$= 102 x k^o and the other parameters the same 
as in Fig. 8. 

If we confine our discussions only to the characteristics of 
eigenvalues in the high-frequency range, it was found that cases 
(1) and (2) have the same/values but different a values, and 
that cases (3) and (4) have the same / values but different a 
values. Thus, the a values for the cases (1) and (2) and their 
identical frequency / in the high-frequency range are shown 
in Figs. 10(a), (b), and (c), respectively. Similarly, Figs. 11(a), 
(b), and (c) show the corresponding quantities for the cases 
(3) and (4). 

It is seen from these figures that the a. values decrease almost 
inversely proportional to the increase in mz in both Figs. 10 
and 11 and that the/Values in the high-frequency range depend 
not on mz but on k$ in these ranges of parameter values. The 
reason why mz does not apparently change the/values, while 
changing the a values, is considered to be as follows: Since 
/ j is 31.6 Hz at most in these cases, the mz effect is predominant 
over the kz effect in the high-frequency range and the eigen­
values in Figs. 10 and 11 are close to the limiting state, in terms 
of the transverse mass effect, where the a values are zero. 

For better understanding, the a and/l ines of typical eigen­
values with relatively large a values are indicated with the same 
letters. Along the lines denoted by (a) and (b) in both Figs. 
10 and 11, the same relationship between the slope o f / a n d 
the sign of a as observed in Fig. 8 still holds. However, the 

, increasing frequency regions with relatively large a values of 
the lines (a) and (b) in Fig. 10(c) are remarkably reduced 
compared with those in Fig. 11(c). As seen in Fig. 11, the 
mode indicated with (a) becomes unstable in the rotational 
speed region from 325 to 473 rpm. In this unstable region the 
unstable vibration frequency increases from 320 to 340 Hz, 
with an increase in the rotational speed. Similarly, the mode 
denoted by (b) becomes unstable in the rotational speed region 
from 240 to 440 rpm and the frequency increases from 330 to 
350 Hz. It can be said that these results are in good qualitative 
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agreement with the experimental ones observed by Kohno et 
al. (1989). 

From these parameter studies it is obvious that the instability 
caused by friction force can be suppressed by increasing the 
transverse stiffness and mass. From additional parameter stud­
ies it was also found that the friction instability can be sup­
pressed by increasing the pitch moment of inertia and stiffness. 
The reason why the a values with k^ = lO'xfc^o in Fig. 10 
are larger than those with k$ = 102 X k^Q in Fig. 11 is that the 
effect of 70 and k^, on the eigenvalues is almost canceled near 
316 Hz, because/0 = 31.6 Hz in Fig. 10. 

(5) Damping Effects. Lastly, we discuss the damping ef­
fects on the instability. To examine the effects of damping 
factors on the high-frequency instability caused by the friction 
force, we chose the abnormal case in Fig. 11(6) and (c), where 
h = /*o, k* = 1 0 2 x ^ 0 if* = 100 Hz), mz = 0 .1xwm 0 

(= ms), kz = kz0 (fz = 31.6 Hz) andFe = 0.32 N. The values 
of the damping coefficients c$ and cz are chosen to be 
2.01 X 10~7Nms/radand 1.59 x 10"2Ns/m, which correspond 
to 0.1 nondimensional damping ratios. Although the C[ and 
c2 values are not known, they both are chosen to be 0.1 Ns/ 
m. 

Figure 12 shows the a values for each case where only one 
damping factor described above is additionally taken into ac­
count. Since damping factors of this amount have no visible 
effect on frequency, the/values shown in Fig. 12(e) are com­
mon for the four cases. Similarly to the previous figures, the 
same symbols for a and / belong to a conjugate pair of ei­
genvalues. From Fig. 12(a) and (6) it is noted that c$ has a 
strong stabilizing effect on the instability caused by friction 
force, whereas cz has little stabilizing effect. However, this 
superiority of c$ to cz does not hold in the low-frequency range 
(not shown) where cz has a rather stronger stabilizing effect 
than c$. It should be also noted from Fig. 12(a) that the a 
which originally had larger absolute values without c^ move 
downward by a greater amount due to the addition of c^. 

On the other hand, the damping factors C\ and c2 have 
different stabilizing effects such that all a values are shifted 
in the negative direction by the same amount, as seen from 
Figs. 12(c) and (d). Strictly speaking, some slight deviation 
from the uniform shift rule can be noted in Fig. 12(d) in the 
higher rotational speed region. It is obvious that this difference 
in the deviation of the a value with C\ from that with c2 results 
from the lack of the convective term of c2 in equation (1). 

From the additional parameter studies for the combination 
effects of these damping factors, it was found that they affect 
the a value under a simple principle of superposition, while 
keeping the / values unchanged, in the ranges of parameter 
values used here. It can be said from these results that the 
instability with high frequency caused by friction force can be 
effectively stabilized by the addition of a pitch damping to the 
suspension and some external damping to the disk. 

Although not illustrated, it was found from the calculated 
results for the same parameters as in Fig. 11(b), but with 
damping, that the positive a values become more than 10 
rad/s in the low-frequency range and these unstable vibrations 
of the lower-order modes cannot be stabilized by the four kinds 
of damping factors of this amount. In order to change the 
positive a value to negative, the amounts of c0, cz, ciy and c2 

should be increased by more than 20 times from those in Fig. 
12. In an actual system, however, those lower-order modes 
would be practically suppressed by a disk liner, even if the 
transverse stiffness happens to be small. 

In order to develop a high-speed flexible disk drive, on the 
other hand, it is well known that we should develop some 
means of increasing the external damping, for example, such 
as a Bernoulli plate. Therefore it is interesting to investigate 
the effect of strong surrounding air damping c^ and c2 on the 
instability in the high rotational speed region above the critical 

speeds. For the purpose of this parameter study, we chose 
three different combinations of the transverse and pitch pa­
rameters, as have already been treated in the above discussion. 
The first is the same as in Fig. 5 (large transverse mass and 
stiffness). The second is the same as in Fig. 8 (small pitch 
inertia and large pitch stiffness together with large transverse 
mass and stiffness). The third is the case having the same 
parameters as in Fig. 11(6) excluding the friction force (small 
pitch and transverse parameter values). Currently available 
high rotational speed flexible disk drives with a fixed recording 
head and some stabilizing plate may be modeled as the one 
with parameter values between the first and second cases. If 
a pair of flying head sliders are employed, similarly to those 
rigid disk drives, the head and suspension system is modeled 
as the third case. In high-speed flexible disk drive, the friction 
force should be decreased to be negligible value in any case. 
For each case described above, the external damping effects 
were examined by calculating three cases where Q = 0.5 
Ns/m, c2 = 0.5 Ns/m and Ci = c2 = 0.5 Ns/m are added 
separately. 

Since it was found that the external damping effects on the 
eigenvalues are essentially equivalent for all three cases of 
different combinations of the pitch and transverse parameters, 
the C\ and c2 effects on the / and a values in the second case 
are representatively shown in Fig. 13. Figure 13(a) portrays 
the a values in the case where only C\ is included. The cor­
responding/values are just the same as shown in Fig. 8. From 
the comparison between the a values in Fig. 8 and those in 
Fig. 13(a), it is seen that the a values for all modes uniformly 
shift to the negative direction and almost all unstable modes 
are stabilized except for the one which emerges at 1000 rpm 
(a value is off the graph). As seen from the comparison between 
Fig. 12(c) and Fig. 13(a), the amount of negative shift in the 
a values due to C\ is proportional to the c\ value. Therefore, 
it can be said that all unstable modes can be stabilized by the 
addition of the necessary amount of the spinning external 
damping factor c\. 

Figures 13(6) and (c), respectively, show the a and/values 
when only c2 = 0.5 Ns/m is included. From careful comparison 
of the/values in Fig. 13(c) with those in Fig. 8, it is found 
that some of the merged frequencies in Fig. 8 separate by small 
amounts due to the c2 effect in Fig. 13(c). Even though the 
two frequencies are not merged, the original pair of positive 
and negative a values remain unchanged excluding a few ex­
ceptions such as the pairs observed at 840 and 940 rpm. From 
Fig. 13(6) it is found that the a value of every backward mode 
increases from the same negative value as is obtained by the 
same amount of C\ and becomes positive just above the cor­
responding critical speed, as the rotational speed increases. 
The eigenvalues of the stationary-type instability modes are 
not affected by the addition of c2. As the rotational speed 
increases further, the increasing frequency lines which reflect 
back at the critical speeds cross the decreasing frequency lines 
of the other backward modes, and the a values of the two 
crossing modes become a large positive and negative pair near 
the crossing points, even if the two frequencies do not merge 
into one. By careful inspection to the correspondency between 
the a in Fig. 13(6) and the / i n Fig. 13(c) near the crossing 
point, it is noted that the a value of the decreasing frequency 
line jumps to the negative value of the pair, while that of the 
increasing frequency line jumps to its positive value. On the 
whole, it is found that the stationary external damping factor 
c2 has no effect to stabilize the instability above the critical 
speed caused by the pitch and transverse inertias and stiff­
nesses. On the contrary, all backward modes become unstable, 
although the amounts of the positive a values remain small. 

From the calculated results for the case where both C\ and 
c2 are included, it was also found that the a values are equal 
to the sum of the two cases where Cj and c2 are separately 
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included and that the / values are nearly equal to the ones 
where only c2 is included. 

Conclusions 
A new modeling and theoretical formulation is presented 

including friction force and pitch motion of a head slider as 
well as its transverse motion. The results of an eigenvalue 
analysis for a 5.25-in. flexible disk drive system with various 
values of the related parameters can be summarized as follows: 

1 Large pitch moment of inertia and large pitch stiffness 
have destabilizing effects on the backward travelling modes 
above their critical speed similarly to transverse mass and stiff­
ness. 

2 Large pitch and transverse stiffness induce two kinds of 
instability above critical speeds; stationary (zero frequency)-
type instability and merged-type instability. Every unstable 
speed region is bounded. 

3 Large pitch moment of inertia and transverse mass causes 
only the merged-type instability above critical speeds. The un­
stable speed region is also bounded. 

4 Pitch moment of inertia and transverse mass attached to 
the disk shift downward the original free-disk frequency lines, 
except for the crossing points of two different frequency lines. 
On the other hand, the pitch and transverse stiffness shift 
upward the original frequency lines, excluding the crossing 
points. In case of pitch parameters, the eigenvalues of the 
original zero-nodal diameter modes do not change. 

5 With an increase in transverse mass, the frequency lines 
approach certain limiting lines which are the same as the fre­
quency lines approach with increase in transverse stiffness, 
with the exception of the lowest frequency line. The lowest 
frequency line tends to zero with an increase in the transverse 
mass. The same situation occurs in the relation between the 
pitch moment of inertia and stiffness. The limiting frequency 
lines are different for the transverse and pitch parameters. 

6 The combination effects of pitch inertia and stiffness or 
transverse mass and stiffness on eigenvalues are competitive. 
The two effects are canceled at the mass-stiffness natural fre­
quencies, above which the inertia or mass effect becomes pre­
dominant and below which the stiffness effect becomes 
predominant. 

7 The positive real part values of the unstable modes caused 
by the pitch stiffness and transverse stiffness separately can 
be largely reduced by the combination of the pitch and trans­
verse stiffnesses. This suppression effect of instability cannot 
be observed in the combination of the pitch moment of inertia 
and transverse mass. 

8 A constant friction force makes every increasing fre­
quency mode unstable and every decreasing frequency mode 
stable over the entire rotational speed region, except the orig­
inal zero-nodal diameter mode. Near the crossing points be­
tween the increasing and decreasing frequency lines, the real 

part values tend to be zero. This result shows good correlation 
with prior experimental ones. 

9 The instability due to the friction force can be suppressed 
by increasing the transverse mass and stiffness and pitch stiff­
ness. In the normal operating condition of an actual flexible 
disk drive with a lower fixed head, the friction instability is 
regarded as completely suppressed due to large transverse stiff­
ness and large effective transverse mass. However, if the con­
straints due to the large transverse stiffness and mass are 
accidentally released, the instability due to the friction force 
may appear. 

10 The unstable vibration with high frequency caused by 
the friction force can be effectively stabilized by the pitch 
damping of the head suspension. The transverse damping of 
the head suspension has little stabilizing effect o"n the high-
frequency unstable modes. The external rotating and stationary 
dampings also have a stabilizing effect on the friction insta­
bility. The degrees of the stabilizing effects are proportional 
to the amount of each damping factor and the combination 
effect of different damping factors is additive. 

11 The instability caused by pitch stiffness and transverse 
mass and stiffness above the critical speed can be stabilized 
by increasing the effect of spinning external damping. The 
stationary external damping has no stabilizing effect on the 
instability of this kind. In addition, the stationary external 
damping has a small destabilizing effect on all backward modes 
above the critical speeds. 
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The Various Approximations of the 
Bimetallic Thermostatic Strip 
A thin strip, formed by bonding two dissimilar materials, constitutes a simple 
thermostatic element. If edge effects are neglected, then the strip is reduced to a 
uniform beam, or plate, with two degrees-of-freedom. The flexure occurs only 
because of the bond and interfacial shear which is also accompanied by transverse 
normal stress. These latter stresses are very localized at the end and edges. Here, 
the elementary approximations, and refinements via finite elements, are presented 
and compared. Deflections are given with reasonable accuracy by the simple ap­
proximations, but the severe interfacial stresses are revealed only by the refinements. 

Introduction 

A thin strip, formed by bonding two hookean, homoge­
neous, but dissimilar materials, constitutes a simple thermo­
static element (Fig. 1). It provides an interesting study in 
mechanics and approximations. If end and edge effects are 
neglected, and the Bernoilli assumptions are invoked, then the 
strip is reduced to a model with two degrees-of-freedom (Ti-
moshenko, 1925). By acknowledging the edge effects in the y 
direction and treating the element as a plate under the Kirch-
hoff assumption, the element is likewise reduced to two de­
grees-of-freedom (Timoshenko, 1925). Either model provides 
a prediction of the interior behavior and deflections, but the 
latter gives a better description of normal stresses upon a cross-
section. 

Of course, the flexure caused by heating occurs only because 
of the bond and the essential interfacial shear stress which is 
also accompanied by transverse normal stress. These effects 
are very localized near the ends and edges. Some indication 
of these effects are obtained by approximating each layer as 
a separate beam and enforcing interfacial continuity and in­
teractions, as well as appropriate end conditions. This con­
stitutes a one-dimensional "bonded-beam" approach which 
has been adopted and reported by Suhir (1986,1989), Grimado 
(1978), Chang (1983), and others. Unfortunately, a beam the­
ory can not accurately predict effects which occur in an edge 
zone, equal or smaller in magnitude than the thickness. 

Finite elements can give more accurate descriptions of the 
stresses near the edges and ends (Gerstle and Chambers, 1987; 
Suganuma et al., 1984). This can be employed in the context 
of either a plane-stress (two-dimensional) or a general (three-
dimensional) model. However, neither can accurately describe 
the singularity which is apparent in the interfacial normal stress 
(Dundurs, 1967, 1969; Bogy, 1968, 1970). 
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In this paper, the authors present derivations of both the 
simple beam and simple plate approximations first outlined 
by Timoshenko (1925). To validate these simple approxima­
tions, and to gain a deeper understanding of the interfacial 
stresses, we also examine this problem using both plane-stress 
(two-dimensional) and general (three-dimensional) finite ele­
ments previously developed by Wempner (1982, 1983). (The 
procedure for the FEM calculations was interactive; the mesh 
was progressively altered and refined as successive results in­
dicated the very severe gradients near the end and edges.) In 
comparison, a summary of earlier works using both the bonded-
beam approach and other (different) plane-stress (two-dimen­
sional) finite elements are also presented. 

Our purpose is to display the very interesting results and 
differences obtained by the various elementary theories and 
the more refined models of the finite element method. Though 
the predictions of stresses differ in the various approximations, 
similar predictions of the deflection of the tip are given by all. 
The effectiveness of employing a simple element (Wempner, 
1982, 1983) for this study is also evident, since all numerical 
results were obtained using a personal computer. Finally, the 
results provide a graphic example of St.-Venant's principle. 

A First Approximation—a Simple Beam 
For the simplest approximation first described by Timo­

shenko, the assumption is made that L»B>H. Therefore, 
all stresses in the y and z directions are neglected. If end effects 
are also neglected by invoking St.-Venant's principle, the only 
nonzero stresses are the longitudinal normal stresses in each 
material. By the Bernoulli assumption, plane sections remain 
plane, and the normal stresses follow: 
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ffjf. = E,-e° - E-,KZ - EmA T where / = 1, 2. (1) 

Here, e° and K are the extensional strain and curvature of 
the x axis; they are obtained by enforcing equilibrium; viz., 
force and couple vanish: 

F=[axdA=B\oxdz = 0 M= \zoJA =B \zarxdz = 0. (2) 

In accordance with (1), Eqs. (2) are expressed in e° and K: 
E,H: 2 - " 2 \ 0 l+ttu+'A{ \(. Ei 1$ 

~EXH\ 
KHs 

, , E2H2 a2\ = | 1 + — — — \aiAT (3a) 
Ei Hx aj 

1 - -
E,H-•2 " 2 \ 0 

£2#f 
+ = ( l + § ^ l K f f . 

£ , / /? 

-"-ISSH TO) 

The small deflection of the tip follows: 

w = -L2. 
2 

(4) 

By the above approximations, the only nonzero stresses de­
pend on the transverse position in the strip, and the entire 
system is reduced to one with two degrees-of-freedom (e° and 
K). 

This approximation was also given by Gerstle and Chambers 
(1987), but was derived in a different manner. 

A Better Approximation—a Simple Plate 
For most real thermostats, the geometry of the bimetallic 

strip corresponds to L > B >H or L > B »H. Then stresses on 
z surfaces might be neglected, but on y sections, a better ap­
proximation is obtained if only the resultants are required to 
vanish, as on x sections. In effect, the strip is viewed as a 
simple Kirchhoff plate, wherein the interfacial strains (ex, e°) 
and curvatures (KX, ny) are constants. This plane stress ap­
proximation follows (/= 1, 2): 

°xi = T—S (e? + " / $ ~ "T~4 (K* + v ^ z ~ ~i 5 Ei<xA T (5a) 
l—Vi 1 — Vj 1 — Vj 

Ei 

\-v\ (4+»i$-
E, \+Vi 

2 ^ 2 («y + "i«x)Z - -—^EjOCjAT. (5b) 
i 1 vi 

The values for the four unknown constants e°, e°, KX, and 
Ky are found by enforcing the conditions of vanishing force 
and couple on x and y sections: 

Fx= \axdA=B M z = 0 My=\zaxdA=B\zaxdz = 0 (6a) 

Fy= \(jydA=L \oydz = 0 Mx=\zoydA=L\zoydz = Q. (6b) 

The strains and the curvatures are the same in both the x 
and y directions, i.e., e° = e° = e° and Kx = Ky = K\ 

where 

°x\ = ay\ = Eie — EiKZ — EiCtiAT 

°x2 = Oy2 = E2e - E2Hz - E2a2A T 

E 

(la) 

(lb) 

K = (\ + V)K e = (l + v)eu E = - 5 a = (l + v)a. (8) 
1 -v 

The two equations governing i and H are similar to (3a,b) 
viz.: 

'+tf'«" E2 fh 
EXH\ 

E2 Hi 
H\ e + : E,H] 

HH, 

KH, 

1 , E2 H2 a2 

Ei Hi a! r S i i r (9a) 

l_EiHl 02 
EI H2 ai 

a 1 AT. (9b) 

By this approximation, the small deflection along the cen­
ter line at the tip is again given by Eq. (4). 

As in the simple beam approximation, the only nonzero 
stresses depend on the transverse position in the strip, and the 
entire system is reduced to one with two degrees-of-freedom 
(I and K). In fact, Timoshenko (1925) showed that the simple 
plate approximation can be obtained from the simple beam 
approximation by making the following substitutions: 

Ei E2 £ , = — i - E2 = ~ ^ (10) 
\ — V\ \—V2 

In addition, if vx = v2 = v, the stresses predicted by the simple 
plate approximation are just 1/(1 -v) times the stresses pre­
dicted by the simple beam approximation. 

Approximation as Two Bonded Beams 
Both of the preceding approximations provide ready cal­

culation of the stresses in the interior of the strip. However, 
neither solution provides any information about the interfacial 
shear and normal stresses. These interfacial stresses are neg­
ligible in the interior of the strip, but are significant near the 
end of the strip as first noted by Timoshenko. 

Two-dimensional elasticity solutions of infinite quarter-
planes by Dundurs (1967,1969) and Bogy (1968,1970) indicate 
that there is a singularity in the interfacial normal stress at the 
end and edges of the strip. Because of this singularity, there 
is also a severe gradient in the interfacial shear stress near the 
end and edges of the strip. However, an investigation of these 
interfacial stresses for the exact geometry of a real thermostat 
by either a two or three-dimensional elasticity solution would 
be exceedingly difficult, if not impossible. 

In an effort to develop simplified calculations for the in­
terfacial stresses, several authors such as Suhir (1986, 1989), 
Grimado (1978), Chang (1983), and others have analyzed bi-
material strips by beam theory. Although their approaches 
differ slightly, all of these authors model each material as a 
separate beam or long narrow plate. Equilibrium for each beam 
is enforced, as well as the boundary conditions at the interface 
of the two beams and at the end of the strip. This "bonded-
beam" method can be subdivided into two types; bonded beam 
I (Suhir, 1986 and Grimado, 1978) enforces a zero shear force 
at the end; while bonded beam II (Suhir, 1989, and Chang, 
1983) enforces a zero shear stress at the end. As an example 
of this method, the general results from Suhir's (1986, 1989) 
work will be presented. 

For the bonded-beam I approximation, the interfacial shear 
and normal stresses are given by: 

AT(ai-a2) 
smh.(jxix) 

AT(ai~a2) cosh(/iiAr) 

(11a) 

(11*) 
A iA2 

Likewise, for the bonded-beam II approximation, the in­
terfacial shear and normal stresses are given by: 

Txz=C\ sinh(/3i.*) + C2cosh(/32x)sin(|83x) 

+ C3sinh(|82^)cos(/33x) (12a) 
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Fig. 2 Finite element geometry 

CTi. = C4COsh(/31A:) + C5cosh(/32x)cos(i33X) 

+ C6sinh (02x) sin (j33x). (126) 

All of the constants in (11a) through (126) depend on the 
geometry of the strip and the properties of the two materials. 

For both bonded-beam approximations, the deflection at 
the tip of the strip is: 

ML2 (on-a2) AT 

H2 + H2
2 + W2 + 

E2Hi{\ •A) 
£,#,(1 -A) 

Erfa-A) 
E2H2(l-ui) 

(13) 

Although these approximations lead to reasonably simple 
closed-form solutions for the interfacial stresses, all suffer 
from some fundamental errors. First, all of the solutions ignore 
the effects of stresses and strains in the y direction and, there­
fore, ignore equilibrium in that same direction. Second, all of 
them predict finite values for the transverse interfacial normal 
stress at the end of the strip, as opposed to the singularity 
indicated by the solutions of elasticity. In fact, certain com­
binations of properties and thicknesses predict zero normal 
stress, e.g., from Suhir: 

E,H\{\ 

E2Hi(l - *f) 

A)__. 
2\ ~~ ! • (14) 

Previous Finite Element Approaches 
In an effort to probe the nature of the interfacial stresses 

for real geometries of thermostats and similar structures, Gers-
tle and Chambers (1987), Suganuma et al. (1984), and others 
have employed the finite element method (FEM). These pre­
vious studies used two-dimensional elements, wherein the di­
rection of zero stress is again taken as the y direction (the 
width). However, as already shown for real geometries of 
thermostats, B>H. Therefore, if the singularity at the tip is 
ignored, a model using plane-stress elements with zero stress 
in the z direction (the height) is also a valid model. 

Present Approach 

In this paper, the authors employ both two-dimensional and 
three-dimensional finite elements (Fig. 2). Both types of ele­
ments were derived using the Hu-Washizu (1955) functional. 
This functional was chosen as a basis for development of finite 
elements for two reasons. First, it allows independent ap­
proximations for the displacements, strains, and stresses. Sec­
ond, elements based on the Hu-Washizu functional avoid the 
problem of "shear locking" when the thickness of the element 
decreases, (Wempner, 1968, 1982, 1983). 

The first element is a plane-stress plate (i.e., the normal 
stress in the transverse direction is ignored). This element has 
trilinear approximations for the in-plane displacements, bili­
near approximations for the transverse displacements and the 

in-plane normal strains and stresses, as well as linear approx­
imations for all three shear strains and stresses. In view of the 
approximations, i.e., suppression of the transverse normal 
stress, this model has the attributes of a (two-dimensional) 
shear deformable plate. 

Since the normal stress in the transverse direction is ne­
glected, the extensions of the normals in the transverse direc­
tion are also neglected. Let £,• ( /=1 , 2, 3) denote the local 
normalized coordinates which originate at the center of the 
element. Nodal values are f}= ± 1, wherey'= 1, 2, . . . 8 signify 
node numbers. Also, the nodal displacements are denoted by 
i/,. Then the plane-stress displacement approximation is given 
by: 

j 8 j 4 

"/ = 55>;"f ( '=1,2) u3 = -jy/ku
ki (15fl) 

y = i k=i 

where 

j y , - = ( i + t o i + & 2 ) ( i + & 3 ) 

^=0+*f*l)(l+*2*2). (15*) 

The strain approximations are: 

€i = Ml + /*2*2 + ^3*3 + /«4*2*3 

«2 = M5 + f*6* 1 + C A + f t ^ A 

Yl2 = M9 + MlO*3 

7l3 = Mll+Ml2*2 

723 = M13 + /"14?1- (15C) 

Likewise, the stress approximations are: 

<?!= 0 1 + 0 2 * 2 + 0 3 * 3 + 04*2*3 

<?2 = 0 5 + 0 6 * 1 + 0 7 * 3 + 08*1*3 

Tl2 = 09 + 01O^3 

7"l3 = 011+012*2 

723 = 013 + 0141!- (15«0 

The second element is a three-dimensional brick. This ele­
ment has a trilinear approximation for all three displacements, 
bilinear approximations for all three normal strains and stresses, 
and linear approximations for all three shear strains and 
stresses. 

The displacement approximation is given by: 

"< = J l > W 0'=1>2> 3) 
y'=i 

(16o) 

where TV} is defined in (156). 
Now, in addition to the strains (15c) and the stresses (15d), 

one also has: 

62 = /*15 + Ml6*l + Ml7*2 + Ml8*l*2 

Ol = 015 + 016*1 + 017*2 + 018*1*2. (166) 

In both elements, the strain approximations are the simplest 
polynomials that inhibit all zero energy or "hour glass" modes 
of deformation (Wempner, 1982, 1983). 

Finite Element Models 
Our numerical examples employ the following material and 

geometrical properties: Ex = 15.0x 106 psi, E2= 30.0x 106 psi, 
vi = 0.300, j<2 = 0.300, a, = 13.0x 10"6/°F, a2 = 6.50x 10 6/°F, 
£ = 2.000 in., 73 = 0.200 in., 7^ = 0.060 in., #2 = 0.015 in., 
Ar= 400°F. These properties were chosen to provide a realistic 
example. The much thinner layer might be ferrous alloy with 
greater strength; the thicker layer a cuprous alloy. Of course, 
the relatively thin layer aggravates the computational problem; 
in particular, the normal stress gradient must be severe to 
vanish at the nearby surface. 
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Table 1 Summary of FEM models 

FEM MODEL NUMBER 

1 

2 

3 

4 

DESCRIPTION 

X-Y P l a n e - S t r e s s Y C o n t i n u i t y N o t E n f o r c e d 

X-Y P l a n e - S t r e s s Y C o n t i n u i t y E n f o r c e d 

X-Z P l a n e - S t r e s s 

3-D 

Table 2 Comparison of tip deflections 

APPROXIMATION 

S i m p l e Beam 

S i m p l e P l a t e 

Bonded Beam I & I I 

FEM 1 : X-Y P l a n e - S t r e s s Y C o n t i n u i t y R e l a x e d 

FEM 2 : X-Y P l a n e - S t r e s s Y C o n t i n u i t y E n f o r c e d 

FEM 3 : X-Z P l a n e - S t r e s s 

FEM 4 : G e n e r a l 3-D 

DEFLECTION 
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0 . 0 4 1 8 
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Fig. 3 Finite element mesh Fig. 4 Longitudinal normal stress 

In view of the symmetry, only one-fourth of the strip was 
modeled. Because the interfacial stresses are highly localized 
and have sharp gradients, iterations were made with various 
mesh configurations, and element sizes until a 2 9 x 4 x 1 0 
(length x width X height) mesh was chosen for use in all 
computations. This mesh has progressively smaller elements 
near the end, edges, and material interface (Fig. 3). Utilizing 
this mesh, computations were made with four different com­
binations of elements and interfacial continuity (Table 1). 

The first and second models use the plane-stress element 
with the z direction taken as the direction of zero stress (i.e., 
an x-y plane-stress model). For comparison with the simple 
beam, model 1 relaxes interfacial continuity in the y direction 
(i.e., differences in anticlastic strain and curvature are ig­
nored). In model 2 interfacial continuity is enforced; this cor­
responds to the (better) simple plate. 

For comparison with the previous finite element studies of 
Gerstle and Chambers (1987), and Suganuma et al. (1984), 
model 3 uses the plane-stress element, but the y direction is 
taken as the direction of zero stress (i.e., an x-z plane-stress 
model). This model also corresponds to the simple beam for 
the longitudinal normal stresses since the difference in anti-
clastic strain and curvature are again ignored. 

Finally, model 4 uses the general (three-dimensional) ele­
ment. This model provides a benchmark with which to compare 
the other FEM models and the elementary approximations. 

Results 

The predicted displacements of the tip of the strip are shown 
in Table 2. Since the values differ by less than two percent, 
the simple beam is entirely adequate for predicting deflections. 

The predicted longitudinal normal stresses for an interior 
region are shown in Fig. 4. The simple beam and simple plate 
have a similar linear distribution but different values. Since 
both materials in our model have the same value of v, the 
stresses for the simple plate are exactly 1/(1 - v) times the values 
for the simple beam. 

Also, from Fig. 4, a summary of the predicted values of 
longitudinal normal stresses are as follows: 

FEM model 1« simple beam 

FEM model 2 »simple plate 

FEM model 3 = simple beam 

FEM model 4 » simple plate. 

The results for FEM models 1, 2, and 3 were expected since 
the basis of FEM models 1 and 3, as well as the simple beam 
ignore the effects of the strains and curvatures in the.y direction 
(the width); while these effects are accounted for in FEM model 
2 and the simple plate. The results for model 4 indicate that 
the simple plate is entirely adequate for predicting the interior 
stresses. 

The interfacial shear stresses for the two x-y plane-stress 
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finite element models (models 1 and 2), and the bonded beam 
I are shown in Fig. 5. (Note, for all plots of interfacial stresses, 
only the results for material 2 are shown since it is thinner, 
and therefore it exhibits higher values and sharper gradients.) 
The two FEM models indicate higher absolute values of stress, 
but all three approximations indicate continuously increasing 
values of shear as the end of the strip is approached. However, 
this violates the boundary condition of vanishing shear stress 
at the end. As noted, the bonded beam I enforces the condition 
of zero shear force at the end of the strip, not zero shear stress. 
Also, since L>B, the two x-y plane-stress FEM models behave 
like a beam model. 

The predicted values of the interfacial shear stresses for the 
three-dimensional (model 4) as well as the x-z plane stress 
(model 3) FEM models are shown in Fig. 6, while the predicted 
values of the transverse interfacial normal stress are shown in 
Fig. 7 and Fig. 8. Also plotted in these figures are the stresses 
according to the bonded beam II. 

These three approximations correctly predict a zero shear 
stress at the end of the strip, and the signs for all three are 
the same. But, the two FEM models again predict much higher 
absolute values of stress. Also, the bonded beam II indicates 
a more gradual transition from zero to peak and back to zero, 
while the FEM models indicate a much steeper gradient in 
shear with an abrupt reversal to zero in a zone much closer to 
the end of the strip. 

For the interfacial normal or "peeling" stress, the absolute 
values of the stresses are similar for FEM models 3 and 4, and 
the bonded beam II, but there is a marked difference in the 
direction of the stress predicted by the bonded beam II. The 
FEM models predict a compressive stress at the end of the 
strip, while the bonded beam II predicts a tensile stress. Again, 
the bonded beam II indicates a more gradual transition of 
stress from zero to a finite peak value, while the FEM models 
indicate extremely sharp gradients and reversals of peeling 
stress at the very tip of the strip. These reversals and extremely 
sharp gradients are an indication of the singularity in the peel­
ing stress at the tip. Also, though material 2 is extremely thin, 
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the gradient of the peeling stress is greater along its interface 
than through its thickness (Fig. 8). 

Finally, as was the case for longitudinal normal stresses, the 
values of shear stress for model 2 are approximately 1/(1 - v) 
greater than the values of model 1; while the values of both 
the shear and peeling stresses for model 4 are approximately 
1/(1 - c) greater than the values of model 3. The differences 
are again attributed to the effects of the strains and curvatures 
in the y direction which are continuous in models 2 and 4, but 
not in models 1 and 3. 

Conclusions 
The behavior of a simply bimetallic thermostatic strip pro­

vides an interesting study in the effectiveness of various ap­
proximations. 

The simple beam (two degrees-of-freedom) is adequate for 
the prediction of deflections, while the simple plate (again, 
two degrees-of-freedom) is adequate for the prediction of 
stresses at interior points. 

Though these simple approximations are useful in predicting 
the deflections and interior stresses, they provide no infor­
mation about the interfacial shear and normal stresses that 
appear near the end and edges of the strip. The theory of 
bonded beams demonstrates that these stresses are highly lo-
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calized in a small region near the edges and end of the strip. 
However, it failed to predict the magnitude, the severity of 
the gradients, and in some cases the correct sign of these stresses. 
This is not unexpected since beam theory can not predict be­
havior in a region, equal or smaller than the thickness of the 
beam. 

To probe the nature of the interfacial shear and normal 
stresses, previous studies were performed using plane-stress 
finite elements with the y direction (the width) taken as the 
direction of zero normal stress. Those studies predicted the 
general character of the interfacial stresses, indicating that a 
singularity exists in the peeling stress. However, since those 
previous studies did not account for the strains and curvatures 
in the y direction, the values of the stresses are in error by a 
factor of 1/(1 -v). 

The effectiveness of a simplified quadrilateral element has 
been demonstrated since all the numerical results were obtained 
on a personal computer with no computational difficulty, or 
"shear locking," though the interface and end elements were 
extremely thin. 

Finally, since the simple plate describes the deflection and 
all non-negligible stresses in 95 percent of the strip, it provides 
a graphic example of St.-Venant's principle. 

Practical Comment 
The large normal stress at the end and edges can be elimi­

nated if the faces of the layers are beveled as illustrated in Fig. 
9 (Lukasiewicz). 
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Thermal Stresses in a Multilayered 
Anisotropic Medium 
A steady-state thermoelasticity problem of a multilayered anisotropic medium under 
the state of generalized plane deformation is considered in this paper. By utilizing 
the Fourier transform technique, the general solutions of thermoelasticity for layers 
with transversely isotropic, orthotropic, and monoclinic properties are derived. The 
complete solution of the entire layered medium is then obtained through introducing 
the thermal and mechanical boundary and layer interface conditions. This is ac­
complished via the flexibility/stiffness matrix method. As a numerical illustration, 
the distributions of temperature and thermal stresses in a laminated anisotropic slab 
subjected to a uniform surface temperature rise are presented for various stacking 
sequences of fiber-reinforced layers. 

1 Introduction 

The use of fiber-reinforced composite materials in a wide 
variety of modern engineering applications has been rapidly 
increasing over the past few decades. The advantages of com­
posites over traditional materials are well known (Jones, 1975). 
The inherent heterogeneous and anisotropic nature of layered 
composites, however, makes the analysis of such materials 
become more involved than that of homogeneous and isotropic 
counterpart (Lekhnitskii, 1981). For the thermoelastic analysis, 
the problem becomes even more complicated. In this case, 
solutions to both the heat conduction and thermoelasticity 
problems for all layers are required. These solutions are also 
to satisfy the thermal and mechanical boundary and interface 
conditions. As a result, the conventional procedure for thermal 
stress analysis of a multilayered medium results in having to 
solve two systems of simultaneous equations for a large number 
of unknown constants as evidenced from the previous work 
by Padovan (1975, 1976), Tauchert (1980), and Tanigawa et 
al. (1989). Specifically, based on the method of complex series 
expansion together with the use of complex adjoint differential 
operators, Padovan (1975, 1976) examined the effects of ma­
terial anisotropy on the stationary thermoelastic fields of gen­
erally laminated slabs and cylinders subjected to spatially 
periodic thermal loadings. Tauchert (1980) obtained the so­
lution of thermoelasticity for a simply-supported orthotropi-
cally laminated slab via the method of displacement potential 
and compared the results with those by the bending theory. 
On the other hand, Tanigawa et al. (1989) performed the tran-
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sient thermal stress analysis of laminated beam composed of 
dissimilar isotropic layers. 

To provide an efficient approach to stress analysis of a 
multilayered medium, various alternative solution procedures 
have been proposed. Among them is the transfer matrix method 
originally developed for isothermal elasticity problem by Bufler 
(1971) and Bahar (1972) and later extended to thermoelasticity 
problems by Bahar and Hetnarski (1980). In terms of the 
vectors containing the appropriate state variables of the layer, 
this approach recasts the boundary value problem in the form 
of an equivalent initial value problem. The state vector of any 
given layer is then related to the initial state vector of layers 
with known boundary conditions via successive multiplications 
of the transfer matrices of the intermediate layers. This process 
amounts to applying the interface continuity conditions for 
the state variables of any two adjacent layers. 

Another matrix approach is the flexibility/stiffness matrix 
method. In this approach, a local matrix equation is con­
structed in terms of the unknowns representing the value of 
selected field variables (stresses for flexibility formulation and 
displacements for stiffness formulation) evaluated at the layer 
interfaces. The global matrix equation is assembled from the 
local matrices through the applications of boundary and layer 
interface conditions. The unknowns are then obtained by solv­
ing the global matrix equation. In terms of the resulting in-
terfacial values, the required unknown constants for the general 
solution of the elasticity problem are readily evaluated. Con­
sequently, by dividing the solution procedure into two steps, 

, this matrix formulation results, in comparison with the con­
ventional formulation, in a significant reduction in the number 
of equations that must be solved simultaneously. Small and 
Booker (1984) and Kausel and Seale (1987) applied, respec­
tively, the flexibility matrix and stiffness matrix formulations 
to the elasticity problem of a layered isotropic medium resting 
on a halfspace. More recently, Choi and Thangjitham (1991a,b) 
performed the stress analysis of a multilayered anisotropic 
medium based on the stiffness matrix formulation. The fore­
going studies are, however, limited to an isothermal condition. 
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The objective of this study is to extend the flexibility/stiff­
ness matrix method to the thermoelasticity problem of a mul-
tilayered anisotropic medium under the state of generalized 
plane deformation. By utilizing the Fourier transform tech­
nique, the general solutions to heat conduction and thermoe­
lasticity problems for layers with transversely isotropic, 
orthotropic, and monoclinic properties are.first derived. The 
flexibility/stiffness matrix method is then employed to obtain 
the specific solution which satisfied the thermal and mechanical 
boundary and layer interface conditions. As an illustrative 
example, the thermoelastic response of a multilayered fiber-
reinforced slab to a uniform surface temperature rise is ex­
amined for various layers stacking sequences. 

2 Governing Equations and General Solutions 
A layered slab (Fig. 1) composed of TV fiber-reinforced layers 

is considered in this study. The fiber angle, 6, is measured 
counterclockwise from the positive x-axis to the fiber direction. 
The external thermal and mechanical loads are assumed to be 
applied such that all field variables are functions of x and z. 
Due to the presence of off-axis monoclinic layers, the state of 
generalized plane deformation for thermoelasticity as discussed 
by Lekhnitskii (1981) is assumed such that 

T=T(x,z), u = u(x,z), v=v(x,z), w=w(x,z) 
(\a,b,c,d) 

where T is the temperature field measured from the reference 
stress-free temperature, and u, v, and w are the displacement 
components in the x, y, and z-directions, respectively. For the 
case of on-axis transversely isotropic and orthotropic layers, 
the generalized plane deformation is equivalent to the pure 
plane deformation. 

2.1 Layers With Monoclinic Properties. For the off-axis 
monoclinic layers with the plane of material symmetry normal 
to the z-axis, the temperature field satisfies the steady-state 
heat conduction equation (Nowinski, 1978) 

d2T dlT 
K , 1 a ? + K 3 3 a z

2 =o (2) 

where /</;, i,j= 1,2,3, are the coefficients of thermal conduc­
tivity in the structural coordinates of the medium (Fig. 1) which 
can be written in terms of those, KU, /= 1,2,3, (in this paper, 
repeated indices do not imply summation) in the material co­
ordinates of the layer and of the fiber angle, 8 (Jones, 1975). 
The material coordinates of the layer refer to the directions 
parallel, transverse, and normal to the fibers. 

The corresponding heat fluxes are given as 

dT dT . dT 
Qx= - t i i dx' Qy~- « 1 2 dx' 

-K33 
dz 

(3a,b,c) 

where qj(x,z), j = x,y,z, are the heat flux components in the 
x, y, and ^-directions, respectively. 

The Duhamel-Neumann constitutive equations under the 
state of generalized plane deformation are written as (Now­
inski, 1978) 

- du ~ dw ~ dv 

dx dz ox /s,r 

~ du - dw - dv 
v— C12— + CH—- + C26~ PiT 

dx dz dx 

- du - dw ~ dv 
~-C13 —+ C^—-+ C36 -

dx dz dx p3T 

- du - dw ~ dv 
1= Ci6-— + Ci6-r- + C66 — — p6T 

dx dz dx 

- dv -
: C44 T~ + C45 

dz 

du dw 

dz dx 

(4a) 

(4b) 

(4c) 

(Ad) 

(4e) 

T = 0 

Fig. 1 Configuration of the W-layer anisotropic medium 

- dv - (du dw 
(4/) 

where (Jn(x,z) and TIJ(X,Z), i,j = x,y,z, are the normal stress 
in the /-direction and the shear stress in the i-j plane, respec­
tively, and Cjj, i,j= 1,2,...,6, are the elastic stiffness constants 
in the coordinates of the medium which are functions of the 
stiffness constants, Cy, i,j= 1,2,...,6, in the layer coordinates 
and of the fiber angle, d. The thermal moduli, /3,-, j= 1,2,3,6, 
are defined as 

01 = Cx idt 1 + Cna22 + Ci3a33 + Ci6<5i2 (5a) 

ft> = C12&U + C22&22 + C23«33 + C26ai2 (5b) 

03 = C13an + C23a22 + C33<533 + C36<5i2 (5c) 

06 = Cl6«l 1 + C26d22 + C36«33 + <?66«12 (5d) 

in which 5,y, i,j= 1,2,3, are the thermal expansion coefficients 
in the coordinates of the medium which are again functions 
of those, an, /= 1,2,3, in the layer coordinates and of the fiber 
angle, 6. 

In the absence of body forces, the governing equations for 
the plane thermoelasticity of a given monoclinic layer expressed 
in terms of the displacement components are written as 

- d2u 
C l l a? + C 

d2u d2v 
55dz2 + C,6dx2 + a 

dlv 
45 dz2 

^ du d2u _ d2v 
Ci6dx2 + C4W + C66'dx2 + C' 

- dlw „ dT 
+ (Cl, + C55)-— = pl — 

dxdz dx 

* d2v 

'dz2 

+ (C36 + C45) 
dLw 

dxdz 

dlu d2v 
(C13 + C 5 5 ) -—-+(C 3 6 + C45)-

dxdz dxdz 
^ dLW 

dx2' 
+ C55 , . J + C33 2 

d2w 

dz2" 

dT 
5 dx 

dT 

'dz 

(6a) 

(6b) 

(6c) 

where Eqs. (6«)-(6c) constitute a system of nonhomogeneous 
partial differential equations. 

To solve the field Eqs. (2) and (6a)-(6c), the Fourier trans­
form is applied over the variable x. The transform pair for an 
arbitrary function g(x) is defined as (Sneddon, 1951) 

f°° isx 1 f°° - - t o 
g ( s ) = l g(x)e'sxdx, g(x)=—\ g(s)e ,sxds (la,b) 

J-00 ^ i r J - o o 

where an overbar denotes the transformed quantity, 5 is the 
transform variable, and i = \j — 1. 

Under the condition that the field variables and their first 
derivatives with respect to x vanish as x— ±0°, the heat con­
duction Eq. (2), is readily solved to give the temperature field, 
T(s,z), in the transformed domain as 

T=Hi cosh SKZ + H2 sinh SKZ (8) 

where Hj (s), j = 1,2, are the unknown constants to be evaluated 
from the proper boundary conditions and K = VKH/K3 3 . It is 
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noted that the variable s in the above equation is regarded as 
a parameter. The transformed heat fluxes are then obtained 
by taking the Fourier transform of Eqs. (3a)-(3c) and using 
Eq. (8). 

In the Fourier transformed domain, the governing equations 
for thermoelasticity, Eqs. (6a)-(6c), are reduced to the follow­
ing system of nonhomogeneous ordinary differential equations 

, d u da _ _ 
Mi —j + M2-— + M3u = u0 

dz dz 
(9) 

where u(s,z) = [u (sz), v[sz), w(sz)} is the displacement vec­
tor of length three, Mj(s), j= 1,2,3, are the 3 x 3 symmetric 
matrices defined as 

M,= 

M, 

C55 C 4 5 0 

C45 ^44 0 

0 0 c3 3 

) 

0 

0 

0 

0 

_ - « ( C , 3 + C5j) - i s (C 3 6+CB) 

M3 = 

~ -!?Cn 

— s^Ci6 

0 

- ^ c 1 6 
— •> C(& 

0 

-is(Ci3 + C55) 

-is(C36+C45) 

0 

0 

0 

-SC55 

. (10a,i 

and the right-hand side vector, u0(s,z), is given as 

u0={-isj817 ; -isfaT ftT'J (10rf) 

in which the prime denotes differentiation with respect to z. 
To obtain the particular solutions corresponding to the non-

homogeneous part of Eq. (9), the method of undetermined 
coefficients (Hildebrand, 1976) is employed rather than that 
of displacement potentials. This is due to the fact that, unlike 
the problems of orthotropic (Tauchert, 1980) and transversely 
isotropic (Sharma, 1958) media, the use of such potentials for 
monoclinic media leads to a noncanonic form of the governing 
equations as depicted by Padovan (1974, 1975). Supplemented 
by the complementary solutions of the homogeneous part of 
Eq. (9) (Choi and Thangjitham, 1991b), the general solutions 
for displacements are obtained as 

3 

« = 2 (AjcoshsXjz + BfiivHaskjZ) 

+ i— (HiCoshSKZ + H2smhsKz) 
s 

v = 2 (AjcoshsXjz + BjSmhs\jZ)Lj 
j=i 

+ i— (i^coshsKZ + i^sinhsicz) 

~> = 2 ] ' (AjSinhsXjZ + BjCoshsXjZ)Rj 
j=i 

+ — (HiSinhsKZ + H2coshsi<z) 
s 

(11) 

(12) 

(13) 

where Aj(s) and Bj(s), j= 1,2,3, are the unknown constants 
to be evaluated by applying the proper boundary conditions 
and \j, j= 1,2,3, are the roots of the characteristic equation 

detA = 0 (14) 

in which A is a 3 x 3 symmetric matrix whose elements are 
given as 

An = C55X/ — Cn, A12 = A21 = C45X/ — C16, 

Ai3 = A 3 ) = -i(Cl3 + Css)\j, A22 - C44X/- C6( 

A23 = A32 = - / (C36 + Qs) Xy, A33 = C33X? - Cs: 

The constants Lj and Rj,j= 1,2,3, for each root X,- in Eqs. (12) 
and (13) are obtained as 

L _Al2A13-AiiA23 R J{A2,2-AnA22) 
1 A12A23-A22Ai3'

 J AnA2i-A22An 

and the constants r/y, j= 1,2,3, are given as 

(01<?4 - 06«2) + »73(«3«4 - dlde) 
Vi: 

1)2'-

a2 - fli«4 

(ftjffl - /3l«2) + V3 («1«6 - «2«3) 

(17a) 

(176) 

(17c) 

«2 - «1«4 

<3i (a3a4 - a2g6) + As («i«6 - ^ 3 ) + ft*(g2 - fli«4) 
a6(2a2«3 - a ^ ) + «5 (oi - «i*t) - «3«4 

in which «,•, j= 1,2,...,6, are defined as 

ai = /c2C55-Cn, a2 = K2C4s-Cl6, a3= ~K(C13 + C55) 

a4 = K2C44 - C66, a5 = K
2Ci3 - C55, a6 = - K (C36 + C45). (18) 

It is noted that the quadratic roots Xy of Eq. (14) are positive, 
real, and distinct (Pagano, 1970). 

By taking the Fourier transform of Eqs. (4a)-(4f) and using 
the displacement expressions, Eqs. (11)—(13), the stress com­
ponents are obtained as 

3 

o,„ = 2 ] is(Cmi\jRj- Cim - Cm6Lj) (AjCoshsXjZ + BjsinhsXjz) 
y'=i 

+ (CimVi + Cm6i)2 + Cm3jj3K - /3m) (HiCoshsKZ + H2sinhsKZ), 

m= 1,2,3,6 (19) 
3 

a,„ = ^y^[Cim\jLj + Cm5 (Rj + Xy)] (^ysinhsXyZ + BjCoshsXjz) 
j=i 

+ ' [CteW + CmS (771/c -173)] (HismhsKZ + H2coshsKZ), 

m = 4,5 (20) 

where am(s,z), m=l ,2 , . . .6 , are the contracted notation for 
5x» 5^ , a«, TW, T« , Txy, respectively. 

2.2 Layers With Orthotropic Properties. For the case of 
on-axis orthotropic layers with fibers aligned in the x-direction 
(0 = 0 deg), there exists three mutually orthogonal planes of 
material symmetry. In this case, the elastic stiffness constants 
Cjj=Cij with C45 = 0 and Cm6 = 0, m= 1,2,3. The thermal ex­
pansion coefficient causing the shearing thermal strain, 512, is 
also zero. As a result, the displacement v in the governing Eqs. 
(6a)-(6c) is decoupled from the remaining components, u and 
w. Consequently, the complementary part of the transformed 
displacements, Eqs. (11)-(13), and stresses, Eqs. (19)-(20), is 
no longer valid. By following the similar solution procedure, 
the expressions for the transformed displacements of ortho­
tropic layers are obtained as 

2 

M= ^ (AjCoshsXjZ + BjsmhsXjz) 

T/i 

+ 1— (Hx coshivcz + Z^smhsvcz) (21) 

2 

w = 2 / (^ysinhsXyZ + Bfios\\skjz)Rj 

i j 3 
-I— (//isinhsKZ + H2coshsKZ) (22) 

s 

v = A3coshskoz + i^sinhs'XoZ (23) 

(15) 

where X0 = V C66/C44 and X,, j = 1,2, are the roots of the char­
acteristic equation 

C33C55X
4+[(Cn + CS5)

2-CnC33-C
2
55]\2 + CuCss = 0 (24) 

and the constants Rj, j= 1,2, are given as 
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(25) 

It should be noted that the particular solutions of Eq. (9) 
for orthotropic layers can be obtained from those for mono-
clinic layers by substituting the corresponding thermal and 
mechanical properties. The quadratic roots Xj.in Eq. (24) are 
also positive, real, and distinct. 

The transformed stresses for the case of orthotropic layers 
are obtained as 

2 

am=J]is (CmiXjRj - Cim) (AfoshsXjZ + BjsmhsXjZ) 

+ (Clmrn + Cm3J?3«- Pm) (H,coshsKZ + H2smhSKZ), 

m= 1,2,3 (26) 
2 

fxz = ^ sQs (Rj + \/) (AjsinhsXjZ + BfoshsXjz) 

+ /C55 (TJ^ - rj3) (HisinhsKZ + H2coshsKz) (27) 

r^ = sAoC44 (y43sinh5Xo2 + £3coshsXoZ) (28) 

rxy= -/5C66(y43cosh5Xoz + 53sinh5XoZ) (29) 

where am, m- 1,2,3, refer to axx, ayy, azz, respectively. 

2.3 Layers With Transversely Isotropic Properties. 
Another case of interest arises when the material properties of 
layers are transversely isotropic in the x-z plane. This condition 
occurs when the material properties in all directions perpen­
dicular to the fibers are the same and the fibers are aligned in 
the ^-direction (6 = 90 deg). In addition to C45 = 0, Gm6 = 0, 
m= 1,2,3, and &i2 = 0 as for the case of orthotropic layers, the 
thermal and mechanical properties of the transversely isotropic 
layers are further simplified such that Cn=C 3 3 , Cn=C2i, 
C44 = C66, C 5 5 = ( C u - C 1 3 ) / 2 , a u = &33 and KU = K33. In this 
case, the quadratic roots of the characteristic Eq. (24), are 
repeated and equal to unity. Consequently, the expressions for 
the transformed displacements are obtained as 

u= {Ax+A2z)coshsz+ (Bi+B2z)sinhsz 

- i-ZTT (fiiSinhsz + H2coshsz) (30) 
2Cn 

w = i Bl+B2z + A2—\coshsz+ I Al+A2z + B2—)smhsz 

'2C, 
H2 + H\z} coshsz + ( 1- H2z I sinhsz (31) 

(32) v = ^43coslisz+53sinhsx 

where the constant R is given as 

R= _& + &». ( 3 3 ) 

<--l3 + C55 

The corresponding transformed stresses are obtained as 

axx = i[C13(l +R)B2- 2sC5s (A i +A2z)]coshsz 

+ i[Cn(l +R)A2- 2sC55 (Bi + B2z)]smhsz 

2C550, 

C„ 
H2s 

z + Hj I coshsz + I —— Z + H2 jsinhsz (34) 

<jzz=i[Cn(l+R)B2 + 2sC55(Al+A2z)]coshsz 

+ i[Cn(l+R)A2 + 2sCs5(B\+B2z)]sinhsz 

, C55/3i 

£11 
(Hiszsinhsz+H2szcoshsz) (35) 

• C55[(l+R)A2 + 2s(B^+B2z)]coshsz 

+ C55[(l + R)B2 + 2s(A1 +A2z)]s'mhsz 

-i~1[{Hisz + H2)coshsz+ (^sz + H^sinhsz] (36) 

ayy = iC\2(l + R) (A2sinhsz + B2cas,hsz) 

CuPi 

C„ 
- 02 (Hicoshsz + H2sinhsz) (37) 

7xy= - isC^iAjCOshsz + Bismhsz) (38) 

Tyz — sC44(A3smhsz + BiCoshsz). (39) 

3 Flexibility/Stiffness Matrix Method 

The next step of "the solution procedure is to determine the 
temperature, displacement, and stress fields for all layers by 
solving the specific boundary value problem. For the foregoing 
sections, it is seen that, for each layer, there are two unknown 
constants, Hj, j= 1,2, and six unknown constants, Aj and Bjt 

j= 1,2,3, for heat conduction and thermoelasticity problems, 
respectively. Consequently, for an TV-layer medium, a total of 
8/V unknown constants must be evaluated from a set of 8TV 
appropriate boundary and interface conditions. For laminated 
composites which, in general, contain a large number of layers, 
the conventional procedure results in having to solve two sys­
tems of simultaneous equations for a large number of unknown 
constants. To circumvent these difficulties, the flexibility ma­
trix and stiffness matrix formulations are employed for the 
heat conduction and thermoelasticity problems, respectively. 

3.1 Flexibility Matrix Formulation for Heat Conduction 
Analysis. In the flexibility matrix formulation of heat con­
duction problem, the transformed temperature, Tk(s), and 
transverse heat fluxes, qt(s)^ (qz)t, at the upper ( + ) and 
lower ( - ) surfaces of the Arth layer are expressed in terms of 
the unknown constants, Hj, j= 1,2, as 

[-%}-
£M' 

Ck Sk 

_ - Ck sk 

• ~k 
1K33 

" sk Ck 

(40) 

(41) 

where Ck = coshsKkhk/2 and Sk = sinhsKkhk/2 for which hk is 
the thickness of the layer. 

Upon eliminating the constants, frf, from Eqs. (40)-(41), 
the relations for the surface temperature and transverse heat 
fluxes of the layer are obtained as 

-Ti 

F\2 

-T22 
(42) 

where Fjj(s), i,j= 1,2, are the elements of the local flexibility 
matrix of the /tth layer defined as 

tf2 
F\2 1 

W K I I K -

Ck 

-ck 

sk 

sk 

sk 

-sk 

ck 

ck 

(43) 

in which the 2 x 2 local flexibility matrix, Fk, is symmetric. 
For a perfectly bonded TV-layer medium subjected to arbi­

trary temperature variations on the bounding surfaces, the 
following thermal boundary and interface continuity condi­
tions are applied 

T r = 7 + (44a) 

n=ft+i, Qk=Qk+u *=1 ,2 , . . . , (N-1) (446,c) 

77, = r (44d) 

where 1* (s) signify the transformed temperatures on the upper 
( + ) and lower ( - ) surfaces of the medium, respectively. 

By denoting ~q~\=~qt and qN+1 = q^ the transverse heat fluxes 
on the upper and lower bounding surfaces of the medium, 
respectively, and qk+1 =qk =q+

k+), k= 1,2,...,(TV- 1), the 
common interfacial transverse heat fluxes between the Ath and 
(k+ l)th layers, the successive applications of the conditions 
in Eqs. (44a)-(44d) lead to the global flexibility equations for 
the TV-layer medium written as 
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F\\q\+F\tfi = V (45a) 

F\iQk+ (Fk22 + F\?l)qk+l+FVlqk+1 = Q, 

Ar=l,2,...,(/V-1) (45b) 

F?2qN+F%qN+l=-r (45c) 

In matrix form, the above system of algebraic equations can 
be expressed as 

Fq = t (46) 

where F(s) is the ( iV+l)x (N+ 1) banded and symmetric 
global flexibility matrix, q(s) is the global vector containing 
the unknown interfacial transverse heat fluxes, i.e., 
!<7I<72---<7N+I!> and t(s) is the vector containing the trans­
formed surface temperature and zero elements. It is noted that 
the half-bandwidth of F is two. 

3.2 Stiffness Matrix Formulation for Thermal Stress Anal­
ysis. To utilize the stiffness matrix formulation for the ther­
mal stress analysis of a multilayered medium, the following 
vectors for the kth layer are defined as 

rk
z] (47a, b) 

Ml (47c,c0 

-iwk uk vk\,ak--

a*=Mf A\ A\\ hk={B\ B\ 

where dk(s,z) and ak(s,z) are the vectors for the transformed 
displacements and tractions, respectively, and ak{s) and bk(s) 
are the vectors for the unknown constants. 

In terms of ak and b ^ t h e vectors containing the surface 
values of displacements, djfis), and tractions, ak (s), of the 
layer can be written as 

.1*1 
5*" 

-ak 

Qkn Gk 
<&!0£ 

b* 

b* 

(d*)7 

(48) 

(49) 

wherePf,- (s) and Q/,- (s), ij = 1,2, are the 3 x 3 real submatrices 
and ( d f ) r a n d (ak)Tare, respectively, the vectors containing 
surface displacements and tractions of the layer corresponding 
to the nonhomogeneous part of the governing Eqs. (6a)-(6c). 

The elimination of the unknown vectors, ak and bk, from 
Eqs. (48) and (49) yields the relations for the surface tractions 
and displacements of the layer as follows 

o_k_ 

-Ok 

where Kkj(s), ij 
as 

I 

^11 I K\2 

K21 ! ^ 2 2 

(50) 

: 1,2, are the 3 x 3 real submatrices defined 

K \K\2 

K21 
• I -

Qkn 

^ 1 •P22 
(51) 

in which the matrix on the left-hand side is the 6 x 6 real and 
symmetric local stiffness matrix, Kk, of the kth layer. This 
matrix is fully populated for layers with monoclinic properties. 
The thermal effects represented by the vectors r^ (s) are ex­
pressed in terms of Kk as 

1L 
ik -(ok)r. K2l 

K\2_ 

K22 

(_dJ> 
(ADT. 

(52) 

For an Allayer medium subjected to applied tractions on 
the bounding surfaces, the mechanical boundary and layer 
interface continuity conditions are imposed such that 

oV=d t
+

+1, ok=ot+u k=l,2,...,(N-l) (53b,c) 

ON = r (53d) 

where f * (s) denote the transformed self-equilibrating trac­
tions applied on the upper ( + ) and lower ( - ) surfaces of the 
laminated medium, respectively. 

By defining dk+1 = d~k=d+
k+\,k=\ ,2,...,(N- 1) as the vector 

for the values of interfacial displacements common to the k\h 
and (k+ l)th layers, and b\ = d\ and &N+l = d+

N, the following 
global stiffness equations for the TV-layer medium are obtained 
through the successive applications of the conditions in Eqs. 
tions (53a)-(53d) 

Kl
n&{ +K\2h=f++irt (54a) 

*2i«* + (Kk + Kfr l)Bk+, + Kk
2
+ %+1 = i(fk + r,+

+,), 

fc=l,2,...,(/V-l) (546) 

K*\6N + K ^ N + 1 = - f " + i r„ (54c) 

The above system of algebraic equations can be written in 
matrix notation as 

K5=f+f (55) 

where K(s) is the 3(N+J)x3(N+ 1) banded and symmetric 
global stiffness matrix, 6(s) is the global vector for the un­
known interfacial displacements, i.e., (§! 8 2 - - -^N+I) . f(s) is 
the vector containing the transformed surface tractions and 
zero elements, and r(s) is the vector containing the effects of 
thermal loadings. The half-bandwidth of K is six. 

In contrast to the conventional procedure which yields, re­
spectively, a system of 2/V and 6AT simultaneous equations for 
heat conduction and thermoelasticity problems, the current 
matrix approach offers fifty percent reduction in the number 
of equations that must be solved. With the foregoing remarks 
in mind, the general solution procedure for thermal stress 
analysis by the matrix formulations can be divided into the 
following steps. 
0 First, the global interfacial heat flux vector, q, is obtained 
by solving the global flexibility matrix Eq. (46). 
9 The unknown constants of the kth layer, Hj, are then eval­
uated from Eq. (41) in terms of the corresponding local in­
terfacial heat fluxes, qk and qk+\. 
9 The constants itf are substituted into Eq. (52) to evaluate 
the thermal effects, rk , of the layer which will be used in the 
local stiffness matrix Eq. (50). 
9 With the vectors if, k=\,2,...,N, determined, the global 
stiffness matrix Eq. (55) is assembled to be solved for the global 
interfacial displacement vector, 8. 
9 Similar to the second step, the vectors for the unknown 
constants of the kth layer, ak and b^, are evaluated from Eq. 
(48) in terms of the corresponding local interfacial displace­
ments, 5,., &k+u and (dth-
9 As a final step, the inter and intralaminar displacements and 
stresses within the medium are calculated by taking the inverse 
Fourier transform of the appropriate expressions. 

4 Numerical Examples and Discussions 
As a numerical example a [0 deg/90 deg/0/ - 6]S balanced 

symmetrically laminated slab is considered. Specifically, the 
following thermal and mechanical boundary conditions are 
applied. 

'T0; \x\<a 

0; otherwise 

T„(x)=0; l jd<°° (56b) 

<4+ (*) = r\: (x) = T\t (x) = 0; U K 00 (56c) 

Tt (x) •• (56a) 

& (x) = T £ " (x) = T £ " (x) = 0; \x l< °° (56c?) 

»\ = f+ (53a) 
where T0 is a temperature rise in a region of 2a on the top 
surface of the laminated slab (Fig. 1). 
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0.0 

Fig. 2 Temperature distribution at x = 0 for a [0 cleg/90 deg/0/ - 6]s lam­
inated slab 
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Fig. 5 Distribution of ay>, at x = 0 for a [0 deg/90 deg/W-0]s laminated 
slab 
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Fig. 4 Distribution of a^ at x = 0 for a [0 deg/90 deg/0/-0]s laminated 
slab 

In addition, the unidirectionally fiber-reinforced constitut­
ing layers are assumed to have the following fiber (T300) graph­
ite) and matrix (epoxy) thermoelastic properties (Chamis, 1984) 

£} = 220.6 GPa, j<} = 0.2, G}=8.9 GPa, K} = 84 W/m-K, 

a}= -0 .98x lO~ 6 cm/cm/K, £}= 13.8 GPa, J»/ = 0 . 2 5 , 

G} = 4.8GPa, K}=8.4W/m.K, a}= 10x 10~6 cm/cm/K, 

^ = 3.45 GPa, ^m = 0.35, Gm=1.28 GPa, 

«m = 0.18 W/m.K, a,„ = 6 4 . 3 x l 0 - 6 cm/cm/K 

where E, v, G, K, and a are Young's moduli, Poisson's ratios, 
shear moduli, thermal conductivities, and coefficients of ther­
mal expansion, respectively. The subscripts / and m refer to 
the fiber and matrix phases, while the superscripts 1 and 2 
denote the longitudinal and transverse properties of the fiber, 
respectively. 

Regarding each layer as being homogeneous and anisotropic, 
the corresponding gross elastic stiffness constants, C^, and 
thermal properties, «» and an, in the material coordinates of 
the layer are evaluated using the composite micromechanics 
equations by Chamis (1984). For a specific fiber volume frac­
tion 1^=0.5, the gross thermoelastic properties are obtained 
as 

C„ = 114GPa, C z = 8.7 GPa, C12=C13 = 3.3 GPa 

C23 = 3.4 GPa, C44 = 2.7 GPa, C5: = 3.2 GPa 

K„ = 42 .1 W/m.K, K22 = K22 = 0.466 W/m-K 

an =0.025 X 10~6 cm/cm/K, 

a 2 2 = a33 = 32 .4xl0~ 6 cm/cm/K 

from which the gross properties in the structural coordinates 
for a given fiber orientation 8 of the layer can be determined 
via the tensor transformation equations (Jones, 1975). 

The numerical results are obtained for the layer thicknesses 
hk= 1.25 mm, k= 1,2,...,8, and for the fiber angles 6 = 0 deg, 
30 deg, 45 deg, 60 deg, and 90 deg. In this study, the heated 
area in Fig. 1 is taken as 2a = h where h is the thickness of the 
slab. The resulting through-the-thickness variations of the tem­
perature, T, and the stresses, axx, azz, ayy, and rxy, at x = 0 are 
shown in Figs. 2-6, respectively. 

.In Fig. 2, while the temperature field close to the heated 
area is almost invariant with respect to the change of fiber 
angle 6, the temperature field away from the heated area is 
observed to decrease with decreasing fiber angle. This is due 
to the fact that, for layers with the smaller values of fiber 
angle, the increased thermal conductivity in the longitudinal 
(x) direction renders the heat flow in that direction more easily. 
For the case of 6 = 90 deg, however, which corresponds to the 
layers with transversely isotropic properties, the considerable 
heat flow occurs in both the longitudinal and transverse (z) 
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directions. Nonetheless, for all fiber angles 8 considered herein, 
the extreme temperature gradients, dT/dz, which occur at the 
heated area are shown to have the identical value. 

Figure 3 shows the distributions of a^ which are discontin­
uous across the layer interfaces owing to the mismatch of 
thermal and mechanical properties arising from the difference 
in fiber angles between adjacent layers. For all cases under 
consideration, the most severe discontinuity of axx is observed 
to occur at the first interface when 0 = 90 deg. It is also noted 
that, in contrast to the case of homogeneous, anisotropic slab 
(Tauchert and Akoz, 1975), the maximum absolute value of 
axx does not necessarily occur at the location where the tem­
perature gradient is the greatest. Additionally, in the region 
of nearly linear temperature distributions, as illustrated for 
the case of 9 = 90 deg, the significant values (compressive) of 
axx are found. 

The transverse normal stress azz shown in Fig. 4 is observed 
to yield the increasing values (compressive) for the increasing 
fiber angle 6. The magnitude of crzz is, however, insignificant 
when compared with that of axx. In Fig. 5, the distributions 
of ayy component are also found to be discontinuous across 
the layer interfaces. The degree of discontinuity is rather at­
tenuated relative to that of a„. It is noted, however, that the 
maximum values (compressive) of this out-of-plane normal 
stress occur at the heated area, where the slab is experiencing 
the greatest temperature gradients. Because of the distributions 
of Txy component are identically zero for the case of orthotropic 
laminates (6 = 0 deg, 90 deg), only those corresponding to 8 - 30 
deg, 45 deg, 60 deg are illustrated in Fig. 6. Similarly, the 
distributions of rxy exhibit discontinuities at the layer inter­
faces, except for the first and the last interfaces. The slab with 
8 = 45 deg is shown to have the larger values of rxy than those 
with 8 = 30 deg and 60 deg. The other shear stress components, 
TXZ and TyXz, are zero at x= 0 regardless of the fiber orientations 
of the laminates. 

5 Concluding Remarks 
The flexibility/stiffness matrix method is presented for the 

heat conduction and thermoelasticity problems of a multilay-
ered anisotropic medium subjected to arbitrary thermal and 
mechanical loadings applied on the bounding surfaces. Along 
with the explicit expressions for the displacement and stress 
fields for layers with transversely isotropic, orthotropic, and 
monoclinic properties, a general solution procedure is provided 
such that it can be uniformly applied to media with any given 
number of layers and layer properties. In contrast to the con­
ventional solution procedure, a significant reduction in the 

number of equations that must be solved simultaneously for 
the required unknown constants is achieved without provoking 
any approximations. Based on this fact, the flexibility/stiffness 
matrix method is suitable for the accurate thermal stress anal­
ysis of composite materials which, in general, contain a large 
number of anisotropic layers. 
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Wave Propagation in a 
Multilayered Laminated Cross-Ply 
Composite Plate 
Dispersion of guided waves in a cross-ply laminated plate has been studied here 
using a stiffness method and an exact method. It is shown that number of laminae 
strongly influences the dispersion behavior. Further, it is found that when the number 
of laminae is sufficiently large, then the dispersion behavior can be predicted by 
treating the plate as homogeneous with six stiffness constants obtained by using an 
effective modulus method. 

Introduction 
Guided Lamb waves in laminated composite plates have been 

receiving considerable attention in recent years. The interest 
in this subject arises from the need to develop effective non­
destructive evaluation techniques to characterize defects in, 
and mechanical properties of, composite structures. Ultrasonic 
waves provide such a technique. But in order for this to become 
a practical tool, a considerable amount of work is needed in 
both analysis and experiment of the characteristics of guided 
waves in anisotropic layered structures. The present study fo­
cuses on the effect of layering on free guided wave propagation 
in a laminated plate. 

Propagation of free guided waves (Lamb waves) in an an­
isotropic homogeneous plate has been studied in detail recently 
by Nayfeh and Chimenti (1989) and Li and Thompson (1990). 
These studies provide an interesting picture of the rich dis­
persion characteristics of these Lamb waves. They also contain 
a comprehensive survey of the literature on guided waves in 
homogeneous anisotropic plates. A comprehensive review of 
current work (theoretical and experimental) can also be found 
in the edited volumes of Mai and Ting (1988) and Datta, 
Achenbach, and Rajapakse (1990). Among the theoretical 
works, mention may be made of those by Kaul and Mindlin 
(1962), Abubakar (1962), Solie and Auld (1973), Baylis and 
Green (1986), Mai (1988), Datta et al. (1988), Bratton et al. 
(1989, 1990), and Dayal and Kinra (1989). 

In the studies mentioned above, attention was focused on 
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free Lamb waves. The effect of fluid loading on ultrasonic 
guided waves in composite plates has also been investigated 
by several authors. References to these can be found in the 
two edited volumes mentioned above and in the works by 
Nayfeh and Chimenti (1988a,b) and Mai and Bar-Cohen (1989). 

Guided waves in layered (laminated) composite plates have 
also received attention. For references the reader is referred 
to the edited volumes mentioned previously and to the papers 
by Dong and Nelson (1972), Mai (1988), Datta et al. (1988), 
Dayal and Kinra (1989), and Chimenti and Nayfeh (1990). In 
none of these works, however, has a systematic investigation 
of the effect of increasing number of laminae on the dispersion 
of free guided waves in a laminated plate been reported. Since 
in many structural applications there are usually many laminae 
in a composite plate (shell), it is of interest to investigate the 
effect of the number of layers on the dispersion behavior. This 
is the subject of the present study. 

Although in principle it is possible to obtain, using a prop­
agator matrix approach, an exact dispersion equation govern­
ing guided waves in layered anisotropic plate, finding roots of 
this transcendental determinantal equation is quite cumber­
some and time consuming, especially when the number of 
layers is quite large. Also, addition of each layer involves a 
new equation and a new search. Additional complications arise 
when it is necessary to obtain not only the propagating modes, 
but also the evanescent modes (complex roots). The latter are 
needed to study scattering by defects or reflections at edges. 
For reasons of numerical efficacy an alternative procedure has 
been used in this paper to obtain the dispersive modes in a 
multilayered plate. This is a stiffness method originally pro­
posed by Dong and Nelson (1972). In this approach each lamina 
is divided into several sublayers. The variation of the displace­
ment through the thickness of each sublayer is approximated 
by quadratic interpolation polynomials in a thickness variable 
with coefficients that are the unknown displacements at the 
top, middle, and bottom of the sublayer. Then applying Ham-
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ilton's principle, the dispersion equation is obtained as a stand­
ard algebraic eigenvalue problem. Eigenvalues and eigenvectors 
of this equation yield the propagating and evanescent modes 
and the associated displacements at the nodes. Earlier, Datta 
et al. (1988) and Karunasena et al. (1990) used a higher order 
discretization in which the displacements were approximated 
by cubic interpolation polynomials that involved the displace­
ments and tractions at the interfaces between the adjacent 
sublayers. It was found that this approach led to better ac­
curacies at high frequencies. Since the interest in this paper is 
an analysis of the effect- of layering at low and moderately 
high frequencies, the simpler quadratic interpolation functions 
have been used. As will be shown, this leads to predictions 
that agree well with exact solutions in the frequency range 
considered. 

Formulation and Solution 

Consider a cross-ply laminated plate, which is composed of 
alternate layers of continuous fiber-reinforced material of equal 
thickness, h. Although the stiffness method used applies to 
arbitrary lay-ups, for simplicity it is assumed that fibers are 
oriented at 90 deg to one another in adjacent layers and that 
the configuration is symmetric in the plate. A global Cartesian 
coordinates system with origin on the midplane of the middle 
layer is chosen. X-axis is chosen along the fibers in the middle 
layer, F-axis is in the mid-plane, and Z-axis perpendicular to 
the plane. 

Stiffness Method 
Since we are concerned with a large and varying number of 

layers, it will be convenient to resort to a numerical technique 
in which the number and properties of the layers can be ar­
bitrarily varied without substantially changing the solution 
procedure. Such a technique was proposed earlier (Dong and 
Nelson, 1972), where the authors presented a stiffness method 
in which the thickness variations of the displacements were 
approximated by quadratic functions of a thickness variable. 
The generalized coordinates in this representation are the dis­
placements at the top, middle, and bottom of each layer. An 
alternative higher-order polynomial representation was pro­
posed (Datta et al., 1988) where generalized coordinates were 
the displacements and tractions at the top and bottom of each 
layer. Thus, in this approach continuity of both displacements 
and tractions were maintained at the interfaces between the 
adjacent layers. This was found to give better results at high 
frequencies. However, because both displacements and trac­
tions were involved, it entailed more cumbersome algebra than 
the scheme using quadratic interpolation polynomials. In this 
paper we have used this simpler scheme. 

Since we will consider waves propagating in a direction mak­
ing an arbitrary angle with the symmetry axis of a lamina the 
motion will be three-dimensional, having particle displacement 
components ux, uy, and uz. In order to achieve numerical ac­
curacy, each lamina is divided into several sublayers. A local 
coordinate system (x(k\ yw, z{k)) is chosen in the kih sublayer 
with the origin in the midplane of the sublayer, and A-'*' axis 
making an angle a with the X-axis. It will be assumed that the 
waves are propagating in a direction making an angle a with 
the X-axis. The strain displacement relations in each sublayer ' 

tXX ~ UX,X ) tyy 
. „ (* ) Ak), uy,y > tzz •U- (*) 

exz - 2 Jxz — 2 *-"*>z + Uz-X '' e •yz — 
. ,<*> . 2 Jyz ~ - (Kv,z ' ^z,y t > 

etf )4'$ )4<"& ) + «&,> W 

where a comma denotes differentiation. The stress-strain re 
lation in this sublayer is 

fff)=[C<*»][e] . 
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For convenience, the superscript (k) on u, a, and e has been 
dropped above and in the subsequent development. Using the 
interpolation polynomials in the z-direction, the displacement 
components are approximated as, 

:U]=[N][q) (6) 

where 

\q\T= 

= 

" 1 

0 

0 

[U] =\uxuyu£ 

Mxt Myy Uz, UX , Uy j Uz j UXi Uy, WjJ 

0 0 n2 0 0 «3 0 0" 

«i 0 0 «2 0 0 n3 0 

0 /Ji 0 0 n2 0 0 «3 

(7) 

(8) 

• (9) 

In Eqs. (7)-(9) the generalized displacements ub, u"\ 1/ are 
taken at the back, middle, and front (top) nodal surfaces of 
the sublayer. The interpolation polynomials «,• are quadratic 
functions given by 

« ,= -z + 2z2, n2=l-4z2, n3 = 2£2 + z (10) 

when z = z(k)/h{k), hlk) being the thickness of the sublayer. 
Using Hamilton's principle the governing equation for the 

entire plate is found to be 

[KiMQ]' + [KiUQ]' -IK3UQ)-IM\IQ)=0. (11) 

Here, [Kt], [K3], and [M] are symmetric and [K*2] is skew 
symmetric. Primes and dots denote differentiation with respect 
to x and t, respectively. [Q] is the vector of all nodal dis­
placements. For wave propagation in the x-direction, {Q} is 
assumed of the form 

(12) iQ} = lQ0}ejikx-"l). 

Substituting (12) in (11) we get the eigenvalue problem 

[-Klk
2 + K2*jk-Ki + Mu,2]{Q0}=0. (13) 

For nontrivial solution {Q0), the determinant of the matrix 
formed by the square brackets in the above equation must be 
zero. This equation can be solved directly to find u for a k or 
to find k when 01 is known. Some numerical results are discussed 
later. 

Analytical Method 

The analytical solution is presented for the case where each 
layer has transversely isotropic material properties with the 
symmetry axis lying in the plane of the plate. As in the case 
of stiffness method, we start with dividing each layer into 
several sublayers. It should be noted at this stage that division 
into sublayers is not required to obtain the exact frequency 
spectrum, but is required to calculate exact wave functions 
(discrete eigenvectors). The stress-strain relation within the ;'th 
sublayer is given by Eq. (14) in the global X, Y, Z coordinate 
system. Let U, V, W be the displacement components in the 
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X, Y, Z directions, respectively. The stress and strain are re­
lated by dropping the superscript i for the sublayer 

(14) 

where au and eu are the stress and strain components, re­
spectively, and yu = 2ejj. CJJ are the elements of constitutive 
matrix for the sublayer. Note that C22 = C33, C55 = C66, C12 = C)3, 
and C44 = ( C 2 2 - C23)/2. Let 6 be the angle between the global 
X-axis and the local x-axis measured counterclockwise from 
the global X-axis. For wave propagation in the ^-direction the 
appropriate forms for U, V, and W, that satisfy the equations 
of motion, can be written as (see Mai, 1988; Karunasena et 
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al., 1990) 

where 

U=jk(Ut+BQ2
+)exp(J'P), 

V= UL (AQ{ + 02
+) - rQ3

+]expW), 

W= [Ar^ + r2U2~ -jLQi]exP<Jt), 

t = KX+LY-oot, 

fii+ =J4iiCOs(r1Z)+y412sin(/-1Z), 

Of =^4i2cos(r1Z)-yl11sin(/-1Z), 

®i =A2\COs(r2Z) + A22sm(r2Z), 

Of = A22cos(r2Z) -A2is'm(r2Z), 

fi3
+ =^l31cos(fZ) + ,432sin(fZ), 

n3~=yl32cos(fZ)-yl31sin(rZ), 

A = [kj-\K2- (/^ + L 2 ) ] / [5(^ + L2)], 

B=[k2
2-K

2-I3(r2
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(15) 

(16) 

(17) 

and 
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C55' C5; 
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: 7 r ; k2=. \-pr\ 5 = 1 + — , 

(18) 

(19) 

(20) 

K=kcos0, L = ksind. rx and r2 are the roots of the following 
equation with positive imaginary parts. 

p- + L2 + \K2-k2 b(p- + L2) 

bK2 K2-k\ +$(?• + !}) 
= 0 (21) 

An,Al2, A2U A22, A3U and Ai2 are arbitrary constants for the 
sublayer. Stress and displacement components in the sublayer 
can be expressed in terms of these six unknown constants. 
After evaluating the stresses and displacements at z = z-, and 
z = Zi+\, after some manipulations, the following relation can 
be obtained, 

lBi+l} = [P,]{Bi} (22) 

where 

lBl}
T=lUlViaaias W&. (23) 

The vector quantity {Bt}, which is still unknown, is inde­
pendent of X and t, and it represents the displacement and 
stress components at z = z,-. [PJ is the propagator matrix in the 
/th sublayer. The elements of [Pj\ are defined in the Appendix. 

Repeated application of Eq. (22) results in 

[BN+i)=[P\[Bi), (24) 

where 

The repeated application of Eq. (22) ensures the continuity of 
displacements and tractions at the interfaces. Let us denote 
the elements of the 6 x 6 matrix [P] by Pmn (m=\ to 6, n = 1 
to 6). Invoking the zero-traction conditions at interfaces 1 and 
(N+ 1), we obtain, from Eq. (24), 

P31 P32 Pi6 

P41 P<a P46 

P51 P52 P56 

(26) 

lP] = [Pn]lPN-i] [Pd[Pi). (25) 

The exact dispersion relation for the plate is obtained by setting 
the determinant of the coefficient matrix to zero as 

/(CO, *) = P 3 1 (PUPK-PA6P52)-P32(P4IP56-P46PSI) 

+ P36(P4lP52-P42PSi)=0. (27) 

Equation (27) can be solved for k given co, or alternatively, it 
can be solved for co for given k. 

For a fixed value of either co or k, Eq. (27) is a transcendental 
function of either k or co, respectively. It is possible to find 
the roots of this transcendental equation by some search method 
(see Press et al., 1988). This approach will be computationally 
formidable since the roots are sparsely scattered. Herein Mull-
er's method is employed to recover the exact roots. Approx­
imate roots obtained from the stiffness method described earlier 
are used as initial guesses in the Muller's method. If the roots 
are required over a range of k (or co), approximate roots from 
the stiffness method are required only at the first step to use 
as initial guesses. At the next step, k (or co) is changed by a 
small amount, and Eq. (23) is solved taking the exact roots 
from the previous step as initial guesses for the current step. 
The process is repeated until the range of interest is scanned. 
Once the exact roots are determined, the exact wave functions 
can be computed as discrete eigenvectors using Eq. (22) at 
successive interfaces. 

If the problem under consideration is symmetric or anti­
symmetric, it is possible to model only the half-thickness of 
the plate in the analysis. In this case, the boundary conditions 
at the middle surface of the plate, z = H/2; are 

W=0; 0-̂  = 0; 0-̂  = 0, for symmetric problems, 

U=0; V=0; <JZZ = 0, for antisymmetric problems. (28) 

Applying these boundary conditions in Eq. (24) appropriate 
dispersion relations and eigenvectors can be obtained. The 
boundary conditions given in Eq. (28) are applicable to the 
stiffness method also, if the problem is symmetric or antisym­
metric. 

Numerical Results and Discussion 
The stiffness method outlined above was used to study the 

effect of increasing number of layers on the dispersion of 
guided waves in a laminated plate. For this purpose a cross-
ply graphite fiber reinforced composite plate was considered 
with the symmetric lay-ups, 90 deg/0 deg / . . . 0 deg/90 deg. 
Thus, in this case the symmetric and antisymmetric modes 
were uncoupled. The elastic constants of the middle lamina in 
the global coordinate system are, in units of 10" N/m2 , 
Cn = 1.6073, C33 = 0.1392, C13 = 0.0644, C44 = 0.0350, and 
C55 = 0.0707. The number of laminae varied from 3 to 39. In 
order to ascertain the accuracy of the results obtained using 
the stiffness method the results were compared with the exact 
solutions for plates with different numbers of laminae for 
propagation at 45 deg with the X-axis. This was chosen because 
of the strong coupling of the P—SV and SH modes in this 
case. The number of sublayers used in each lamina was varied 
to get close agreement with the exact solution. Figure 1 shows 
the comparison of the results for a plate with 35 laminae. The 
number of sublayers used in each lamina was 2. Agreement is 
found to be excellent in the range of the phase velocity-fre-
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Fig. 1 Dispersion of guided waves in a 35-layered cross-ply plate. Lines 
at the predictions of stiffness method; , x — predictions of exact equa­
tion; ,— predictions of the effective modulus model. 

3 4 5 6 
Normalized Frequency 

Fig. 2 Results for a 3-layered cross-ply plate. Symbols are as in Fig. 1. 

quency considered. In all the figures shown, the nondimen-
sional frequency and phase velocity are defined as, U = coH/ 
2\ICss/p and C=io/ky/c55/p. 

The effect of the increasing number of laminae on the dis­
persion behavior is illustrated in Figs. 2-4 for propagation at 
45 deg to the X-axis in plates with 3, 11, and 19 laminae, 
respectively. Comparison of Figs. 2 and 3 show considerable 
differences. Notable among them are: significantly different 
behaviors of the first symmetric quasi-longitudinal and quasi-
SH modes in the two cases (curves labeled S0 and SH0); strong 
tendency (seen in Fig. 3) of the higher modes to become asymp­
totic to straight lines in certain bands of frequency; lowering 
of the phase velocities of some modes. As the number of 
laminae is increased further, it is seen that (Figs. 4 and 1) the 
dispersion curves for the third and higher modes tend to have 
three plateaus: first the long wavelength velocity of the quasi-
S0 mode, then at the long wavelength phase velocity of the 
quasi-S//0 mode, and finally the quasi-shear velocity in the 
plane of propagation. At these plateaus, velocities are constant 
when the number of layers is sufficiently large. As seen from 
Figs. 1 and 4, the dispersion curves for the first few modes 
are nearly identical and there are differences for the higher 
modes. It was found that for the lay-ups and material prop­
erties the dispersion curves did not change within the frequency 
range considered when the number of layers was increased 
beyond 35. This suggested that the guided wave dispersion in 
this plate could be predicted by an effective modulus model. 
In fact, this is seen from Fig. 1, which shows the results for 
a homogeneous plate with (static) effective moduli calculated 
in the manner presented by Postma (1955) for periodic isotropic 
layers and generalized to orthotropic plates by Yeo (1983). The 

I 2 3 4 5 6 7 8 
Normalized Frequency 

Fig. 3 Results for a 11-layered cross-ply plate. Symbols are the same 
as in Fig. 1. 

Fig. 4 

I 2 3 4 5 6 7 
Normalized Frequency 

Same as in Fig. 3 for a 19-layered plate 

8 

fact that the plate with a sufficiently large number of laminae 
can be modeled as homogeneous with certain effective prop­
erties is not unexpected. The important conclusion of this 
systematic study is that even though the dispersion of the first 
two modes can be predicted by the effective medium approx­
imation for a plate with only a few layers, for this approxi­
mation to be valid for higher modes the plate must have a 
minimum number of layers. For the particular system consid­
ered, this number was found to be = 35. Note that the (static) 
effective moduli of a cross-ply plate are given by the following 
equations. Let c,y be the stiffness of the 0-deg lamina. Then 
for a periodic 90 deg/0 deg/... laminate the effective moduli 

2 c 3 3 ( C n + C 3 3 ) - (Ci 3-C 2 3) 

c 
4c3 3 

Cl3=r(C23 + Cl3)=C23 

= c22 

c33 — C33 

4c,,c33+ (c13-c23) 
4c3 3 

2C44C55 
(29) 

C44 + C55 

Thus, using the particular properties considered here, the ef­
fective moduli of the plate are: 

c„ = 0.8732, cl3 = 0.0668, c,2 = 0.0644 
c = 0.1392, c44 = 0.0468, c66 = 0.0707. (30) 

Conclusion 
Guided wave propagation in a multilayered laminated plate 
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has been studied here using a stiffness method, and the pre­
dicted dispersion has been shown to agree well with exact 
solution. The solution of the exact dispersion equation is fa­
cilitated by using the predictions of the stiffness method. It is 
shown that the number of laminae has a strong influence on 
the dispersion behavior when there are only a few laminae. As 
the number of laminae increases, however, the plate can be 
modeled as homogeneous. To limit the length of the paper, 
results for propagation in the 45 deg direction are shown here. 
However, the agreement between the results of the layered and 
effective modulus models was found to hold for other prop­
agation directions also. 
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Nonlinear Response of Infinitely 
Long Circular Cylindrical Shells to 
Subharmonic Radial Loads 
The method of multiple scales is used to analyze the nonlinear response of infinitely 
long, circular cylindrical shells (thin circular rings) in the presence of a two-to-one 
internal (autoparametric) resonance to a subharmonic excitation of order one-half 
of the higher mode. Four autonomous first-order ordinary differential equations 
are derived for the modulation of the amplitudes and phases of the interacting 
modes. These modulation equations are used to determine the fixed points and their 
stability. The fixed points correspond to periodic oscillations of the shell, whereas 
the limit-cycle solutions of the modulation equations correspond to amplitude and 
phase-modulated oscillations of the shell. The force response curves exhibit satu­
ration, jumps, and Hopf bifurcations. Moreover, the frequency response curves 
exhibit Hopf bifurcations. For certain parameters and excitation frequencies between 
the Hopf values, limit-cycle solutions of the modulation equations are found. As 
the excitation frequency changes, all limit cycles deform and lose stability through 
either pitchfork or cyclic-fold {saddle-node) bifurcations. Some of these saddle-
node bifurcations cause a transition to chaos. The pitchfork bifurcations break the 
symmetry of the limit cycles. 

Introduction 
Although single-mode analyses can provide some insight into 

the problem of nonlinear dynamics, the interesting behavior 
results from modal interactions; see Nayfeh and Mook (1979) 
for a comprehensive literature review. Such a phenomenon 
may occur when the linear natural frequencies are commen­
surate or nearly commensurate. 

The first studies of modal interactions in the response of 
shells were initiated by Mclvor (1962, 1966), Goodier and 
Mclvor (1964), Mclvor and Sonstegard (1966), and Mclvor 
and Lovell (1968). They analyzed the response of cylindrical 
and spherical shells to radial and nearly radial impulses, taking 
into account the coupling of the breathing mode and a flexural 
mode when their frequencies are in the ratio of two-to-one 
(i.e., a two-to-one internal or autoparametric resonance). In­
tegrating numerically the governing ordinary differential equa­
tions, they found that the energy is continuously exchanged 
between the internally resonant modes. Bieniek, Fan, and 
Lackman (1966) and Mente (1973) are also among the first to 
study modal interactions in the dynamic response of shells. 
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Evensen (1966) conducted a pioneering experimental and 
theoretical study in shell dynamics; he studied the case of one-
to-one internal resonance of thin circular rings. He showed 
that the response involves either a single or two coupled bend­
ing modes. He reported experimental observations of regions 
in the frequency response curve where nonsteady vibrations 
were found. He verified his results by analog-computer sim­
ulations. Chen and Babcock (1975) investigated analytically 
and experimentally the nonlinear response of cylindrical shells 
to a harmonic excitation. They studied both the driven as well 
as the companion mode and their interaction. They reported 
experimental observations of "nonstationary" responses "in 
which the amplitude drifts from one value to another.'' Maewal 
(1986) numerically integrated Miles' evolution equations for 
axisymmetric shells in the presence of primary and internal 
resonances. He showed that for certain ranges of the excitation 
frequency, the response is chaotically modulated. 

Yasuda and Kushida (1984) studied theoretically and ex­
perimentally the axisymmetric response of shallow spherical 
shells. They studied the case of primary resonance of the higher 
mode in the presence and absence of a two-to-one internal 
resonance. They analyzed the stability of the periodic solutions 
and verified their analysis experimentally. They also observed 
aperiodic motions. 

Moganty and Bickford (1987) used the method of multiple 
scales to study the nonlinear free vibrations of circular rings 
in the presence of internal resonances between an in-plane and 
an out-of-plane bending mode. They found a continuous ex­
change of energy between the coupled modes. 
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Fig. 1 Polar coordinates of a point on the shell which was initially at 
p and is at p* at time f* 

Nayfeh and Raouf (1986, 1987a) analyzed the nonlinear 
inextensional response of an infinitely long, circular cylindrical 
shell to a harmonic excitation having the frequency Q when 
the frequency w„ of the breathing mode is approximately twice 
the frequency of a flexural mode toy. They used the method of 
multiple scales (Nayfeh, 1973, 1981) to fully account for the 
nonlinear interaction, including the influence of the flexural 
mode on the breathing mode. They demonstrated the existence 
of the saturation phenomenon in the response when Q ~ oi0. 
They also showed that the response exhibits a Hopf bifurca­
tion. Between the Hopf bifurcation points, the modulation 
equations possess limit-cycle solutions, which undergo a cas­
cade of period-doubling bifurcations that culminates in a cha­
otic motion. Nayfeh and Raouf (1987b) extended their analysis 
to the case where the excitation frequency is near the frequency 
of the flexural mode (i.e., 0 ~ wj). They showed that the 
system exhibits a Hopf bifurcation resulting in amplitude and 
phase-modulated motions. 

In this paper we study the response of infinitely long circular 
cylindrical shells to subharmonic radial excitations of order 
one-half (i.e., Q ~ 2a>0) in the presence of a two-to-one internal 
resonance (i.e., co0 = 2oy). We demonstrate the existence of a 
Hopf bifurcation, leading to amplitude and phase-modulated 
rather than periodic oscillations of the shell. These amplitude 
and phase-modulated oscillations correspond to limit-cycle so­
lutions of the modulation equations. All limit cycles deform 
as the excitation frequency changes between the Hopf bifur­
cation points. Some undergo symmetry-breaking bifurcations 
and some undergo cyclic-fold bifurcations. Some cyclic folds 
result in a transition to ehaos. 

2 Problem Formulation 
Following Mclvor (1962) and Goodier and Mclvor (1964), 

we consider the case in which the strain parallel to the gen­
erators of the shell is everywhere zero. Thus, the deformation 
of the shell is identical in every plane perpendicular to the shell 
axis, and the shell can be considered as being in plane motion. 
In such a plane, we consider a point/? on the undeformed shell 
midsurface with the polar coordinates (a, 6), which after a 
time t* moves top* with the polar coordinates (r, 0), as shown 
in Fig. 1. We introduce the dimensionless displacement w and 
time t defined by 

a — r ct 
ve= , t= — 

a a (1) 

where/* is the dimensional time, c2 = E/p(l - v2),E is Young's 
modulus, v is Poisson's ratio, and p is the mass density of the 
shell per unit width. Moreover, we let 

+ = 4>-6. (2) 

Then, to second order in the displacements w and \j/, the gov­
erning equations are (Goodier and Mclvor, 1964; Raouf, 1985; 
Nayfeh and Raouf, 1986) 

w + ct2(w'" + 2w" +w)-\p' + w= w" (i//' - w)-\p2 

2 1 ? 

+ i/< — 2w^' + w'\p" - - w + 
g ( l - V ) 

Eh 
P(l+t' -w) 

+ cubic terms in w and i/< (3) 

\j/ — \j/" + w' =w'w" —Iw'ip' + 2w\p + 
a(l v) 

Eh 
w'P 

+ cubic terms in w and \f/ (4) 

where the dot indicates the partial derivative with respect to 
t, the prime indicates the partial derivative with respect to d, 
and P is the applied radial pressure load. Here, 

a2 = h2/\2a1 (5) 

where h and a are the thickness and initial radius of the shell, 
respectively. 

In this paper, we consider the case of a two-to-one internal 
resonance (i.e., a>0 = 2oy) when the frequency Q of the radial 
load is approximately twice the frequency co„ of the breathing 
mode; that is, Q « 2u0, subharmonic resonance of order one 
half. 

3 Perturbation Solution 
We use the method of multiple scales (Nayfeh, 1973, 1981) 

to determine a second-order uniform expansion of the solutions 
of equations (3) and (4) for small but finite amplitudes when 
P is given by 

Eh 
P = eFcostit (6) 

where e is a small dimensionless quantity. Thus, we seek ex­
pansions in the form 

w(e,t;e) = ewl(0,To,Ti) +e2w2(6,T0,Tl)+... (7) 
t(e,t;e) = etl(8,T0,Tl)+e2t2(e,T0!T1)+... (8) 

where T0 = t, a fast scale characterizing motions with the 
natural and excitation frequencies, and T\ = et, a slow scale 
characterizing the modulation of the amplitudes and phases 
of the modes with damping, nonlinearity, and any possible 
resonances. Substituting equations (6)-(8) into equations (3) 
and (4) and equating coefficients of like powers of e, we obtain: 

Order t 

D2
0wl + a2(w[v + 2wl' + W | ) - f ' + w, =F co&Q,T0 (9) 

Z f t h - i h ' + w ^ O . (10) 

Order e2 

Dlw2 + a2 (w'2 + 2w2" + w2) - xj/2 + w2 = 

- 2 A A w , + w," W - w,) - (D0^l)
2 + tl2-2w^l 

+ wM- -wf + FW-wJcosQT,, (11) 

D2
0^2 - M +w{=~ 2D0D^/X + w[ wf 

-2w;i,;+2(D0wl)(D0xPl) +Fw(cosUT0 (12) 

where Dn = d/dT„. 
It turns out that, in the presence of structural or viscous 

damping, all modes that are not directly or indirectly excited 
vanish in the steady state (Nayfeh and Mook, 1979). Conse­
quently, in the case of internal resonance between the breathing 
and nth flexural modes, we express the solution of the first-
order problem as 

+ p2(r,)cosQQr0) 

and 

+ 0 , ( r 1 ) s i n Q o T j 

+ q2(T1)sin(^QTA 

/73(7'1)cosQ QT^ +73(7-,)sin A 0 7 ; ) 

+ F0+a2-Q2y1cos(QTo) 

COS/20 

sinnd 

(13) 
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h = T„ p2(7\)cos Q UT)\ + q2(r, )sin 0 QT0) 

P3 (r, )cos 0 o r j + <?3 (r, )sin 0 ar0) 

sin «0 

cos nd (14) 

where 

r„ = ' [ i + a y - i ) 2 

"1=2 ff'+ 4 ff2' "2 = 2 °2 (15) 

and a, and o2 are detuning parameters defined as 

Q = 2co0 + eCT2 and co0 = 2o)„ + e(T1. (16) 

We note that the problem is degenerate because there are 
two orthogonal modes (i.e., cos nd and sin nd) corresponding 
to the same flexural frequency oi„. This degeneracy can be 
removed by an imperfection, or the nonlinearity, or initial 
conditions. To remove the degeneracy by the nonlinearity, we 
need to carry out the expansion to another order. Hence, the 
level of excitation needed to remove the degeneracy is an order 
of magnitude higher than that needed to activate the two-to-
one autoparametric resonance being considered. In this paper, 
we study the case of a perfect circular shell, excitation levels 
that do not activate the one-to-one autoparametric resonance, 
and initial conditions that produce p3 = q3 = 0. 

Substituting equations (13) and (14) with/?3 = q3 = 0 into 
equations (11) and (12), using equations (16), and eliminating 
the secular terms, we obtain the following modulation equa­
tions: 

where 

P\ = - v2Qi-HoPi-2A\p2q2~fq\ 

q{ = VlPl -/XQql + A, {p\-q\) -fp{ 

Pi = -vxq2- ix,p2 - A2(qj>2 - q-p^) 

Qi = "1P2 ~ Mi + A2 (PiP2 + qtq2) 

4co0A, = - n2 + - {o>2„ + n2)Y2
n- nV„ 

4a>0(l + T2)A2 = n2 - 2nT„ + 2co0co„r2 

F=4uJ. 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Modal damping has been incorporated into equations (17)-
(20) with no being the damping coefficient of the breathing 
mode and \in being the damping coefficient of the «th flexural 
mode. 

The fixed-point solutions of equations (17)-(20) correspond 
to p[ = q{ = 0. There are two possibilities. First, 

Pi = qi = 0 for / = l a n d 2 (24) 

which is the trivial solution. Second, 

p2= o„cos 

where 

Pi = o0cos - 72, qx = <70sin - y2 

\27l+ 4 ^ ) , ? 2 = M n ( - 7 l + ^ 7 2 ) 

= a*n = A, ti + 4 V2 

~Xl± 

tan7j 

{{°2+a): 

(f°i 2y 
vw ~X2) 

'("+r>) - 2 / i , / ( ( 7 1 + ~ff, 

(25) 

(26) 

(27) 

(28) 

(29) 

tan72 = - [/^oA2^ + fi^a2,]/ ^A 2 «o- 2\ai+ 2a2)Aia2" 

X i : 4^0/x„-(J2 \{"i + a) /4A,A2 

X2 = [/*0(ff2 + 2ffi) + 2<'2A'n]/4A1A2. 

(30) 

(31) 

(32) 

X + ^o f+v2 

f-v2 X + n0 
- A2<?2 A ^ 
-A2p2 -A2q2 

2Axq2 

-2AJE-2 
\ + fi„ + A2ql 

-v^-A2pl 

2Alp2 

2A,g2 

P\-A2pl 

\ + txn-A2q 

The stability of a fixed point to a perturbation proportional 
to exp (XTj) is determined by the zeros of the characteristic 
equation 

= 0. (33) 

To investigate the stability of the trivial fixed points given by 
equation (24), we put/?„ = qn = 0 in equation (33) and obtain 

\=-v.0^{f2-v\)v\ -ixn±iVi. (34) 

Thus, a trivial fixed point is stable if 

f<(£ + vl)Vl (35a) 
and unstable if 

(35b) f>{£ + vl)Vl. 
W h e n / = (/4 + v\)Vl, a nonlinear analysis is needed to de­
termine the stability of the trivial fixed point. To analyze the 
stability of the nontrivial fixed points, we use equations (25)-
(30) in equation (33) and obtain 

X4 + 2(nD + /x„)X3 + {£, + 4v,0n„ + v\ -f2 + 4A,A2o
2,]X2 

+ [2ft,/4 + 2ii„v\ - 2nJ2 + 4A1A2(/u0 + nJcfaX 

. + 8A,A2^[A,A2a^ + /*„/*„ - vxv2\ = 0. (36) 

Consequently, a given nontrivial fixed point is stable if the 
real part of each root of equation (36) is negative. It follows 
from equations (21) and (22) that AtA2 < 0, and hence equation 
(36) has real positive roots if and only if 

A,A2a£+ /*„,*„-^x^O (37) 

which, in conjunction with equations (27) and (28), implies 
that the fixed point corresponding to the positive sign in equa­
tion (28) is stable and that corresponding to the negative sign 
is unstable. Moreover, equation (36) has a pair of complex 
conjugate roots with a positive real part if 

/ •3( /V 2- / -3)- / fo<0 (38) 
where ru r2, r3, and r4 are, respectively, the coefficients of X3, 
X2, X, and X° in equation (36). 

4 Numerical Results 

Next we present numerical results for the case h/a = 0.028, 
which yields o>0 = 1.00033 and w8 = 0.50528 so that oi0 -
2co8; that is, n = 8. In this case, Ai = 3.87539, A2 = 15.2611, 
and eoi = -0.01023. We let e = 1.40137 X 10"2, and £0,8 
= A2~'/! /ioi8 = 0.02; then a, = A2"'

/2 <n = - 0 . 7 3 . For such a 
high flexural mode number (i.e., 8), Simmonds (1979) showed 
that adding the cubic terms in equations (3) and (4) does not 
have any significant effects. Calculations are performed on 
the autonomous modulation equations (17)-(20) rather than 
on the original equations of motion. A fixed point of the 
modulation equations corresponds to a periodic motion of the 
shell, whereas a periodic solution of the modulation equations 
corresponds to a two-period quasi-periodic motion of the shell. 

All numerical integrations are performed using a sixth-order 
Runge-Kutta algorithm and the results are confirmed by chang­
ing the step-size of the integration. Either the detuning pa-
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Fig. 2 Variation of amplitude of the response with the amplitude of the 
excitation for xi < 0, p0a = 0.02 and Z2 = - 0.2: a„ = Vpf + gjj and a8 

= VPi + Qiare tr|e amplitudes of the breathing and eighth flexural modes, 
respectively 

0.8-

go.a........ 

1.0 

Fig. 3 Variation of amplitude of the response with the amplitude of the 

excitation for X\ > 0, 0̂,8 = 0.02 and i2 = 0.2: a0 = V P ? + 9? and a6 

= VPi + <7? are the amplitudes of the breathing and eighth flexural modes, 
respectively 

r a m e t e r <r2 = A2~
 A<J2 o r the excitation amplitude / is used as 

a bifurcation parameter, all others being held fixed. The fixed 
points are determined from equations (25)-(32). The stability 
of the fixed points is determined by numerically calculating 
the eigenvalues of the Jacobi matrix from either equation (33) 
or equation (36). 

In Fig. 2, we show the force-response curves for xi < 0. 
This figure shows the saturation and jump phenomena (Nayfeh 
and Mook, 1979) and its exhibits a Hopf bifurcation. Hopf 
bifurcation occurs when two complex-conjugate eigenvalues 
of the Jacobi matrix cross the imaginary axis transversely with 
nonzero speed into the right half of the complex plane. When 
/ < / , = 0.025, only trivial fixed points are possible; they are 
stable. Hence, it follows from equations (13) and (14) that the 
response of the shell is linear and periodic. When f\<f< 
fi = 0.101, there are three possible fixed-point solutions: the 
trivial solution, which is stable, and two nontrivial solutions, 
the larger of which is stable and the other is unstable with a 

real eigenvalue being positive. When f2 < f < /•$ = 0.104, 
there are two fixed-point solutions: the trivial solution, which 
is unstable with a real eigenvalue being positive, and a non-
trivial solution, which is stable. When/ > /3, there are two 
fixed-point solutions: the trivial solution, which is unstable 
with a real eigenvalue being positive, and a nontrivial solution, 
which is unstable with a pair of complex conjugate eigenvalues 
having a positive real part. As /increases beyond/3, the non-
trivial fixed point with both breathing and flexural components 
loses its stability with two complex conjugate eigenvalues cross­
ing the imaginary axis transversely from the left half to the 
right half of the complex plane. Consequently, / = /3 is a 
Hopf bifurcation value. 

As the forcing amplitude / increases slowly from zero, the 
trivial fixed point (i.e., a0 — as = 0) is the only steady-state 
solution until a threshold is reached at / = / 2 . As pointed out 
by one of the referees, when/ = /2, there exists another family 
of fixed points described by 
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Fig. 4 Frequency response curves for f = 1.0 

P\= -y("2+f2)/lJ.0 = y,P2=o, c72 = o (39) 

for any 7. This is a nongeneric bifurcation. As / increases 
beyond f2, the trivial fixed point becomes unstable and the 
flow jumps to a nontrivial solution. As/increases further, the 
amplitude a0 of the breathing mode remains constant (i.e., 
saturates) and spills over the extra input energy into the coupled 
eighth flexural mode, which responds nonlinearly causing a 
large amplitude wrinkling of the shell. A t / = /3 , the nontrivial 
fixed point with both breathing and flexural components 
undergoes a Hopf bifurcation. For values of / near /3 , the 
modulation equations (17)-(20) possess limit-cycle solutions, 
and hence the response of the shell is an amplitude and phase-
modulated oscillation. 

As/decreases slowly below/3, a„ remains constant and a8 

decreases slowly until/reaches the critical va lue/ = / , , where 
the nontrivial stable and unstable fixed points of the flexural 
mode collide in a fold (saddle-node) bifurcation. As/decreases 
be low/ , both og and a0 jump down to zero. In the region/! 
< / </ 2 , an unstable fixed point separates two stable fixed 
points of the flexural mode. In this interval, the flow tends to 
one of the stable fixed points depending on their basins of 
attraction. Consequently, the response of the shell consists of 
either the breathing mode only or a combination of the breath­
ing and eighth flexural modes, depending on the initial con­
ditions. 

Figure 3 shows a force response curve for xi > 0. In this 
case, no fold bifurcation takes place and the jump occurs only 
in the breathing mode response a t / = 0.102. 

Figure 4 shows frequency curves f o r / = 1.0. Whereas a0 

is a single-valued function of CT2, «S c a n be a multivalued func­
tion of &2- Moreover, Fig. 4 exhibits a jump phenomenon at 
a2 = - 1.9996. It shows a Hopf bifurcation at a2 = - 1.9987 
and 1.9981. The nontrivial fixed point becomes unstable as 
&2 increases beyond -1.9987 or decreases below 1.9981 and 
limit cycles are observed. 

The stability of the limit cycles is determined by using Flo-
quet theory. The modulation equations (17)-(20) have the gen­
eral form 

x' =f(x) (40) 

where the prime indicates the derivative with respect to T{. 
The stability of a ^-periodic solution X(TY) = X(Tt + T) of 
equations (40) is determined by the linear variational equation 
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Fig. 5 Schematic for the behavior of the system for «2 t (•• 
2.0353) 

1.9987, 

where Vf(X) is a 4 x 4 T-periodic matrix. Let $ = *(7,
1) be 

a solution satisfying 

$ ' = V / ( X ) * *(0) = / (42) 

S' = v / ( J f ) { (41) 

where lis the identity matrix. The Floquet multipliers are the 
eigenvalues of the monodromy matrix $(7) whose columns 
are the solution vectors of equation (42) evaluated at 7^ = T. 
The monodromy matrix is calculated by numerically integrat­
ing equation (42) from Tx = 0 to Tt = T four times. The 
positions of the Floquet multipliers relative to the unit circle 
in the complex plane determine the stability of the limit cycle. 
Because equations (17)-(22) are autonomous, one of the Flo­
quet multipliers is always + 1 (Hale, 1963; Urabe, 1967; Hirsch 
andSmale, 1974). If the modulus of one of the other multipliers 

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 /1037 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



-.0085 -.0056 

Fig. 6(a) 

.068 

.066 

.064-

.062-

.060-

* 

/ 

V 
// 

/ 

0 

0-

2 
( 
\ 
3 

.65 1.3 1.95 

P2 

Fig. 6(6) 

J i l l 
10 20 30 40 

time 

Fig. 6(c) 

2.6 

V 
50 

p 
3 2 0 

0 0.25 0.50 
frequency 

Fig. 6(d) 

Fig. 6 Limit cycle I: (a) projection of phase space on the three-di­
mensional space spanned by p„ p2, and g2; "balloons" represent points 
on limit cycle, (o) projection of phase space on the two-dimensional 
plane spanned by p, and p2, (c) waveform of </i, and (d) power spectral 
density (PSD) of q, signal 

is greater than one, the limit cycle is unstable; otherwise it is 
stable. A bifurcation occurs when a multiplier leaves the unit 
circle. The type of bifurcation depends on the way a multiplier 
leaves the unit circle. In our study, we observe cyclic-fold and 
pitchfork bifurcations associated with a multiplier leaving the 
unit circle through + 1. The cycle-fold bifurcations result in 
cyclic jumps where the flow jumps to another limit cycle or 
to a chaotic attractor. A symmetry breaking is observed when 
a multiplier touches + 1 from within the unit circle. 

To calculate the limit cycles, we use an algorithm originally 
proposed by Aprille and Trick (1972) to eliminate transient 
responses, thereby latching onto a limit cycle and calculating 
its period. It uses a combination of a numerical integration 
scheme and a Newton-Raphson iteration procedure. This al­
gorithm proved efficient in reducing the computation time but 
is sensitive to the initial guesses and the step size of the inte­
gration because of the coexistence of attractors. Using different 
step sizes and with the same initial guesses, we found that the 
algorithm sometimes may land on different orbits for the same 

P. o 

Fig. 7(c) 

Fig. 7(d) 

Fig. 7 Deformation of attractor X as a function of 52: 
(6) J2 = 1.9820, (c) i2 = 1.9815, and (d) i 2 = 1.9800 

(a) i2 = 1.9840, 

ff2. The results of the algorithm were verified by long-time 
numerical integration. 

To compute the power spectrum we use the fast Fourier 
transform algorithm developed by Cooley and Tukey (1965) 
and implemented by Singleton (1968). Different techniques are 
used to identify chaos: the broadening of the power spectrum, 
the fractal structure of the Poincare section, capacity or fractal 
dimension, and the existence of a positive Lyapunov exponent 
of the attractor. A positive Lyapunov exponent indicates an 
exponential divergence of neighboring trajectories, confirming 
chaos. Lyapunov exponents are calculated using the algorithm 
proposed by Wolf et al. (1985). The Lyapunov dimension dL 
of the attractor is also calculated using the following relation 
proposed by Frederickson et al. (1983): 
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Fig. 8 Floquet multipliers for limit cycle X around the symmetry break­
ing frequency (a2 = 1.9837). The fourth multiplier is + 1 . 

p. 0.0 

D 0.0 

Fig. 9(6) 

Fig. 9 Projection of phase space on the p2 - q2 plane for a2 = 1.984: 
(a) limit cycle IX and (b) limit cycle X. 

dL=J+ I ^ / K + l (43) 

where OJ- is the y'th Lyapunov exponent and j is defined as 
j i+i 

2 > < > 0 ' E f f ' < 0 - <44) 
The Lyapunov exponents are ordered in the usual way 

0\ > (T2 > 0"3 > . . . > <JN. (45) 

The Lyapunov dimension is actually the information dimen­
sion, which is bounded from above by the capacity or fractal 
dimension df (Lichtenberg and Lieberman, 1983; Farmer, 
1982). On the other hand, the phase space has a negative 
divergence, thus it is volume contracting. Accordingly, the 
capacity df is bounded from above by the phase dimension, 
and hence df < 4. Consequently, 
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Fig. 10 Limit cycle III (unstable): (a) projection of phase space on the 
three-dimensional space spanned by pu p2, and q2 ("balloons" represent 
points on limit cycle), (b) projection of phase space on the p, - p2 plane, 
(c) waveform of qu and (d) power spectral density (PSD) of a, signal 

dL<df<4. (46) 
For o2 < - 1.9987 and o2 < 2.0353, limit cycles do not exist 

and the flow asymptotically approaches a fixed point as t — 
oo. The behavior of the flow within the above internal is sum­
marized in Fig. 5. Here we note the following: 

(1) There always exists an unstable fixed-point solution for 
-1.9987 < a2 < 1.9981. This fixed point is indicated by a 
plus sign in the two-dimensional projections and a cross in the 
three-dimensional projections (e.g., Fig. 6(a), (b)). 

(2) All periodic limit cycles start symmetric (i.e., there ex­
ists a group of symmetries which maps the limit cycle to itself, 

. see item 5 below) and lose stability through either a pitchfork 
or a cyclic-fold bifurcation. 

(3)Deformation of limit cycles: all cycles undergo defor­
mation as &2 changes. Interesting behaviors are observed in 
the following: 

(a) Limit cycle IV starts at <T2 = - 1.8200 as a symmetric 
one and loses its symmetry just before collision, then the flow 
jumps onto a chaotic attractor. 

(b) Limit cycles IX and X are born at <r2 = 1-9953 as 
symmetric ones, lose symmetry but regain it before their saddle-
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Fig. 11 Limit cycle II: (a) projection of phase space on the three-
dimensional space spanned by Pi, p2, and q2 ("balloons" represent points 
on limit cycle), (b) projection of phase space on the p, - p2 plane, (c) 
waveform of (ft, and (d) power spectral density (PSD) of q, signal 

node bifurcations. Figures l(a)-(d) show the deformation of 
limit cycle X. 

(4) The loss of symmetry is associated with a Floquet mul­
tiplier touching + 1 from within the unit circle. Figure 8 shows 
the behavior of the multipliers for limit cycle X around the 
symmetry breaking frequency. 

(5) The modulation equations (17)-(22) exhibit a symmetry 
apparent in the phase trajectories. The equations are invariant 
under the transformation 

T: pl--PuQi--Qi,P2^Q2,Q2-~-P2- (47) 

Equations (47) show the possibility of a mirror image reflection 

around p\ = 0 and qx = 0 and a rotation of - 7r in the p2 - q2 

plane. Consider, for example, Fig. 9, which shows the pro­
jection of the limit cycles IX and X onto the p2-q2 plane. It 

is obvious by inspection that there is a rotation of - IT between 

(a) and (b). 
(6) For - 1.9987 < a2 < - 1.7861, the unstable limit cycle 

III coexists with the stable fixed point and the stable limit cycle 
II. Limit cycle I exists for - 1.9987 < a2 < - 1.9986. As t -
oo, the flow tends to one of the stable states depending on their 
domains of attraction. The unstable orbit III was achieved by 
changing the size of the integration step in the Aprille and 
Trick algorithm and by a short time integration (Fig. 10). 

Fig. 12(a) 

0 I00 200 300 4 0 0 500 

time 

F ig . 12(b) 

p 

0.5 I.O 
frequency 

Fig. 12(c) 

Fig. 12 Chaotic attractor VII at a2 = -1 .55: (a) two-dimensional pro­
jection of phase space on the p, - p2 plane, (b) waveform of <j„ and (c) 
power spectral density (PSD) of a;, signal 

Figure 11 shows its accompanying stable orbit II. The two limit 
cycles collide and annihilate each other at a2 = - 1.7861. 

(7) The broadening of the power spectrum at a2 = - 1.55 
of the time history of the component ql (Fig. 12(c)) compared 
with the spectra of the limit cycles in Fig. 6(d), 10(d), and 
11 (d) and the fractal nature of the Poincare section (Fig. 13) 
indicate the chaotic nature of the attractor which exists for 
a2e(~ 1.58, - 1.28). The Poincare section is the set of all points 
at which the trajectories on the chaotic attractor intersect the 
hyperplane defined by q2 = 0. Although this was constructed 
by long-time numerical integration, it still contains some tran­
sients as evident from the presence of the isolated points. To 
confirm the chaotic nature of this attractor, we calculate its 
Lyapunov exponents and fractal dimension df. At a2 = - 1.55 
(chaotic region VII), the Lyapunov exponents are (0.566,0.000, 
-0.057, -0.624) and the Lyapunov dimension dL = 3.8. 
Thus, 3.8 < df < 4.0 and the attractor has a fractal dimension. 

(8) Period-three motion is found over a very narrow range 
of a2 (see Fig. 5). Figure 14 shows a projection of this limit 
cycle (compare with Fig. 7). Because it has three revolutions 
(as compared with Fig. l(a)-(c)), it is called a period-three 
motion. 

5 Conclusions 
The modulation equations for the nonlinear oscillations of 

cylindrical shells subject to a radial subharmonic excitation 
are obtained. The case of a two-to-one internal resonance 
between the breathing mode and a flexural mode is considered. 
The stability of the fixed points and limit cycles of these equa­
tions is presented. 

As the bifurcation parameter a2 (the frequency detuning of 
the subharmonic excitation) varies, the flow exhibits a Hopf 
bifurcation, in which fixed points lose stability and limit cycles 
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Fig. 13 Poincare sections of chaotic attractor VII at J2 -1.55 

Fig. 14 Limit cycle XII (period-three motion): projection of phase space 
on the p, - p2 plane 

are created. Multiple limit cycles coexist over some ranges of 
a2. Some limit cycles undergo a symmetry breaking bifurcation. 
Period-three motions are observed over a narrow range of 
excitation frequencies. Cyclic-fold bifurcations are observed. 
They are accompanied by cyclic jumps. Numerical integration 
suggests that some of these jumps cause a transition to chaos. 
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Impulsive Motions of Elastic 
Pseudo-Rigid Bodies 
We develop the formalism for treating impact problems in the theory of pseudo-
rigid bodies developed by Cohen and Muncaster. Our treatment is general enough 
to include the effect of kinematical constraints. 

1 Introduction 
The theory of pseudo-rigid bodies was introduced by Cohen 

(1981) and Muncaster (1984). It is a dynamical theory which 
in a certain sense approximates the theory of finite elasticity. 
The monograph of Cohen and Muncaster (1988) gives a de­
tailed exposition of the theory, with some applications. 

The theory is useful as a practical model in situations in 
which the motion is approximately homogeneous, or, more 
generally, in which only spatial averages of stress and strain 
are required. In particular, the theory has been suggested as 
a simplified model of deformable satellites. 

In this paper we develop the formalism for impulsive motions 
of pseudo-rigid bodies. Our development parallels that for rigid 
bodies as presented in McMillan (1960) or Goldsmith (1960). 
The impact is modeled as consisting of a deformation phase 
and a restitution phase. The impact is characterized by im­
pulsive point loads of deformation and restitution, and by 
their ratio, the coefficient of restitution. As in the rigid case, 
this treatment amounts to coarse modeling of phenomena 
which, strictly speaking, lie outside the scope of the theory 
being used. In the pseudo-rigid case, the phenomena in ques­
tion are inhomogeneous deformations and inelastic effects. (In 
the rigid case they are deformation and inelastic effects.) 

The theory of impulsive motions of rigid bodies is still a 
matter of current research. Brach (1981) has argued that, in 
general, impulsive couples at the impact site must be included. 
He has also (1984, 1989) discussed the status of the tangential 
impulse in impacts. Keller (1986) has given a careful analysis 
of ambiguous situations that can arise in impacts with friction. 

The impact of linearly elastic bodies is sometimes modeled 
by the Hertz approximation (Goldsmith, 1960, Chapter 4). 
The local nature of this analysis and the various approxima­
tions involved make it difficult to meaningfully compare its 
results with those of the present work. 

In Section 2 of this paper, we establish notation and recall 
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some essential facts from the theory of pseudo-rigid bodies. 
In Section 3 we present a detailed analysis of the impact for 
the case of two pseudo-rigid bodies, each subject to two in­
dependent constraints. 

In Section 4, we develop the equations governing the impact 
of an incompressible pseudo-rigid body on a rigid wall. We 
apply these to the study of the details of pre-impact and post-
impact motions for a specific example. 

2 Notation and Preliminaries 
In this section we establish the notational scheme of the 

work and recall some essential facts from the theory of pseudo-
rigid bodies. 

In this work we shall adhere to the summation convention 
for repeated indices. Lower case roman indices will range from 
1 to 3, lower case Greek indices from 1 to 2. 

The equations governing the smooth (f (t), F (t)) of a pseudo-
rigid body are 

and 

mt = f», 

FEF'=M„. E. (1) 
Here, r denotes the position vector of the body's mass center, 
F the deformation gradient tensor, m the mass and E the Euler 
(inertia) tensor of the body. 

If the body is acted upon only by a system of TV concentrated 
loads fp, 1 < p < N, applied at points whose current position 
vectors relative to the mass center are tp, 1 < p < N, then 
we have 

f. 

MP. 

t - 2 J fp> 
p=l 

•• S f„®r (2) 
P = I 

If the body is composed of an elastic material with stored-
energy function per unit mass W{-) and subject to the kine­
matical constraints ga(F) = 0, the internal force moment is 
given by 

£ = m I^F)Fr + TagKVWT, (3) 
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the Fa, as usual, denoting constitutively indeterminate con­
straint reactions. 

We may recover the appropriate expressions for the case of 
one or of no constraints by setting one or both of the Ta equal 
to zero in Eq. (3). 

In this paper we shall sometimes be concerned with the 
collision of two such bodies. We shall carry over as much as 
possible of the foregoing notational scheme to this situation 
by simply indexing quantities to distinguish between bodies 1 
and 2. Thus, the meaning of expressions such as m,, r,, F2, 
E2, Wl (•), are fairly obvious; gn (F,) denotes the second 
constraint on body 1, r12 is the corresponding constraint re­
action, and so on. 

As in our previous paper (1989), we shall often be concerned 
with pseudo-rigid membranes rather than three-dimensional 
bodies. The only modification to the foregoing development 
is that now F denotes a nonsingular tensor on a two-dimen­
sional space. 

We recall from the results of the above-mentioned paper the 
fact that in a plane motion in the plane normal to i3, F has 
the representation 

F = Ae1(0)®e1(V!<) + /ie2(0)®e2«O + l;i3(x)i3 (4) 

where 

ei(f) : = cosf ii + sinf i2, 

e2(f) : = - s i n f it + cosf i2. 

In the next section we shall develop in detail the formalism 
for the mutual impact of two pseudo-rigid bodies each subject 
to two independent general constraints. 

3 The Collision of Two Generally Biconstrained Bodies 
In this section, we consider the impact of two pseudo-rigid 

bodies. We shall model the impact process as involving jumps 
in F a , Ta while F a ra remain fixed. We regard the impact 
process as consisting of a deformation phase and a restitution 
phase. During the deformation phase, an impulse Pe acts at 
the point of impact; during the restitution phase an impulse 
Re acts at the point of impact. Moreover, 

R = kP, (5) 

k being the coefficient of restitution for the impact. During 
the deformation phase, the constraint reactions suffer an im­
pulse t afj, while during the restitution phase, they undergo an 
impulse f^. We shall impose on the constraints gafl (•) the 
mild restriction that 

(i) gf(F)?iO for F non-singular, 
(ii) # F ' ( F ) and g%2(¥) are linearly independent for F 

nonsingular. 

In our previous work (1989), we considered three types of 
kinematical constraint, namely, incompressibility, inextensi-
bility, and unshearability. It is easy to see that any pair of 
these will satisfy both of these conditions. 

We shall denote by Ra the position vector of the impact 
point on body a and introduce the notation 

ra = R « - r a . (6) 

We denote, by n, the common normal vector at impact pointing 
from body 2 into body 1. If nk is the coefficient of kinetic 
friction for the surfaces of the two bodies, then the vector e 
has the orthogonal decomposition 

e = e„n + e ' (7) 

where 

We shall denote pre-impact quantities by a superscript ( - ) , 
post-impact quantities by a superscript ( + ), and quantities at 
the transition between deformation and restitution by a su­
perscript (/). 

The final ingredient in our model of the impact process is 
the requirement that at the transition from deformation to 
restitution, the relative normal velocity of the impact points 
should be zero, thus 

n . R p ' ^ n . R l 0 , 

or, more explicitly, 

n - t j " + n - F f F f 'r, = n f | ° + n -FfF j" 'r2. (9) 

Granted those preliminaries, the equations governing the 
impact process are 

«,t{" -

mj\+)-

m2Tii)-

m2T\+)-

Fi"E,-

Ff+)Ei 

F|"E2-

F2
+)E2 

- WjT'r^Pe, 

- miti
i) = kPe, 

m2T
tf)= -Pe, 

- m2f 2
n = - kPt 

- Fi->E, = A ® F f 'r, - f ^ " ( F , ) , 

- F|"E, = kPe® Ff 'n - f ,'rfi"(F,), 

-F2~>E2 = -Pe®F 2 - ' r 2 - f 2 a ^(F 2 ) , 

- F^E2 = - kPe®F2~ >r2 - f 2W?F*(F2). 

(10a) 

(10b) 

(10c) 

(10c?) 

(We) 

(1Q/) 

(10£) 

(10/!) 

We note the fact that since the constraints are identically sat­
isfied by F a , we must have 

gFa(Fi)-F,=gf*(F2).F2 = 0 each a. (11) 

Moreover, it follows from (lOe)-(lO/?) that 

i 1 + > + *rFi->- [1+*]F{') = - [ f k - f c f i J ^ F O E r 1 , (12a) 

F2
+ ) + *F£"> - [1 + *]Fi» = - [f2'a -kT2a]gFa(F2)E2-'. (12ft) 

We define tensors K la, K2t* by 

K ' ^ F O - ^ F O E r " 2 , 

K2a(F2); = g|"(F2)E2^
1/2. (13) 

If we operate on (12a), (12ft) with gF
a(Fi), g^Pi), respec­

tively, the left-hand side vanishes by (11) and we are left with 
the identities 

{KI"(F,).K"'(F1)} [tfc-kfv) =0 , (14a) 

( K ^ F ^ . K ^ F , ) ) {?ie-ktw} =0 . (14ft) 

The symmetric 2 x 2 matrix, whose entries are 
{ K 1 O ( F 1 ) . K " 3 ( F I ) ) > is nonsingular precisely if 

I K ' ^ F J . K ' ^ F O M I K ' H F D M K ' ^ F , ) ! . (15) 

But this follows from the Cauchy-Schwarz inequality and the 
fact that the K l a are linearly independent. Hence, (14ft) implies 

fV« = *fla. (16) 
Similarly, we see that 

?L = k?2a. (17) 

We next exploit (11) to develop relationships between the 
f a0 and P. It follows from (lOe) that 

F}« - Fl"> = Pe®Ef ^ f »r, + f lagF
a(F,)Ef \ (18) 

Operation on (18) with ^ ( F i ) implies, in view of (11) that 

(K"J(F1).K la(F1))f1„ = Pe.K"3(F1)Er1/2Fr1r1. (19) 

Similarly, from (lOg) and (11) we get 

{K2(3(F2).K2"(F2))f2a= - P e - K ^ E f ' ^ - ' r , . (20) 

Since the matrices on the left-hand sides of (19) and (20) are 
nonsingular, we may rewrite these equations in the form 
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(22) 

fla = Aia(F,)A T2a = A2a(¥2)P, (21) 

for known functions A a/3(-). 
Our next step is to use the impact condition (9) to determine 

the impulse P in terms of pre-impact quantities. We introduce 
the notation 

H a : = F~ rE~ 'F~ ' (a no sum) 

The left-hand side of (9) now takes the form 

n . R C ^ n . f f i ^ + F i - ' F r ' r ^ + P K n . e H / w r 1 

+ (r1 .H1r1)]-A l a(F1)n.K l a(F1)Ef1 / 2Fr1r1) 

= n«Ri_) + P{ (n-e)[mr' + n H ^ ] 

-A l a(F1)n.K1"(F1)Ef1 / 2Fr1r1) 

Similarly, the right-hand side of (9) becomes 

n.Rl" = n-R^> - P( (n.e)[/w2-' + r2H2r2] 
-A 2 „(F 2 )n .K 2 a (F 2 )E- 1 / 2 ^r 2 ) 

n-R ( 0 = 0 (28) 

(23) 

(24) 

Thus, (9) takes the final form 

n . ( R < r ) - R ^ " ) ) = - P (n«e) 
ml + m2 

mlm2 

+ rl»H1r1 + r2.H2r2 

-A,„(F1)n.K1'*(F1)Er , /2Fr1r1 

-A2„(F2)n.K2"(F2)E2- Vi T 2 (25) 

Equation (25) relates P to the relative normal velocity of the 
impact points before impact, the F a , and the inertial and con­
straint properties of the two bodies. Our final task, now that 
P has been determined as a function of pre-impact quantities, 
is to develop the initial conditions for the subsequent motion, 
that is f „+), Fa

+> It follows from (10), (16), (17), and (21) that 

> - ) _ • ? - ( - ) 

o_-ji->-

+ mi(.l+k)Pt, 

m2-\l+k)Pe, 

F5+> = F ^ ) + (l + /c)P{e®Er1Ff 'r1 

-A^FOK^FOEf 

F2
+» = F 2 - ) - ( l + £)P[e®E2-1F2-1r2 

-A2a(F2)K
2a(F2)E2-

(26a) 

(26b) 

(26c) 

(26d) 

These equations determine Ta
+ ) , F a

+ ) in terms of pre-impact 
quantities. 

Several remarks are in order. First, the foregoing treatment 
assumes that the tangential relative velocity of the impact points 
does not change direction in the course of the impact, i.e., 
that 

e ' . ^ ' - R ^ ' K O , e ' . ( R i ( / ) - R P ) < 0 , 

e ' . ( R i + ) - R 2
+ ) ) < 0 . (27) 

Should the second or third of these conditions fail, the fore­
going analysis will yield physically incorrect results. For the 
analogous situation in rigid body mechanics, the subtleties of 
such cases have been discussed by Brach (1984; 1989), and 
Keller (1986). It would be straightforward to adapt the tech­
niques of these works to the pseudo-rigid case, and we intend 
to do this in a future paper. 

A second observation is that the governing equations for an 
assortment of simpler cases may be extracted from the above 
analysis without further labor. For instance, the equation gov­
erning the collision of two unconstrained bodies are obtainable 
from (10) simply by setting the fa/3 and fa|3 equal to zero. If 
body 1 is subject to only one constraint, the system (14a) is 
replaced by a single equation, as is the system (19). The case 
in which a pseudo-rigid body impacts a rigid plane with outer 
unit normal n has governing equations (10a), (106), (lOe), 
(10/) with impact condition 

replacing (9). 
In Section 4 we shall present the results for the impact of 

an incompressible pseudo-rigid body on a rigid plane and apply 
these to the detailed study of an explicit example. 

4 An Explicit Example 

In this section, we shall study the free motion on a smooth 
horizontal plane of an incompressible, isotropic, pseudo-rigid 
disk before and after impact with a rigid, vertical wall. We 
begin by developing the relevant equations. 

For the constraint of incompressibility, the constraint func­
tion g(-) is given by 

g(F) = l - d e t F , (29) 

and the internal force moment by 

E = mWF(F)¥T-pl. (30) 

If such a body collides with a rigid wall with normal n, the 
impulse of deformation P is 

P= - f(n.e)trH[w_ 1-t-fHr] 

- ( n - H r X e . H r r 1 trH(n.R ( _ )) . (31) 

The corresponding impulse to the constraint reaction p is 

p = - ( t r H ) - ' e - H r A (32) 

The initial conditions for the subsequent motion of the body 
are 

t(+) = t< - ) + /M-1(l+A:)Pe, (33a) 

F ( + ) = F ( " ) + ( l+A:)[Pe(x)E- ,F^1r+pF"7 'E-1 l - (336) 
Recall that the kinetic energy of a pseudo-rigid body is defined 
as 

1 • • 1 • -T 

7\- = - m T - T + - t r (F E F 7 ) . 

A simple calculation using (31)-(33) yields 

A7,= f(n.e)trH[w"1 + r .Hr]-(n.Hr)(e«Hr)) 

(34) 

\\+k)P 

tr H[w _ 1 + r.Hr] 
1 

( n . e ) ( e . R ( - ) ) - - ( l + £ ) ( n . R < - ) ) 

+ (e«Hr) ( l+ / t ) (e .Hr ) (n .R , "0- (n 'Hr ) (e .R ( "0 (35) 

for the change in kinetic energy due to the impact. Notice that 
in the absence of friction (e = n), AT = 0 precisely if k = 1. 
We now turn to our specific example. 

In our previous paper (1989), we considered the free motion 
of a circular incompressible, isotropic pseudo-rigid membrane 
on a smooth horizonal plane. The center of mass has constant 
velocity T, the deformation gradient tensor is given by 

F = X e ^ X S e , ^ ) + X" 'e2(0)(x)e2(^) (36) 

and the stored energy function is given by 

^ ( F ) = ^ ( X , X - ' ) . (37) 

As we established in the above-mentioned work, this motion 
has three first integrals, namely 

(38c) 

(386) 

(K-\-1f[(ji + ^]=K (const), 

(X + X^')2[0-1//]=Z, (const), 

and 

r2 

X2 + 
Kl\l L2\2 

2(X" l)2 2(X2+1)2 

+ W(k,\- l) = E (const). (38c) 
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Here, E is the total energy less the (constant) kinetic energy 
of translation and r is the undeformed radius of the disk. 
Equation (38c) forms the basis for a phase-plane analysis which 
will determine the qualitative behavior of X. Equations (38o), 
(386) then enable one to find <j> and ^ as functions of t. The 
tensor F is given by 

F = X[ei(«)® eiW) - A-2e2«0® e2«0] 

KK 

2(X /-1) 
[ei«0(x)e20/<) + e2«>)<x)e10«] 

L\ 
[e2(</>)®e,W-e1(0)(8)e2W]. (39) 

2(X2+1) 

Here we study the situation in which a disk undergoing such 
a motion collides with a rigid wall whose outer normal vector 
is i2. Thus, we have n = i2 and 

e = f 4 + l ) " 1 / 2 ( - w s g n ( i 1 . R ( - ) ) l 1 + i 2 ) : 
= sinr; i, + cosi? i2. (40) 

The inertia tensor E is given by E = mr2/A 1, and the tensor 
H has the form 

H = 4(w/-2)-1[X-2e1(</.)®e1(</») + X2e2(</.)®e2(^)]. (41) 

It follows from the kinematical analysis of our earlier work 
(1989) that 

r = - r (X 2 sin2(0) + X"2 cos24>) "1/2{X2 sin<£ ej(0) 
+ A_2cos<j!>e2(<Mi. (42) 

We shall use Eqs. (31)-(33) to analyze this impact. We note 
that, in this case, 

n-e = cosij, 

trH = 4 (mr 2 r ' (X 2 + X-2), 

Hr=-4(mr)~1(X2sin2
< / ) + X-2cos2</.) 1 /2i2 , (43) 
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so that Expressing this in components with respect to the basis (ea(<£)) 
r.Hr = 4/7?~' w e ^n(^» u P o n introducing the notation 

„.Hr=-4(/«r)-1{X2sin2</) + X-2cos2</)r1/2, S:= 4(mr)~l{\2 sin2<t> + \~2 cos20)~ 1/2(1 +k)P, (48) 
e . H r = -4(/w/-)_1(X2sin2</) + X"2cos20]"1 /2cosr;. (44) 

Substituting these into Eq. (31), we find 
that 

P=- micostj)-' (5X8 sin2</> + X4 + 5cos2<£} " ' | X8 sin24> 
X<+) = X(-) + SX(X4-l)~1[cos0cos(</) + r7) 

• X sin0 sin(0 + rj)}, 

and, from (32), that 
+ X + c o s 0 ) ( i 2 . R ), ( 4 5 ) (X2

+l)^+>-^^] + (X 2 - l ) [^ + >-Z<- ' ] = 
-2S(X 4 - l )s in0cos(^ + r;), 

p = r {X4 + 1) " ' [X2 sin24> + X _ 2 cos20]" 1/2X2 COST; P. (46) 

We consider (336) in the form (X 2 +l) [^ ( + ) -A < - ) ] - (X 2 - l ) [Z- ( + ) -Z , { _ ) ] = 

F ( + ) F~' = F ( - ) F~ ' + (l+A:)i3e<g)Hr + (l+£)j9H. (47) -2S(X2-X"2)cos0 sinW> + ij). (49) 
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It follows that 
7<<+) = ̂ -»-S(X 2- l ) | s in0 cos(0 + ?)) 

+ A~2 cos<t> sin(0 +17) ], 
L<+) = L(-)-S(X2+ l)[sin</> cos(0 + i?) 

-X_ 2cos0 sin(<A + i?)J, (50) 
We may substitute these post-impact values of \, K, and L 

into (38c) to determine £<+), the post-impact value of E. 
We now consider, as we did in (1989), the specific material 

model for which 
^(X,X^) = C[X2 + \ - 2 - 2 ] . (51) 

For this particular motion and material, the phase portraits 
for X are governed by the relationship 

X2 = 8C/-2(1+ X - y ^ - M t X - X - ' ) - 2 

with 
NiX + X-1)-2- (52) 

A: = 2 + C-lE, M:=~C~XK2P-, N :=—r CT'Z/r2. (53) 
16 16 

Here, M and N may be regarded as measures of that portion 
of the nontranslational energy which resides in spin rather than 
in elastic stored energy or kinetic energy of stretching. Recall 
from the results of our earlier work (1989) that in the case M 
= 0, different qualitative behaviors are possible, depending 
on the value of TV. For values of TV less than 16, all trajectories 
pass through the value X = 1, while for values of TV greater 
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than 16, only those associated with sufficiently large values of 
A do so. For M ji 0, X never passes through the value 1; it 
would require an infinite amount of energy to do so. 

We have computed the pre-impact and post-impact trajec­
tories for a selection of these. We take S = 0.5 in all of the 
examples shown. We rescale our time units so that 8 0 ~ 2 = 
1. We take as our initial values 

/!<-> = 9, A^_ ) = 0, A^_) = 25 (54) 

so that X(_) = 0.9047. In all of the phase-plane diagrams 
shown, the solid line represents the situation before impact 
and the dotted line that after impact. Impact occurs at X = 
1.5. 

Figure 1 corresponds to the case in which 0 = 0 and -n = 
0. Thus, the point of impact lies on the semi-major axis of the 
deformed state, and no friction acts. Notice that the impact 
involves a direct conversion of translational kinetic energy into 
kinetic energy of stretching; A and X increases through the 
impact, while the values of M and N are unchanged. 

Figure 2 depicts the case </> = w/3, ij = 0. This time A, N, 
and X decrease through the impact, while M increases. The 
post-impact behavior of X is radically different than that before 
impact. Nontranslational kinetic energy has been redistributed 
to accommodate a nonzero value of M and has undergone a 
net decrease. If k < 1, some of this energy is dissipated due 
to inelastic effects. The rest is converted to kinetic energy of 
translation. If k = 1, all of it is so converted. 

Figure 3 shows the case 4> = 2ir/3, i) = 0. Now, A, N, and 
M increase due to the impact, while X decreases. Physically, 
this corresponds to a conversion of kinetic energy of translation 
and kinetic energy of stretching into kinetic energy of spinning. 

Figures 4, 5, and 6 refer to the case (0, 77) = (0, ir/12), 
(ir/3,7r/12), (2ir/3, w/\2), respectively. Comparison with Figs. 
1, 2, and 3 indicate the effect of friction on the impact process. 
Figure 4 shows an impact in which A increases at the expense 
of translational energy. (Total energy decreases due to fric-
tional and possible inelastic dissipation.) In contrast with Fig. 
1, this increase in nontranslational energy is shared between 
stretching and spinning modes. The reader can readily interpret 
Figs. 5 and 6. 

Thus, we see that even in this simple example rather complex 
behavior is possible. 

5 Discussion 

The mechanics of pseudo-rigid bodies involves degrees-of-

freedom of stretch and shear in addition to those of rotation 
and translation associated with a rigid motion. These extra 
degrees-of-freedom contribute to both kinetic and elastic po­
tential energy. In an impact, there will, in general, be a net 
loss of kinetic energy due to friction and bulk inelastic effects. 
In addition, kinetic energy will, in general, be redistributed 
among these various modes by an impact. The foregoing ex­
ample illustrates this process. 

Analyses such as that of Hunter (1957) have attempted to 
study permanent transfer of energy from translation to vibra­
tion, within the framework of the Hertz approximation. These 
studies find that such effects are negligible. Since the Hertz 
analysis assumes that the effect of impact is a local indentation 
of the impacting body, and, moreover, neglects material inertia 
in the indented region, these results are to be expected. 

The developments of this paper, on the other hand, speak 
to a situation in which the impact produces gross deformation 
of the impacting body. Thus, it is no surprise that the impli­
cations of the model are so different from those of the Hertz 
treatment. 
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Unraveling Paradoxical Theories 
for Rigid Body Collisions 
A collision between two rigid bodies has a normal impulsive reaction at the contact 
point (CP). If the bodies are slightly rough and the contact points have a relative 
tangential velocity (slip), there is also a frictional force that opposes slip. Small 
initial slip can halt before contact terminates; when slip halts the frictional force 
changes and the collision process is separated into periods before and after halting. 
An energetically consistent theory for collisions with slip that halts is based on the 
work done by normal (nonfrictional) forces during restitution and compression 
phases. This theory clearly separates dissipation due to frictional forces from that 
due to internal irreversible deformation. With this theory, both normal and tangential 
components of the impulsive reaction always dissipate energy during collisions. In 
contrast, Newton's impact law results in calculations of paradoxical increases in 
energy for collisions where slip reverses. This law relates normal components of 
relative velocity for the CP at separation and incidence by a constant (the coefficient 
of restitution e). Newton's impact law is a kinematic definition for e that generally 
depends on the slip process and friction; consequently it has limited applicability. 

Colliding bodies are effectively rigid during collision if there 
is negligible deformation outside the contact region and if the 
contact region remains negligibly small in comparison with the 
size of the bodies. Collisions between topologically smooth 
bodies occur at a contact point (CP) where the bodies have 
a common tangent plane and a common normal direction n. 
The dynamics of rigid body collisions are a limiting case for 
a time-dependent process of local deformation; in this process 
active forces are present at the contact point only during the 
collision. Since the total collision period is very small, this 
process has changes in momenta without changes in config­
uration. 

Most collisions between rigid bodies can be considered as 
this limiting case where equal but opposed impulses act on the 
bodies at an instant of contact. The relative velocities for the 
CPs at incidence v0 and separation vy have normal components 
that are related by the coefficient of restitution e where 0 < e < 1. 
Bounds e = 1 and e = 0 denote elastic and completely inelastic 
collisions, respectively. 

The "impact law" defines e as a simple proportionality of 
relative velocity components at incidence and rebound, 
v̂  • n = - e v0 • n'. This definition expresses a velocity constraint; 
in contrast, an alternative definition relates e to normal com-

'Newton first expressed this velocity constraint; the expression generalizes 
analytical results by J. Wallis (1670) regarding conservation of momentum for 
inelastic and elastic particle collisions. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
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ponents of impulse for restitution and compression periods of 
collision (Poisson, 1817). Newton's impact law and Poisson's 
hypothesis are equivalent if the collision is collinear (i.e., both 
colliding bodies have centers of mass on the common normal 
through CP) or if friction is negligible. 

During a collision the relative velocity \(t) for the CPs can 
also have a tangential component v-(v-11)11 called slip. Fric­
tion acts at the CP of a body in a direction that opposes slip. 
Friction complicates the collision process by introducing dy­
namic constraints on relative motion at the CP; if slip is initially 
small, the reaction can stop slip during collision. Rigid body 
collisions with friction and slip that terminates before contact 
ceases have confounded theoreticians for more than a century 
(Poisson, 1817; Kane, 1984; Brach, 1989). 

Stronge (1991) has shown that when slip stops or reverses, 
the time-dependent nature of the collision process cannot be 
neglected. If there is friction and the collision is noncollinear 
the normal reaction force on each CP changes when slip stops 
during a collision; consequently, analyses of collision dynamics 
must be separated into periods before and after stopping. Tak­
ing this separation into account, Keller (1986) used Poisson's 
hypothesis to describe the analysis of collisions with slip re­
versal. This analysis did not examine energy dissipation by 
separate components of impulse however, so it failed to rec­
ognize that Poisson's hypothesis can yield nonfrictional energy 
dissipation that does not vanish if the collision is elastic, e = 
1. Both the impact law and Poisson's hypothesis are energet­
ically inconsistent in this regard if the collision is noncollinear 
and there is friction with slip that stops. 

A new definition of coefficient of restitution was proposed 
by Stronge (1990) that always satisfies dissipation constraints 
for the normal compressive reaction. This definition relates e 
to inelastic deformation of colliding bodies; it is independent 
of friction and slip. With this definition the ratio of separation 
and incident velocities explicitly depends on both e and the 
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1 i 

Fig. 1 Planar collision of two bodies at CP. At collision, the direction 
to CM, from CP is inclined at angle 0, relative to the common normal 
direction n; 0, = tan"1(x,/y,). The normal reaction force P acts at CP. 

process of slip at CP. The complexity of including friction in 
the collision process is unravelled by examining impulse-de­
pendent velocity changes during separate phases of collision 
representing compression, restitution, and slip in each direc­
tion. 

Planar Collisions With Slip 
Changes in velocity during collision depend on differences 

between velocities of contact points. The dynamics of collision 
are most transparent in terms of velocities relative to a reference 
frame that moves with the common tangent plane at the instant 
when compression ceases; let this reference frame move steadily 
in direction n during each phase of slip. 

Suppose rigid laminae labeled 1 and 2 with masses M-„ i = 
1, 2 collide at CP as shown Fig. 1. We acknowledge that the 
colliding bodies are only relatively rigid by considering an 
infinitesimally small deformable element between the CPs that 
admits only infinitesimal deformation in direction n; i.e., this 
deformable element is assumed to have negligible tangential 
compliance. The contact point of each body CP, has changing 
velocity v,(/) relative to the steadily moving reference frame. 
During the compression period t<tc, v i ' n>0>v 2 »n . Let the 
centers of mass (CM,) have velocities v,(0 = (v,, ut) where 
Oj and Uj are the normal and tangential components relative to 
the steadily moving reference frame. Each laminae has an 
angular velocity «,•(?) • Velocities for CP, and CM, are related 
by v,-(0 = V; - u>j X r,- = (Oj-XiWj, Uj+y/jbii) where r, = (xh 

yi) is the position vector of CM, from CPt. During collision 
the contact points have a difference in velocity v(/) = v, -
v2 = (v, u) with both normal and tangential components; the 
tangential component is termed slip. Equal but opposed re­
action forces P,- = (P, fiP s g n ( w ) ) ( - l ) ' act at coincident 
points of contact that are slipping; these forces have normal 
components P, tangential components fiP sgn (u) , and change 
sign according to ( -1 ) ' . The tangential force on each body 
acts in a direction opposed to slip; while there is slip the tan­
gential force has a magnitude that is proportional to the normal 
component of force P = dP/dt where P(t) is the normal 
component of impulse. The limiting friction coefficient JX pre­
scribes this proportionality. We assume that ix is a constant 
although in practice, ft can vary with v{t0) due to surface 
indentation. 

The initial difference in velocity at CP can be separated into 
initial velocities for CP, relative to the steadily moving refer­
ence frame, \i{t0) = (v0, u0) and \2(t0) = (-riv0, .-£«„) 
where 17, £ are constants. (It is convenient to make ?j propor­
tional to the relative rate of change for the normal component 
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of velocity of CPj during compression.) Hence, at the CP there 
is an initial difference in velocity \i(t0) - v2(?D) = ((l+ij)t>0, 
(1 + £)"o) when collision commences. Each body also has an 
initial angular velocity w,-(?0). 

Although the total collision period is very small, changes in 
motion during a collision can be separated into an initial phase 
of compression followed immediately by a phase of restitution. 
The notion of this separation was originally due to Poisson 
(1817): here it is used to consider changes in motion for col­
liding rigid bodies as a function of the normal component of 
impulse. In this analysis, impulses for separate phases of the 
collision process are determined in comparison with the 
compression phase impulse for unidirectional slip in the initial 
slip direction. The direction of initial slip relative to the in­
clination of the colliding bodies turns out to be an important 
discriminator for different possible slip processes. 

Initial Slip U\(t0)>iii(t0): Labeling the bodies such that 
U\(t0)>u2(t0), the changes in velocity components vh u„ co; 

for laminae / = 1,2 depend on the normal component of 
impulse P(t)=\',oPdt': 

Ci(t)~vi{t0)=(-l)iP/Mi 

ui(t)~ui(t0)={-\)ip,P/Mi 

wi{t)-o,i(t0)={-\)i(nyi-xi)P/Mik> (1) 
where kf is the radius of gyration of body ; for CMh Corre­
sponding changes in velocity components at the contact points 
CPj can be expressed as: 

vi(t) = vi(t0) + (-l)iP/mi 

ui(t) = ui(t0)+(-l)i
liP/ni (2) 

where effective masses m, and «, for normal and tangential 
accelerations of CP, are defined as: 

m,- = M,*?[*? + x?-/iX,j ' / r l , n^Mtilki+rf-Xiyi/pr1 (3) 

for Ui(t0) > u2(t0). The rates of change for velocity com­
ponents at CP, are proportional to mf1 and nf'; notice that 
the sign of each effective mass depends on the orientation of 
the body and the coefficient of friction fi. Effective mass n,-
can be negative if friction is small; this indicates that slip speed 
increases despite small friction. 
_ We define a characteristic normal impulse for compression 
P and a ratio -q for rate of change of velocity of CP,- that bring 
normal components of relative velocity for contact points of 
both bodies to a common speed at the end of the compression 
period, V\(tc) = v2(tc). The relative rate of approach -q for 
the initial phase of slip yields v-,(tc) = 0 if slip does not stop 
during compression; hence, during any initial period of slip, 

P = —ri rr> ri = m,/m2, for Ui>u2 (4) 
m{ +m2 

and P = mxv0. The characteristic reaction P and the effective 
masses m,, rij all depend on the sense of slip at CP. 

Reversed Slip u2(t) > «,(*) After Slip Stops t> ts: If slip of 
one CP relative to the other has the opposite sense, the previous 
expressions for effective masses and characteristic normal 
compression impulse are altered by changing the sign of p. 
Hence, the effective masses milt, «,•» after reversal are: 

mit =Mik
2
i[k^ + x2

i+lxxiyA~\ nit =Mik^[kf+yj + xiyi/lxr1 

(5) 
while the characteristic normal impulse P* is given by: 

- v0(l+y) 
P* = ^ 1 - r j , for H 2 > K I . (6) 

If there is friction and CM; is not on the common normal, 
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Fig. 2 Normal and tangential effective masses for the mass distribution 
of dumbbell (kj = xf + yf) depend on angle of inclination, friction, and 
direction of slip 

/xXiy,^0 so effective masses depend on the direction of slip. 
Figure 2 illustrates the effect of slip direction on effective 
masses for a simple body with a large radius of gyration kj. 

With these characteristic impulses, the velocity components 
(1) and (2) can be expressed as functions of impulse ratio P/ 
P rather than time; e.g., the contact velocity components dur­
ing the period before slip stops are given by, 

- = ( - l ) ' " 1 — 
v0 m, 

V0 V0 «,- P 
(7) 

These changes in velocity for contact points CP, are succinctly 
illustrated in Fig. 3. In this diagram the impulse ratio on the 
abscissa changes with the direction of slip; hence, the normal 
velocity components for CP, are simply lines that intersect 
where compression terminates at either P/P = 1 or P/P, = 
1 - 7 + y P/P* depending on whether slip stops during 
restitution or_compression. These lines kink at the impulse that 
stops slip if P , T5 P but this does not after the rate of con­
vergence. This scaling of impulse ratio P/Pj results in the same 
rate of change of relative velocity V\ - v2 before and after slip 
reverses. Note that initially P/P = 0. By using impulse ratio 
as an independent variable rather than time, details associated 
with compliance at CP, have been eliminated. 

SlipJStops at Impulse Ratio 7 = P(ts)/P: We calculate slip 
u (P/P) of CPX relative to CP2 when compression terminates 
by supposing for a moment that initial slip does not stop during 
compression: 

M(1) = «,(1) - M2(1) = u0(\ + £) - \>,v0mx («f ' + n2~'). (8) 

The impulse ratio 7 stops slip; this impulse ratio can be de^ 
termined by recognizing that slip is a linear function of P/P 

0 V 1 _ T 
r e l a t i v e impulse P / Pj 

Fig. 3 Variation of normal and tangential relative velocity components 
for CPs during collision with slip reversal at relative impulse 7 during 
compression. The characteristic impulse P; changes with slip direction. 

before slip stops. Hence, independent of whether slip stops 
during restitution or compression, 

11(0) H 0 ( l+{) 
7 = 

" ( 0 ) - -w(l) ixv0mi(ni ' + «2 ' ) ' 
(9) 

The impulse ratio 7 is a key parameter for identifying collision 
processes. We find that slip only reverses if it stops during 
compression (i.e., 0 < 7 < 1) so stopping and reversal depend 
on the orientation of the bodies when collision commences. 

During the initial phase of slip, the ratio J for rate of change 
of slip speed for CP2 compared with CPX is established by 
requiring that 7 is symmetric; i.e., independent of the desig­
nation of the bodies. Hence, 

^ = ri = m[/m2. (10) 

Note that relative changes in speed for the two bodies 77, £ 
depend on the sense of slip and the angles of inclination for 
CM, during the collision. These relative changes in speed at 
CP are translated directly to the centers of mass only if x{ = 
0 or/,- = 0 for normal or tangential components, respectively; 
i.e., if changes in motion induced by normal and tangential 
components of impulse are not coupled. If the collision is 
noncollinear with friction, the center of mass is generally not 
stationary in the reference frame where Vj(P) = 0. 

After impulse 7, when slip stops the velocity components at 
CMj are: 

OAy) _{ | *ittfi(0) 7(1+1) 
Vn Ml(m^ + m2

iY 

u\(y) _u0_^ia>i(0)_ 7/t(l+i?) 
v0 ~ v0 v0 Mx(m\x + m2

x) 

kioiiiy) Arifa)i(O) 7 (^1- /^1) (1 +v) 

My) 

v0 

, x2o)2(Q) i 
- j y - l 1-

v„ 
+ kM\(m\y + m2

x) 

7(1+1) 
M2(m1 ' + m2 ) ' 

" 2 ( 7 ) 
- * 

"o ^2" 2 (0 ) 7/4 i-K> 
-h v0 v0 M2(mx

 l + m2 ) 

K2(x>2 (7) k2u2(0) y(x2-fiy2)(i + v) 

v0 v„ k2M2{mx
 1 + m2 ' ) 

(12) 
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U(T)=U1(T)-U2(T)-

- Ij.v0(l +7])(r-y)(nlJ + n2*')/(mlJ + m2J), 0 < 7 < 1 

0, K y < 7 (20) 

.u0(l + 0 - / ^ 0 ( l + ' ) M « r ' + «2~1)/(wr1+W2~1), T < 7 

Reversal of Slip Direction 
After slip stops the direction of slip for CP, can reverse. 

Slip reversal introduces changes' in the effective masses mh n, 
and changes in the characteristic normal component of impulse 
for the compression period P. The ratio of characteristic im­
pulses for periods after and before slip reversal can be expressed 
as a ratio of effective masses w(; 

P*/P= (m^+m2
{)/(m^ + m2^) (13) 

This ratio depends upon masses M,- and angles of inclination 
8, for both bodies and also friction /n. The ratio describes a 
change at reversal in the rate that impulse is applied to the 
colliding bodies. It will be shown that if slip reverses, this 
characteristic impulse ratio is larger than unity. 

For each body, all velocity changes are linear functions of 
the reaction impulse during each phase of slip. Although re­
action forces change when slip reverses, the changes in velocity 
are always directly proportional to either P/P or (P - yP)/P* 
depending on the direction of slip. If slip stops the tangential 
velocity components show a change in slope at y since m/n,-

Final Velocities at Terminal Impulse Pf. If slip stops 
(0 < 7 < T), the terminal impulse P/\s the sum of impulses during 
periods before and after slip stops; Pf = yP + (r — y)P, where 
T > 1. In this case the final velocities for CM-, can be expressed 
in terms of effective masses mh m,* for each phase of collision. 

A I ( T ) _ si(oi(0) 7(1+'/) ( T - 7 ) ( 1 + I J ) 

Mx{my
 x + m2 ') Afi(mi,1+ /K2«') 

(14) 

Mr) , x2u2(0) , 7(l+i7) 
= -r/ + + 

( T - 7 ) ( l + 7 ) ) 

M2{ml ' + w2 ') M2(mi*+m2*) 

(15) 

U\(T) _uo_y1al(0) ynQ+v) t*(r - y)(l + y) 

v0 v0 v0 Mi(mi1 + m2~
i) Mx(m^ + m2») 

(16) 

U2(T) _ u0 y2o)2(0) + 7Ml+»?) _ / x ( r - 7 ) ( l + r ; ) 

v0 v0 v0 M2(m{l + m2
l) M2(m\* + m2i) 

(17) 

M I ( T ) A:icai(0) , y(Xi-iiyi)(l+t?) 

k\Mx(m\ +m2 ) 

| (T-y){xl + fiyl)(l + v) 

kiMi(m^l + m2J) 

k2o>2(r) _ k2u2(0) y(x2 -ny2)(l+n) 
+ m2

l) 
{T-y)(x2 + ny2)(\+T]) 

k2M2(m[
 , + m2

i) 

k2M2{mx*+m2*) 
(19) 

The corresponding final normal relative velocities for CP, 
at impulse ratio T when collision terminates are: 

„( ^ „(m 1 (-iyV+v)mrlv0y , ( - D'O +v)m^v0{T-y) 
VAT)=Vi(0) + — — H-rti\ l + m2 ' mlt

l + m2* 

When collision terminates, this results in the following sepa­
ration velocity components at CP. 

V(T) = VI(T)-V2(T) = - U 0 ( 1 + T / ) ( T - 1 ) 

The negative sign for expressions on the right indicates that 
the sense of both components of relative velocity has changed 
during collision if (nf.1 + n2*

1) >0 . In (20), the three ranges of 
7 correspond to slip reversal, slip stick, and unidirectional slip, 
respectively. 

Dissipation During Collision: Dissipation is the negative 
of work done by contact forces during a collision, and it can 
be evaluated by integrating the rate-of-work by impulse during 
0<P<Pf. Dissipation naturally separates into compressive and 
frictional parts; if tangential compliance is negligible, these 
parts are equivalent to the product of the appropriate char­
acteristic impulse P (or Pt) and the area in Fig. 3 between 
lines representing components of contact velocity for the two 
bodies (Stronge, 1990). The irreversible deformation dissipa­
tion D„ and frictional dissipation D, for slip that reverses at 
relative impulse 0 < 7 < 1 are given by: 

A, = Pv0 (1 + V)y(2 - 7)/2 + P* w0(l + l)[(l - T)2 - (r - D2]/2 

A = ̂ 0 ( l + « Y / 2 - p P . K / ( r - r ) / 2 

(21) 

where uf = U(T) is evaluated from (20)2. If (9) yields 7 < 0 or 
7 > 1 + e, this indicates that slip does not stop during collision. 
In this case, 

A , = P 3 ( 1 + T ) ) [ 1 - ( T - 1 ) 2 ] / 2 

A = / ^ [ " 0 ( l + £ ) + "/]r/2. (22) 

Total dissipation D is equivalent to the change in kinetic energy 
during collision, D = Dn + D, = K0 - Kf. 

Consistent and Inconsistent Collision Theories 

At this point it is necessary to introduce a hypothesis that 
relates restitution and compression reactions. The hypothesis 
determines the relative durations of restitution and compres­
sion phases of collision. Since the dynamics of colliding bodies 
are linear relations between impulse and rates-of-change for 
velocity components, the normal dissipation Dn associated with 
internal irreversible deformation during restitution and 
compression phases is also directly determined by this hy­
pothesis. In a consistent theory, this part of energy dissipation 
during restitution cannot be larger than the corresponding part 
during compression. Also we require D„ = 0 for elastic col­
lisions. Theories that do not satisfy these constraints are termed 
inconsistent. 

One consistent collision theory has been proposed. Stronge 
(1990) formulated a theory based on the normal dissipation 
£>„. This proposition and the corresponding terminal impulse 
ratio T are given below: 

(a) Interna] Dissipation Hypothesis: The square of coeffi­
cient of restitution e2 is the ratio of elastic strain energy 
released at CP during restitution to the energy absorbed 
by internal deformation during compression. 

For negligible tangential compliance, an equivalent form of 
this hypothesis expresses that negative work by the normal 

These expressions are obtained also from a theorem for energy loss in col­
lisions (Stronge, 1987). The theorem must be applied separately to each phase 
of motion if slip stops or reverses. 
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component of reaction entirely represents nonfrictional dis-
sipative effects. Hence, e2 equals work of the normal com­
ponent of reaction during restitution divided by negative work 
of the normal component of reaction during compression. 

For slip reversal, « 1 ( 0 ) > 0 > « 1 ( T ) : 

7 < 1 : <? = 
( r - 1 ) 2 

(1 

1 < 7 < 1 + e: e2 

-yr + y(2-y)P/Pt 

»T=l+e[(l-y)2 + y(2-y)P/P, 

( r - i ) 2 - ( 7 - 2 ) 2 ( i - / y p . ) 
p/p* 

) 1/2 

(23) 

(24) « T = 1 + ((7 - 1)2(1 - P/P, ) + e2P/P* 

For unidirectional slip, W 1 (0 )>M 1 (T )>0 : 

l + e < 7 : e2 = ( r - l ) 2 ~ r = l + e . (25) 

For a coefficient of restitution e = 1, the internal dissipation 
hypothesis equates D„ for compression and restitution. In Fig. 
3, this represents a balance of the areas on either side of the 
impulse that terminates compression if the area after_slip_re-
versal is weighted by the characteristic impulse ratio PJP. 

There are at least two inconsistent collision theories. 

(b) Impulse Hypothesis: The coefficient of restitution e is 
the normal reaction impulse during restitution divided 
by normal reaction impulse during compression. 

For slip reversal, « I ( 0 ) > 0 > « I ( T ) : 

( r - 1 ) 
7 < 1 : e-

l < 7 < l + e : e = 

(\-y) + yP/P* 

- T = l+e(l-y + yP/Pt) (26) 

(T-y) + (y-l)P/P* 

P/Pt 

~ T = y + (l+e-y)P/Pt. (27) 

For unidirectional slip, Hi(0)>Wi(7)>0: 

l+e<y: e=T—l, •-» r = l + e . (28) 

Poisson proposed this hypothesis which yields the usual im­
pact law for collinear collisions or unidirectional slip. How­
ever, if the bodies are noncollinear and slip stops, P„ ^ P, 
and this theory yields predictions of normal dissipation D„ that 
do not vanish for elastic collisions. 

Newton's impact law also results in an inconsistent theory. 

(c) Kinematic Hypothesis: The coefficient of restitution e 
is the negative of normal component of relative velocity 
between contact points CP, at separation divided by nor­
mal component of relative velocity at incidence. 

For all slip conditions: 

•1 <- T = 1 + e. (29) 

With this hypothesis, Eq. (20) yields a simple proportionality 
between normal components of contact velocity for incidence 
and separation (Newton's impact law). However, if e and /J, 
are presumed to be independent, hypothesis (c) yields normal 
dissipation D„ recovered during restitution that can exceed the 
normal dissipation during compression if slip stops a n d P , >P 
as a consequence of the collision configuration; i.e., this theory 
is energetically inconsistent. The inconsistency is an indication 
that with the hypothesis, e depends on friction and the slip 
process. Consequently, this hypothesis and the impact law are 
not useful for noncollinear collisions with friction if initial slip 
stops or reverses during the collision. 

0° 30° -60° 90° 
Inclination angle, 6̂  

Fig. 4 Friction bounds for slip stick m, and jamb p,n of body with 
dumbbell mass distribution (l(f = xf + yj) 

The three theories have the same terminal impulse T if slip 
does not stop during collision or_if the collision is collinear so 
P* = P. If slip stops and P* ^ P, the dissipation and impulse 
theories have a slightly smaller relative impulse during resti­
tution r - 1 than is specified by hypothesis (c); i.e., they have 
T - 1 < e. The terminal impulse ratios for the three theories 
are ordered as follows: 

1 < T(Impulse) < T(Dissipation) < T(Impact Law) = 1 + e. 

Collision Processes With Friction 
There are several possible scenarios for collision processes 

if friction retards slip. During collision the slip can either 
continue without stopping, stop and stick, or stop and then 
reverse depending on the magnitudes of coefficient of friction 
\x. and initial slip speed uo/v0. The dynamics equations are used 
to find the boundaries of regions where these slip processes 
occur. In addition to friction and slip speed, the processes 
depend on the angle-of-inclination 6, = tan"1 (x/yi) for CM, 
relative to the common normal. Conditions that identify these 
processes are: 

(i) 
(ii) 

(iii) 

initial slip slows only if (n_\ ' + 
slip stops after impulse yP if: 

n2 
l)/(mt

 ] + m2 )>0; 

0<7 = « 0( l+£) (ffli l + m2
l) 

IXV0(\+T)) («i ' + « 2 ' ) 

if slip stops, it reverses only if 
, - i , ™ - i 

< T ; 

("I*1 + «2«) / 
(/Mi,+/w2*)>0; 

(iv) otherwise, slip that stops then sticks. 
Bounds on slip processes are most apparent if the impulse 

when slip stops y and the final slip velocity U(T) are expressed 
in terms of two friction parameters related to slip processes. 
If the coefficient of friction is large enough to prevent slip 
reversal, the contact points can only roll after slip stops. This 
collision process wherein slip vanishes before contact ceases is 
termed slip stick. Even larger friction can prevent slip alto­
gether; i.e., the contact points jamb. The process of jamb 
results in discontinuous relative velocities for CP, at initial 
contact. Jamb is present if the characteristic impulse in (4) is 
indefinitely large due to /ftf1 + m2~

i < 0; this process is 
equivalent to a dynamic constraint on sliding of rough bodies 
(Lotstedt, 1981). Each body has friction bounds for stick fx;* 
and jamb fiiu that depend on the angle of inclination. 

ft* =xiyi/{kL
i+y2), tiiD=(k2 + xj)/xiyi (30) 

These bounds are illustrated in Fig. 4 for a simple body. The 
effective masses (3) can be expressed in terms of the bounds, 

/W//M/= [(1 +y2/kt)m* (mD - / * ) ] " ' 
n,/M,= [(1 +y2/kf) (1 - f t » / / * ) r ' (3D 

where /*,•» and ^,D have the same sign as the angle of inclination, 
dj. Examples of slip processes are now determined for three 
orientations of colliding bodies with M{k\/(k\ + yd = M2k^/ 
(*! + yl)-
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Fig. 5 Active regions for each slip process depend on collision param­
eters and initial conditions: (a) antisymmetric configuration, 6, = 02 = 
jr/4; (o) symmetric configuration, - 0 , = 02 = JT/4. Collisions between 
two identical dumbbells exhibit the following processes: (a) continuous 
slip in initial direction, (b) slip with reversal during contact, and (c) slip 
stick. 
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Fig. 6 Dissipation of initial energy for antisymmetric collision between 
two dumbbells with w,('o) = 0, 0, = 02 = ir/4. The impact law, impulse 
hypothesis, and internal dissipation hypothesis are given by the dashed 
curve, chained curve, and continuous curve, respectively. Shaded region 
has continuous slip during collision. The coefficient of restitution is 
designated as follows: o, e = 0; A, e = 0.5, and D, e = 1.0. 

Case 1, 0i <0 , 02<O—n,>m,>0 if j t>0: In this configu­
ration the initial slip of CP, is in the direction of a component 
of r,-; i.e., initial slip of CP, is towards CM-,. Changes in contact 
point velocities for this case are illustrated in Fig. 3. Equations 
(9) and (10) show that slip stops at impulse ratio 7, 

y — 
2/* -Mi 

where ji,> < 0, ^,-Q < 0 and 5 = 
slip, friction must be large enough to overcome /x,> and the 
initial momentum during collision; 

2T+(jJ.it + ^*)S 

Slip that stops does so during compression if /* < /*,•» and during 
restitution if /*>/x;* 
since mit > 0 and n,* > 0; i.e., from (20), 

u0(l+%)/v0(l+ri). To stop 

/*>- (32) 

After slip stops it reverses if /*,-< l̂ ,-» 

H(T)=-/*U0(l+rj)(T-7)(M1» +M 2 , ) / ( / t t i , + / n 2 » ) < 0 . 
(33) 

Thus, if n is sufficiently large so nf*' + «2~* ̂  0, slip stops and 
sticks3. On the other hand if the initial slip speed is large, 

3If one body is massive in comparison with the other only n,» of the light 
body determines whether slip reverses or sticks after stopping. 

S>r (2 /* - / i i» - / i 2 *) / [M]*A ' iD + M2*M2D-MA'i*+Al2*)]> 

then unidirectional slip continues without stopping. Figure 
5(a) shows slip processes for this case. 

Case 2, 0 1 <O<0 2 -n i>O>n 2 , m 2 >Wi>0 if 0 < ^ < ^ i D : In 
this case the rate of change for the tangential velocity of CP2 

is negative. Hence, the limiting friction that stops slip is the 
same as that of the previous case (33). After slip stops it reverses 
if and only if wf*1 + rii* >0 . Otherwise, slip stops and sticks. 
Slip processes for this case are shown in Fig. 5(b). 

Case 3, 0]>O, 02>O—n,>/n,>0if /*,« </i<iiin: This con­
figuration has initial slip of each contact point away from the 
corresponding CM,. If/M</X,*, n ,<0<m, ; hence, the initial slip 
speed, increases and does not stop. If /x>/n/„ slip stops during 
restitution, 1 < 7 < 7. The maximum initial slip speed that stops 
during collision only stops at separation: 

T ( 2 / t - / i 1 * - / i 2 » ) 
(34) 

^ l * / i in+ f t2* / *2D- / i ( / * l * +^2*) 

After slip stops the effective masses satisfy inequalities 
fijt <0<tnit so there is no reversal; i.e., in this case slip stops 
and sticks if and only if 
Mi* +112* <2/x</*]• + nzn and 
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Coefficient friction, LI 

Fig. 7 Dissipation of initial energy for symmetric collision between two 
dumbbells with w,(f0) = 0, - 0 , = 02 = »/4. The impact law, impulse 
hypothesis, and internal dissipation hypothesis are given by the dashed 
curve, chained curve, and continuous curve, respectively. Shaded region 
has continuous slip and outer bands have slip stick behavior. The coef­
ficient of restitution is designated as follows: o, e = 0; A, e = 0.5 and 
• , e = 1.0. 

" o ( l + S ) T(2/X-IXlt -fl2*) 

Vo(l+V) /*l*AMD+/*2*Jl2rj-A*0*l* + /«2*)' 

Active regions for each slip process are shown in Fig. 5 for 
antisymmetric and symmetric configurations at collision of 
identical symmetric bodies. In this figure, positive and negative 
initial tangential velocities u0/v0 correspond to the illustrated 
configuration and its mirror image (reflected about the com­
mon normal), respectively. Identical bodies that collide in an 
antisymmetric configuration 0i = 62 have equal but opposite 
accelerations for each body during collision; hence, contact 
forces on each body are equivalent to those in a collision with 
a very massive body. 

Comparison of Consistent and Inconsistent Theories 
Energy dissipation during collision is the scalar measure of 

collision dynamics that has pointed to an inherent defect in 
Newton's impact law. Both Kane (1984) and Brach (1989) 
examined dissipation during collisions between inclined elon­
gated bodies and commented on paradoxical energy gains which 
occurred with friction and small initial slip that is halted during 
collision. This effect is observable in Fig. 6 which shows dis­
sipation during a collision between two identical inclined 
dumbbells for a range of friction and initial slip speed. This 
figure shows that the impact law yields negative dissipation if 
friction is large, the collision is at least partially elastic, and 
we presume that e is independent of friction. Energy dissipation 
obtained with the impulse and internal dissipation hypotheses 
are never smaller than that of the restitution period hypothesis; 
more important, dissipation obtained with the internal dissi­
pation theory is always positive. 

Figures 6 and 7 show that the three theories are identical if 
slip does not halt during collision (the cross-hatched region). 
If slip stops but friction then prevents reversal, (slip-stick) 

frictional dissipation ceases before collision terminates. Slip 
that reverses after stopping is present only if the configuration 
is not symmetric with respect to the common tangent plane 
(Fig. 6) and initial slip of CP/ is towards'CM,-; i.e., uo/vo<0. 
With reversal there is a difference between the results of the 
impulse and internal dissipation hypotheses if e>0 . This dif­
ference is only obvious in this example if the collision is nearly 
elastic and slip reversal occurs near the transition from 
compression to restitution. 

The example of a symmetric collision configuration illus­
trated in Fig. 7 stops and sticks if there is sufficient friction; 
the slip direction cannot reverse. Velocity changes for this 
configuration are not symmetric because of friction. 

Conclusion 

The impact law is an empirical relation for normal com­
ponents of incident and rebound velocities at CP. The law 
provides a kinematic definition of coefficient of restitution e; 
however, if the collision is noncollinear then this definition 
results in a coefficient e that depends on friction and slip 
processes. This dependence results from coupling between the 
effects of normal and tangential contact forces. Consequently, 
if slip reverses during collision the kinematic definition of 
coefficient of restitution is not useful; any measurement of 
this coefficient is only applicable in a vanishingly small range 
of incident velocities. Furthermore, it is energetically incon­
sistent to assume that this definition yields a coefficient e that 
is independent of friction; this assumption leads to paradoxical 
calculations of increases in energy during impact. 

A dynamic collision theory proposed by Stronge (1990) de­
termines energy losses from the work done by contact forces; 
moreover, it imposes no constraints on slip. This internal dis­
sipation hypothesis defines a coefficient of restitution that is 
independent of friction; for partly elastic collisions (e< 1) this 
theory always dissipates energy. It produces a kinetic energy 
loss due to irreversible internal deformation that is propor­
tional to 1 - e2 irrespective of slip. If the contact point slips, 
there is also an energy loss due to friction. The internal dis­
sipation hypothesis, the impact law, and Poisson's hypothesis 
are equivalent if slip does not halt during collision or if both 
CMj are on the common normal line through CP (i.e, colli-
near). However, the theories are distinct for rough bodies if 
at least one center of mass is noncollinear and there is small 
initial slip that halts during collision; in this case only the 
internal dissipation hypothesis is energetically consistent. 
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Dynamic Stability of Elastic Rotor-
Bearing Systems wia Liapunov's 
Direct Method 
A general method of analysis based on Liapunov's direct method is presented for 
studying the dynamic stability of elastic rotor-bearing systems. A model comprised 
of a continuous elastic shaft mounted on two 8-coefficient bearings is used to develop 
closed-form (series) stability criteria involving system stiffness and damping pa­
rameters. It is quantitatively shown by means of graphs how the instability regions 
are reduced by (a) increasing the shaft dimensionless stiffness parameters, (b) 
increasing the bearing direct stiffness and damping parameters, and (c) decreasing 
the bearing cross-coupling stiffness and damping parameters. 

Introduction 
The dynamics of rotors has been the subject of investigations 

for over a century. More recently, a new interest in this subject 
has emerged because of the trend toward ultra-high speeds in 
rotating machinery and the instability problems caused by the 
inherent flexibility of rotor-bearing systems. A considerable 
amount of research has been devoted to the dynamics and 
stability of rotating flexible shaft-appendage systems. How­
ever, all of these investigations either ignore the bearing sup­
port flexibility or oversimplify the bearing model. Typical 
studies are by Chivens and Nelson (1975), Klompas (1974), 
Kuo (1975), Masoom (1980), and Wilgen and Schlack (1977, 
1979). Modeling the bearing support as a single spring and 
dashpot is frequently not adequate because, in many cases, 
the anisotropy of bearing supports must also be considered, 
as demonstrated by such authors as Gunter (1966), Klompas 
(1974), Moore (1972), Nelson and McVaugh (1976), and Par­
kinson (1965). 

The asymmetric bearing model, however, is still not a com­
pletely satisfactory model, especially for large flexible rotors 
which are usually supported by journal bearings. The journal 
bearing actually acts as a nonisotropic spring and dashpot 
system with cross-coupling between the vertical and horizontal 
directions. The vast majority of investigations found in the 
literature neglect the cross-coupling stiffness and damping 
coefficients of the bearing support to simplify the mathematical 
model. Among the few authors who used an appropriate bear­
ing support model (i.e., taking into account the anisotropic 
and cross-coupling coefficients by using an 8rCoefficient bear­
ing model) are Adams (1980, 1983), Adams and Padovan 
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(1981), Doyle (1971), Gunter (1966), Rao (1985), and Stanway 
and Burrows (1981). However, due to the complexity of the 
problem when an 8-coefficient bearing model is adopted none 
of these studies treat the rotating shaft as a continuous elastic 
model. 

Although Liapunov's direct method is a powerful tool for 
analyzing stability of linear and nonlinear dynamical systems 
and has frequently been applied successfully in examining at­
titude stability of elastic satellites, only a very few investiga­
tions (Grobov and Kantemir (1978) and Wilgen and Schlack 
(1977, 1978)) are found in the literature that adopt this tech­
nique to the study of rotor dynamics. Moreover, they focus 
mainly on the effect of appendage flexibility on shaft whirl 
stability, ignoring completely the flexibility of the two end-
bearing supports. 

The main objective of this paper is to gain a comprehensive 
insight into the effects of the various end support parameters 
coupled with the rotor flexibility parameters on the whirling 
stability of rotor-bearing systems. This is done by modeling 
the system as a continuous elastic rotor mounted on two dis­
similar 8-coefficient bearings. Series expansions are used for 
describing the elastic rotor deflections. By mathematical in­
duction, a general closed-form (series) set of sufficient con­
ditions for stability is derived which leads to an easy assessment 
of truncation error. 

Problem Formulation 
The model consists of a rotor of mass m treated as a con­

tinuous elastic shaft of length L supported at its ends by two 
dissimilar 8-coefficient bearings shown schematically in Fig. 
1. The shaft is initially straight, balanced, uniform, and with 
a slenderness ratio sufficiently small that the Euler-Bernoulli 
theory of bending may be used for small displacements. It is 
assumed that extensional and torsional deformations are neg­
ligible and aerodynamic effects are not included. 

Consider that in the dynamic equilibrium configuration of 
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Fig. 1 8-coefficient bearing model 

the rotor-bearing system the undeformed shaft is along the x-
direction of an inertial x, y, z coordinate system. Denoting the 
deflection of the center of the left bearing by r, = j j + z,k 
and that of the right bearing by r = y£ + z2k, we can describe 
the displacement of an arbitrary element of the undeformed 
shaft axis at a distance x from the left bearing as 

TAX, t)=y(x,t)j + z(x, /)k = O, + xO)j + (z, + x0)k (1) 

where, for small angles and small displacements, we have ap­
proximately, 

yi~y\ , , Zi-Zx 
and q> = - (2) 

L L 

Also, the resultant angular velocity of the shaft which rotates 
at a speed Q about its bearing axis can be written as 

u = Qi + (j> + 6Q)j + (d+<t>Q)k. (3) 

Adoptmg the assumed mode approach the elastic shaft de­
flections can be expressed as 

N N 
4- i n-KX v - i n-KX 

n=l n=1 

where a„(t) and b„(t) are time-dependent generalized coor­
dinates and N denotes the number of terms in the truncated 
series expansion. Therefore, the position vector r(x, t) of a 
typical differential element at a distance x along the shaft is 

r(x,t) = \y(r,t) + v(x,t)]j + [z(x,t) + w(x,t)]k (5) 

where y(x, t) and z(,x, t) are the rigid body displacements and 
v(x, t) and w(x, f) are the elastic displacements of the differ­
ential element. Differentiating r(x, /) with respect to time, the 
velocity vector is 

r (x, t) = [(z+w)(<j> + 00) -(y+v)( 6 +</>Q)]i 

+ [(y+v)-Q(z+w)]j + [(z + w)+Q(y+v)]k. (6) 

The kinetic energy of the shaft is 

1 fi . . 1 
T=- P \ r • r dx=- p \ {{y+b)2+{z + w)2 

+ 62(y + v)2 + (j>2(z+w)2-26<l>(y+v)(z+w)] 

+ 2Q[(y + v)(z + w)- (z+w)(y+ v) 

+ <j>8(y+v)2 + d<i>(z+w)2-(d6+<t>4>)(y+v)(z+w)] 

+ fi2[(y+i>)2(l + 4>2) 

+ (z+w)2(l+e2)-2(y+v)(z+w)6(P]}dx. (7) 

Note that, in general, the kinetic energy T can be rewritten as 
T = T2 + Tx + T0 where the subscript refers to the algebraic 
degree in the generalized velocity variables. 

The strain energy expression for the bearing system under 
consideration is 

K* = 2 2 ] 2 kuQi(lj = 2 (^m^ +kyiziyiZi+kZiZizi + kzmZiyi 
• i 

+ ky^2 + kyiZ2y2z2 + kZ2Z2Z2 + Kmziyi) (8) 

where the subscript 1 refers to the left bearing and 2 to the 
right bearing. The strain energy expression for the shaft is 

V.=\EI 
d2v(x,t)^ 2 d2w(x,ti- r 

dx2 J T V a*2 

The strain energy of the system is thus given by 

V=Vb+Vs. 

The energy dissipation function of the system is 

•D = o I J S cuQiQj=j ( C ^ i i + C ^ i i i + C ^ i 

dx. (9) 

(10) 

+ CZlylz]yi + Cy2/2yl + Cy2Z2y2Z2 + CZ2Z2z
22+CZ2y2z2y2)- (11) 

The state of motion of the mechanical system under con­
sideration is thus completely defined by the functions v(x, t) 
and w(x, t) plus the four state variables y,, Z\, y2, and z2 which 
can be alternatively taken as yu z\, 0 and 4>. Thus, this me­
chanical system can be completely defined by 2N + 4 gen­
eralized coordinates given by yit Z\, 8, <t> and a„, b„ for n = 
1, 2, . . . N. 

Stability Analysis 

The nature of stability in the neighborhood of the equilib­
rium configuration, identified by q, = q, = 0, is determined 
using Liapunov's direct method (Meirovitch, 1970). If damping 
is neglected, the Hamiltonian H is constant and is a suitable 
Liapunov function. In the presence of damping, the total time 
derivative of H can be shown to be 

H= J QiQi, (12) 

which indicates that the sign definiteness of H depends on the 
nature of the nonconservative force, Qt. Since <2> comprises 
damping forces representing either complete damping or per­
vasive damping, it does not alter the nature of equilibrium in 
a meaningful way. That is to say, a stable system becomes 
asymptotically stable, whereas an unstable one remains un­
stable. 

The system Hamiltonian function can be written as 

H=T2-T0+V. (13) 

Since the terms T2 is automatically positive definite, the positive 
definiteness of a function U called the dynamic potential given 
by 

U= V- Tn (14) 

ensures the positiveness of H. Therefore, introducing expres­
sions for Kand T0 into Eq. (14), the dynamic potential Uafter 
algebraic manipulations and integration of Eqs. (7)-(10) can 
be written as 

u=2 l A W i + A W ' + (knzi + kzm)y,z, + ky^yt+Ld)2 

+ K2Z2(z\ +L4>)2+ (ky2Z2 + kZ2y2) (yi +L6) (z, +L<£)} 

+ l-ksJ]nA(a2
1 + b2

n)-
1-mQ2\y2

i(l+4>1) + z2
l(l+d2) 

-2ylzld<t> + L\yid(.l + <t>2) + Z1<l>(l+62)-(y1<l> + z1e)6<t>] 
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1 (1 

(-1)" 
rnr 

tyiaAl+M + Zibnd+n-frbn + ziaJOt 

L [a„6 (1 + </>2) + ZvM 1 + 02) - (a „<£ + b„6)e<t>) 

(15) 

where ^ = shaft stiffness parameter = EIL(TT/L)4. 
Using Euler's theorem on homogeneous functions, it can be 

shown that Eq. (12) becomes 

H= - ID. (16) 

Thus, a positive definite D leads to a negative definite H. 
Therefore, due to Liapunov stability theory, if for such a 

at the equilibrium position, letting k. 
\J\ k, '2/2 2 kU f o r 

similar bearings and making appropriate algebraic manipu­
lations the Hessian matrix, denoted by U\jN), can be written 
in the form given by Eq. (18). The shaft stiffness parameter 

EI /TT> ' 
pQ2 and the bearing cross-coupling stiffness pa-

rameter (3 = -^ (wn + °hy) where co2/ = 
m 

Equation (18) is the Hessian matrix of the system with N 
modal terms included in the series expressing the shaft elastic 
deflections. It is a square matrix of order 27V + 4. The first 
four rows and columns represent the Hessian matrix for the 
rigid body case (rigid rotor on elastic bearings) for which the 
generalized coordinates arej>i, z\, 0, and 4>. 

uir-

\a2 

\L :W {2 a2 3) 

L0 

-L& 2LW 

2 

',2 - ' 
I 

$ - ) 
L2P I 

2 

2 !!: 

0 

2-K 

1 

__2_ 

0 

0 

2TT 

L 

;(«-!) 

_2_ 

L_ 
2-K 

L 

system H is positive definite (which can be guaranteed by the 
positive definiteness of U), then the system is asymptotically 
stable and if / /can assume negative values in the neighborhood 
of the equilibrium point, then the system is unstable. Thus, 
the problem simplifies to testing for (a) the positive definiteness 
of U to achieve stability in the undamped case and (b) the 
positive definiteness of both U and D in order to achieve 
asymptotic stability of the damped system. Testing for the 
positive definiteness of U and D can be accomplished by ap­
plying Sylvester's theorem to the Hessian matrices of U and 
D (evaluated at the equilibrium position) given by 

and 

U„ 

Du 

d2U 

dqidqj 

d2D 

dqidqj 

(17) 

To demonstrate the general method of analysis, similar bear­
ings are adopted to simplify the complexity of the stability 
calculations and resulting conditions. Stability conditions for 
dissimilar bearings have been developed by El-Marhomy (1987), 
but they will not be reproduced in this paper due to their length. 

Dividing [/by /wQ2, evaluating the second partial derivatives 

1 
; ( 1 6 a - l ) 

0 

0 

2 

0 

L 

0 

0 

0 

(N"a-

0 

0 

1) 

1 
2 

0 

2 
•K 

0 

L 

7T 

0 

0 

0 

(a-I) 

0 -

0 

0 

0 

L 

2ir 

0 

0 

0 

0 

-(16a 

_2_ 
"N-K 

_L_ 

-{N2a-1) 

(18) 

According to Sylvester's theorem, the positive definiteness 
of U}jN) requires the positive definiteness of all its principal 
minors. However, it has been proved by El-Marhomy (1987, 
pp. 177-179) that the greatest principal minor A2/v+4 = 
I U\jN) I is the relevant principal minor that makes the other 
principal minors trivially positive provided that it is positive. 
In other words, it is only the I U\jN) I that must be tested each 
time a term is added to the series expansion in order to un­
derstand the pattern of stability conditions as one successively 
increases the value of N. Each additional term in the pair of 
series expansions describing the shaft's deflections corresponds 
to an additional pair of rows and columns in the system's 
Hessian matrix leading to two new stability conditions. A con­
sistent pattern of stability conditions is obtained for succes­
sively increased values of N by performing a certain series of 
elementary row operations on each A2w+4 such that its form 
reduces to a unified structure. Therefore, the expansion of 
I UJjN) I for any number N of terms included in the series ex­
pressing the shaft's elastic deflections can be developed by 
mathematical induction. 

It can be shown by performing the row operations 

Rl»Ri--R3 + - 2 [n(n*a-l)rlRn+4, 
L 7T - £ - J 
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and 

2 4 ^ 1 
Rl "Rl — — i ? 4 + — Zl i 4 77 RN+n + 4i 

L v *—1 n(na-l) 
n even ' 

2Z, ^ ( - 1 ) " + 1 

R3**R3-\— y, 4 — i?„+4 
7r ^-f n(n a-1) 

* 4 " * 4 + 2 j „ ( / , 4 a _ ! )*"+» + * (19) 

ll/fM = ^n^-1)2 1/w2 

2\ ST 
'—\ 

Jt 2 j - 2 , _ 4 
TT rt odd 

4 "4^ 1 

/I odd 

^ ( ^ a - l ) 

1 

2 l f i 2 

-̂  V - - 7 ^ 
1 /Wyy 1 

2 \ fi 

&T = 

Cjv 

; £ / ? 

_2 

M r 

; i /3 

-X./3 HN 

0 

0 

0 

_2_ 

~Mr 

; £ 2 0 

2TT 

~3TT 

r r 0 - — 

L(3 

2 ^ 

L_ 

~3TT 

0 

0 

> - l ) 
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0 

0 

0 

0 

0 

- r - 0 

0 

0 

0 

5a-

0 

0 

0 

0 

0 

-1) 

0 

0 

0 

0 

\m«-

0 

0 

0 

0 

-1) 

0 

0 

0 

0 

0 

I (Art, 

0 

0 

0 

- ( a - 1 ) 

1 

0 

0 

; ( 1 6 t » - l ) 

0 

0 

0 

0 

0 

0 

0 

0 

i(81„--1) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• ( A T 4 a - l ) 

(20) 

that the determinant I U\f I reduces to the unified form given 
by Eq. (20), where Rj refers to row /, i?, <-» k Rt + sRj means 
to change Rt to kR, + sRjt and r is the largest even integer r 
< N. The coefficients AN, BN, CN, DN, EN, and HN used in 
Eq. (20) are defined by 

1 /to-

2 \Q ' s 7r~ '—' n2(n*a-l) 
n even v '. 

BN= —L 

CN—L 

li2 3J TT2 ^ nHn\ 

2 \ 0 

n even ww4s 
(r?u-\) 

1 

T" ""^ n 2 ( n 4 a - l ) 
« odd v . 

Z>A 

EN=L 

HN—L 

i A4 A 1 ^ L 
i) 

1 a)2 1 

2 fiz 9 o2 ^ / ^2
 2 J 

1 

3 / Trz ^ - f n 2 ( n 4 a - l ) 
' « = i v 7 . 

1 Cdvv 1 
is 
-.2 2 Q2 3 / TT2 ^ - ( « 2 ( « a - l ) s 1 

where q is the largest odd integer q < N. 
Therefore, I U\P I can be written in the following form after 

various algebraic manipulations: 

s ir *-* n (n a- 1) 
n even v ' . 

s 
-

n 

"i Ai 
2 l^fi2 

1 2 (n 4a-l ) 
(21) 

Presenting the expansion of I U\j^) I in this closed-form series 
leads to general closed-form conditions for system stability. 
Thus, for positive definiteness of U\P, I U}^ I must be positive 
definite, i.e., I U\P I > 0 which results in the following non-
trivial sufficient conditions for system stability: 

( a - l ) > 0 , 

«2 / - 2 ^ « 2 ( « 4 - l ) ' 

a 2 - 1 
8 ^ 1 

"ir2 ^ . n 2 ( n 4 a - l ) 
n odd v 7 . 

; - i 

" 3 I ] „2,„4 n z ( n a - l ) 
>/32. (22) 

Discussion of Results 
Examining the foregoing conditions, the following obser­

vations are made: 
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1 Equations (22) represent general closed-form sufficient 
conditions for whirling stability of elastic rotors mounted on 
elastic bearings possessing both anisotropic and cross-coupling 
stiffnesses. Note that only the odd terms in the series expan­
sions affect the stability boundaries. 

2 The series in Eqs. (22) can be shown to rapidly converge. 
In fact, they are asymptotic to the highly convergent series 

3 In the limiting case a 
reduce to 

oo (rigid rotor case), Eqs. (22) 

and 

02 

n2 1 >(32 (23) 

where the reader may recall that /? is the nondimensional cross-
coupling stiffness parameter. 

2 2 
iOyy 01 Cl . 

4 In the other limiting case —j = -^ = °° (rigid bearing 
case), the second and third of Eqs. (22) are trivially satisfied. 
Therefore, conditions for whirl stability of an elastic rotating 
shaft on rigid bearings simplifies to 

( a - l ) > 0 , (24) 

which is the same result reached by Wilgen and Schlack (1979) 
and others. 

The Hessian matrix of an elastic rotating shaft on rigid 
bearings is obtained from U\P by deleting its first four rows 
and columns. Therefore, applying Sylvester's theorem to test 
positive definiteness in this case yields 

N 

JJ (n4a-l)>0, (25) 
n = l 

which results in the nontrivial condition (24). It is worthwhile 
noting here that if the inequality sign in condition (25) is changed 
into an equality sign, the condition is transformed to the system 
characteristic equation (frequency equation) given by 

N 

( « V - 1 ) = 0. (26) n 
The roots of Eq. (26) give the well-known critical speeds of 
the system (elastic rotating shaft on rigid bearings) as 

fi„ = ojj, 4wj, 9cos, ,N2o>s; f o r « , = p . (27) 
• \ m 

5 In the special case of isotropic bearings where the bearing 
elasticity can be represented by a single spring of constant kb 

yy — w2£ — uj£, — anu p 

we get the following sufficient conditions for stability: 

by letting b?yy = co2 0 in conditions (22), 

(Q!-1)>0 

and 

?- ' )>? 
qsN 1 

n'in'a-l) 
(28) 

6 The stability criteria in Eqs. (22) functionally show the 
.2 

effects of the system's nondimensional parameters a, (3, -Jf, 
Q2 

and —j- and the number of series term JVon the whirling stability 

of the elastic rotor bearing system under investigation. The 
effects of these factors on the stability regions of the system 

based on Eqs. (22) are presented graphically in Figs. 2 through 
7. 

Although the graphs are not included herein, it has been 
shown by El-Marhomy (1987) that the stability boundaries are 
not appreciably affected by increasing the number N of series 
terms above the fundamental term N = 1. The difference is 
so indistinguishable that the stability curves for all N lie on 
top of one another when plotted by typical software programs. 
Mathematically, this is attributed to the fact that the first term 

oo j 

in the highly convergent J] ( 2 „ - l ) [ ( 2 n - l ) 4 a - 1 ] * t h e d ° m " 

inant term that leaves the others trivially small with respect to 
it. 

Figures 2, 3, and 4 show the influence of rotor elasticity on 
the system stability. It is easy to see that the curves with higher 

values of a = —=r (ir/L)4 contain larger stable regions. It is 
pu 

also obvious that the stability boundaries change dramatically 

2 /f-,3 

Normalized Bearing Stiffness Coefficient CJ yy/ii 
Fig. 2 Stability regions with a as a parameter for /S = 10 

0 10 20 30 
Normalized Bearing Stiffness Coefficient CJ yy/fi 

Fig. 3 Stability regions with « as a parameter for /3 = 2 

1060 / Vol. 58, DECEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Normal ized Bear ing Stiffness Coefficient CO yy /H 

Fig. 4 Stability regions with a as a parameter for 0 = 0.5 

0 10 20 30 
Normal ized Bear ing Stiffness Coefficient CO yy / f i 

Fig. 6 Stability regions with j3 as a parameter for a = 3.3 

0 10 20 30 
Normal ized Bear ing Stiffness Coefficient CO yy/f! 

Fig. 5 Stability regions with f) as a parameter for a = 10 

Normal ized Bear ing Stiffness Coefficient CO y y / D 

Fig. 7 Combined effect of a and /3 on stability regions 

as a approaches the critical value a = 1. The stability curves 
drawn in Figs. 5,6, and 7 demonstrate the effect of the bearing 
cross-coupling parameters /3 on the stability of the system, 
where greater values of /3 lead to smaller stability regions for 
a given value of a. This points out the important role played 
by the bearing cross-coupling stiffness coefficients which can 
be a significant source of instability. Figure 7 also illustrates 
the combined effect of a and 0 on the stability boundaries 
where it is clear that the stability regions grow with increasing 
a and decreasing /3. All figures from 2 through 7 share the 
common characteristic that the values of the normalized bear-

2 2 

ing stiffness coefficients -$r or -§ must be greater than their 

critical value 1 + 

stability. 

7T2 2J„ n(n4a-l) 
n odd v 7 

in order to ensure 

Effect of Damping 

Concerning the damped system, it is necessary to test for 

the positive definiteness of D in order to study asymptotic 
stability in the sense of Liapunov. Therefore, letting C,-^ = 

Ci2i2 = - Cy in Eq. (11) for similar bearings and evaluating 

the second partial derivatives of D at the equilibrium position, 
the Hessian matrix Av takes the form 

Ay = 

Cyy 7 

Symmetry 

2 LCyy Ly 

2LCu 

(29) 

where the bearing cross-coupling damping parameter 7 = 
1 
^ v^yz ' t-'zy)' 

Applying Sylvester's theorem to test the positive definiteness 
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Fig. 8 Subspace of stable bearing damping coefficients 

of Djj yields the following nontrivial conditions for an asymp­
totically stable rotating system: 

Cyy>0 
and (30) 

These conditions can be geometrically visualized by construct­
ing a three-dimensional space for the bearing damping coef­
ficients with Cyy, C^ and 7 as a basis for this space. Accordingly, 
the subspace of asymptotically stable bearing damping coef­
ficients based on Eqs. (30) is the spatial region inside the 
parabolic hypberoloid shown in Fig. 8. This indicates that all 
possible values of bearing damping coefficients that result in 
asymptotically stable motion are located inside this stability 
surface. The cross-sections of the stability surface in Fig. 8 
formed by planes perpendicular to either Cyy or Czz is a family 
of parabolas. Thus, the stability regions grow with the increase 
of the principal damping coefficients Cyy and Czz. It can also 
be shown that if the stability surface is cut by planes perpen­
dicular to the 7-axis, then the cross-sections are rectangular 
hyperbolas representing the stability boundaries in terms of 7 
as shown in Fig. 9. The area inside each hyperbola decreases 
with the increase of 7 which indicates that the stability regions 
decrease with the increase of 7. This clearly demonstrates the 
fact that the bearing damping cross-coupling parameter 7 can 
have a significant influence on the nature of the system's sta­
bility. 

Summary and Conclusion 
This paper presents a general method of analysis for inves­

tigating the effect of the various end-support parameters cou-

0 2 4 6 8 10 
Bearing Damping Coefficient Cyy 

Fig. 9 Effect of damping cross-coupling parameter y on stability 
regions 

pled with the rotor's flexibility parameters on the whirling 
stability of rotor bearing systems modeled as a continuous 
elastic rotating shaft mounted on two dissimilar 8-coefficient 
bearings. Presentation of a closed-form (series) stability cri­
terion for N terms included in the series expansions provides 
a systematic method for investigating the effects of modal series 
truncation on the accuracy of the stability boundaries. Thus, 
truncation error, which has been pointed out by several authors 
to be an open question in a variety of applications, can be 
analytically studied in mathematically similar problems by the 
techniques demonstrated in this paper. The results of this paper 
show that stability predictions obtained from a severely trun­
cated series expansion can be very accurate. Realizing that the 
rotor-bearing system discussed in this paper is a very complex 
system, it is noteworthy that the fundamental term provides 
such a close approximation to the exact stability boundaries. 

The stability boundaries drawn in terms of the bearing cross-
coupling parameters (3 and 7 show that the instability regions 
grow as the values of these parameters increase. It has also 
been shown that the instability regions grow with the decrease 
of the shaft stiffness parameter a, increasing dramatically as 
a approaches its critical value of unity. The stability criteria 
have been shown to reduce to the special cases of (a) an elastic 
rotor on rigid bearings as kyy and kzz tend to infinity, (b) 
isotropic bearings as kyy = kzz = kt, and fi = 0, and (c) a rigid 
rotor on elastic bearings as a tends to infinity. 

All possible values of bearing damping coefficients which 
result in asymptotically stable motion have been shown to be 
located inside a stability surface in the shape of a parabolic 
hyperboloid. Several graphs demonstrating parametrically the 
influence of the shaft's stiffness and the bearings' direct and 
cross-coupled stiffness and damping coefficients on critical 
speeds are presented. These graphs are typical examples of the 
types of design information available to engineers through the 
equations provided in this paper. 
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Vertical Autorotation of a Single-
Winged Samara 
A derivation of a theoretical model for the vertical autorotation of a samara wing 
is presented. The dynamic effects are treated in an accurate manner. The aerodynamic 
effects are calculated by using the blade element/momentum theory. Because of 
basic differences between the mode of operation of a samara wing and other rotary 
wings, the model differs from existing rotary wing models. An experimental setup, 
aimed at verifying the theoretical model, is also described. Comparison between 
theoretical and experimental results are presented. 

1 Introduction 
Autorotation is a well-known aerodynamic/dynamic phe­

nomenon that refers to a rotational motion of a body due to 
aerodynamic loads acting on it. This phenomenon can be di­
vided into different groups, as explained in a survey by Lugt 
(1983). 

One of the most interesting kinds of autorotation involves 
a single wing with a concentrate mass at its root that spins 
while descending. This phenomenon is very common in nature 
and this wing is usually referred to as samara. The functional 
significance of the samara is to reduce the falling speed of the 
seed, thus increasing the distance it may be transported by 
horizontal winds. From the way the samara functions, it is 
obvious that its occurrence is restricted to tall plants where 
some height can be spent on a rapid initial fall before entering 
autorotation. In Fig. 1 a samara in vertical descent is shown. 
Usually the motion is comprised of a vertical descent (no hor­
izontal wind) and a spin about a vertical axis. Certain samara, 
as they spin about the vertical axis, also roll about their lon­
gitudinal axis, a few times each revolution. 

As early as 1808, the samara of the Sycamore had been the 
object of a close study by the founding father of aeronautics, 
Sir George Cayley. An entry from his notebook is quoted by 
Ward-Smith (1984). 

Most of the research on the samara was reported by bota­
nists, who were usually interested in the dispersal character­
istics and flight path of different samaras, as a function of 
their morphological details. A representative work of this kind 
is McCutchen (1973). The author presented an experimental 
comparison between samaras that roll about their longitudinal 
axis, and those that don't. He concluded that those that roll 
about their longitudinal axis descent faster, but they are very 
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stable. A theoretical analysis was not presented in this study. 
Another similar study was presented by Green (1980). He 

photographed over 200 samaras from seven species of trees. 
The data that were gathered included: rate of descent, angular 
velocity, orientation, and other parameters. These data were 
then used to compare the aerodynamic behavior of samaras, 
helicopters, and theoretically ideal rotors. The rate of descent 
showed high correlation with the square root of the samara's 
wing loading. Again, the difference between the samaras that 
roll about their longitudinal axis, and those that don't, was 
presented. 

A thorough detailed investigation was presented by Norberg 
(1973). The author presented a simplified approximate aero­
dynamic analysis of the samara motion, based on the mo­
mentum theory. His analysis included vertical descent and 
descent with side slip. Qualitative discussion of the stability 
of the autorotation was also presented, as well as the problem 
of the entrance into autorotation. Norberg also presented new 
experimental results for two kinds of samara, and some the­
oretical calculations for these specimens. 

Burrows (1975) and Ward-Smith (1984) presented surveys 
on the subject of airborne dispersal of fruits and seeds. Among 
different flight techniques, they mentioned the autorotation 

Fig. 1 A samara in vertical descent; (a) without roll about the longi­
tudinal axis, (b) with roll about the longitudinal axis 

1064 / Vol. 58, DECEMBER 1991 Transactions of the ASME 

Copyright © 1991 by ASME
Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2a6 
2 3 3a 

Fig. 2 The systems of coordinates and the flow description at the cross-
section 

of the samara as one of the more efficient. The theoretical 
background in these surveys was very limited and mainly qual­
itative. 

Autorotation has been successfully used in different engi­
neering devices. Analysis of the steady-state characteristics of 
a samara wing decelerator was presented by Crimi (1988). The 
decelerator was different from the common samara geometry 
in two main aspects: It had a relatively large center body, 
and the wing was flexible, depending on centrifugal forces for 
rigidity. Thus, basic flight mechanics of this device seem to 
differ from the "classical" samara. The system was modeled 
with 11 degrees-of-freedom. The inertia and aerodynamic con­
tributions were treated in detail. Numerical results were in good 
agreement with test data for different configurations. 

The purpose of the present paper is to present a derivation 
of a theoretical model that describes the vertical descent of a 
"classical" samara wing, namely: a single flat, rigid wing with 
a concentrate mass at its root. The model will not include spin 
about the span wise axis. The derivation will deal in detail with 
the inertial and aerodynamic contributions. The method of 
solution will also be discussed. Then an experimental program 
for testing samara wing models in vertical descent will be de­
scribed. Comparisons between theoretical and experimental 
results will be presented. 

2 The Equations of Motion 

In order to describe the wing motion, two coordinate sys-
stems are defined. The X, Y, Z system is fixed with respect to 
the earth, and for the present purposes is considered an inertial 
system. .Yis pointing upward in the negative gravity direction. 

ex, ey, ez are unit vectors in the X, Y, and Z directions, re­
spectively. The system (1, 2, 3) is attached to the wing, with 
the origin at the wing's center of mass. Since the mass is 
concentrated at the root, the origin always lies in the root 
region. i\, e2, and e3 are unit vectors in 1, 2 and 3 directions, 
respectively. 

The transformation from the inertial system directions to 
those of the body system is described by three Euler angles 
(see Fig. 2). The order of rotation is as follows: a rotation 
* about the A^axis, followed by a "pitch" rotation, 7, about 
the new >>-axis, followed by a conning rotation, /3, about the 
3-axis. All the rotations are carried out according to the right-
hand law. It should be noted that a positive /3, according to 
the present notation, refers to a negative conning in the com­
mon literature. 

The transformation matrix will be: 

COSY cos/3 

[cos* sin/3 + 
sin* sinY cos/3] 

[sin* sin/3 -
.cos* sinY cos/3] 

— COSY sin P 

[cos* cos/3 -
sin* sinY sin/3] 

[sin* cos/3 + 
cos* sinY sin/3] 

sinY 

- sin* COSY 

cos* COSY 

*l 
£3 

/ 

(1) 

For the sake of convenience, the 1,2,3 system will be chosen 
so that it coincides with the principal axes of inertia. Thus, 
the only nonzero components of the inertia tensor are: In, I22, 
and I33. 

The absolute velocity of the center of mass of the wing, U, 
is described by its components in the body coordinates direc­
tions: 

U = U\ i\ + u2e2 + u3e3. (2) 

It can be shown that the angular velocity of the wing, X, is: 

X = X1ei + X2e2 + X3e3 (3a) 

!

Xi] / COSY cos/3 sin/3 0\ ( * ] 
X2 = I - COSY sin/3 cos/3 0 7 (lb) 

h) \ sin7 0 1/ (jSj 
The external loads acting on the wing include the weight and 
aerodynamic loads.The aerodynamic loads include a force F^ 
and a moment TA about the center of mass. 

F„ = FiAex + Fue2 + FiAe3 (4a) 
1A=TiAel + T2Ae2+T3Ae3 (46) 

By applying standard techniques, the six equations of motion 
become: 

m[ii\ + u3 (cos/3 7 - *cos7sin/3) - (*siny + /3)u2] 

= FlA - mgcos/3cos7 (5a) 

m[u2 + Ui (*sin7 +/3) - «3 (*cos7COS/3 + sin/3-y)] 

=F2A + /«gcos7sin/3 (5b) 

w[«3 + «2 (*COSYCOS/3 + sin/37) - U\ (cos(3-y - *cos7sin(3)] 

= F3A-mgsm.y (5c) 

I\x [*cos7Cos/3 - * (sin7Cos/37 + cos7sin/3/3) + 7sin/3 + 7Cos/3/3] 

+ (/as" hi) W + sinY*) (cos(37 - C0SYsin/3*) = TlA (5d) 

I22 [7COS/3 - *cos7sin/3 + * (shrysin/S-y - cos7COs/3/3) - 7/3sin/3] 

+ (Iu- hi) (COS7COS/3* + sin/37) (sin7* + /3) = 7 ^ (5e) 

7,3 [*sin7 + *cos77 + /3] + ( / 2 2 - /n ) (COS7COS/3* + sin/37) 

x (cos/37 ~~ cos7sin/3*) = T3A • (5/) 

m is the mass of the wing, g is the gravity acceleration, and 
the upper dot indicates differentiation with respect to time. 
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3 Aerodynamic Contributions 

3.1 Blade Element Theory. The aerodynamic contributions 
will be calculated using the aerodynamic system of coordinates 
la, 2a, 3a. The axes 2a and 3a form the reference aerodynamic 
plane. While the axis 2a defines the spanwise direction, the 
axes la and 3a define the wing's cross-sections. The origin of 
the aerodynamic system coincides with the origin of the body 
system (see Fig. 2). Since the derivation will be confined to 
relatively flat wings, the aerodynamic system is chosen in such 
a manner that the axes 1 and la coincide. If ela, e2a, and eia 

are unit vectors in the directions of the aerodynamic coordi­
nates, then: 

' 1 0 0 
I 0 cos* sin* 
\0 - s i n * cos* 

(6) 

The aerodynamic loads will be calculated by using the blade 
element/momentum theory (see Glauert, 1943), which is very 
useful in dealing with rotary wings. According to this method 
the cross-sections of the wing can be looked upon as a cross-
section in a two-dimensional flow. The correction for the fact 
that the phenomenon is three-dimensional is achieved by in­
troducing the induced flow, which is calculated based on mo­
mentum considerations. As will be shown later, the 
aerodynamic analysis in the case of a samara wing is more 
complicated than the usual application of the blade element/ 
momentum theory to helicopter rotors or propellers. One of 
the main reasons is the fact that many aerodynamic angles, 
which are small in most of the practical cases of rotary wings, 
are not small in this case. Thus, it is not possible to apply the 
small angles assumption which may simplify the analysis sig­
nificantly. Because of these differences the expressions that 
have been used in different previous analyses cannot be used 
here, and therefore the detailed new expressions will be pre­
sented in what follows. 

A cross-section of the wing is shown in Fig.2. The cross-
sectional resultant force per unit length is TV'. The notation 
( ) ' indicates parameters associated with a certain cross-sec­
tion. TV' is assumed to act at the quarter chord point of the 
cross-section, which also will be considered as the represent­
ative aerodynamic point of the cross-section. The position 
vector of this representative point is: 

rc/4 — r\cfi\a + fltfila + r3tfi3a- (7) 

r2a defines the specific cross-section. rXa and r3a depend on the 
wing's geometry and as such they are in general functions of 
r2a-

The relative velocity between the wing and the air, as seen 
by an observer on the wing, is described by its components in 
the directions of the aerodynamic system. According to the 
assumptions of the blade element theory, the spanwise com­
ponent does not have any influence on the aerodynamic loads 
(see a correction later). The resultant incoming velocity in the 
cross-section is V, where V'T and V'p are its tangential and 
perpendicular components, respectively. From Fig. 2 it is clear 
that: 

V - ^ (8a) 

* > ' = t a n - ' ( > V K f ) (86) 

where tp' is usually referred to as the local inflow angle. 6' is 
the local pitch angle of the wing. In the case of a flat wing, 
d'=0. The cross-sectional effective angle of attack, a ' , is 
defined as the angle between the zero lift line of the profile 
and the cross-sectional incoming flow. From Fig. 2 it is clear 
that: 

The aerodynamic loads include a lift L' and a drag D' per 
unit length, and in addition an aerodynamic moment M2a (per 
unit length) about the quarter chord point (positive when it 
tends to increase the angle of attack). These loads are described 
in the following usual manner: 

L' =- pV'1 C'LC 
2 

D'=-pV'2ChC 

Wa = -pV'2C'mC'2. 

(10a) 

(106) 

(10c) 

p is the air mass density, C" is the local chord, and C'L, C'D, 
C'm are the lift, drag, and moment coefficients. The last three 
coefficients are functions of the cross-sectional angle of at­
tack, Reynolds number, and Mach number. In the present 
investigation the velocities are relatively small and therefore 
an incompressible flow is assumed. 

Based on the above equations, the resultant aerodynamic 
force and moment, acting on the wing, are obtained after an 
integration over the wing: 

F>A = 2P\ V'2°' ^C'L C°S<P' + C'Dsin<P')dr2a (11a) 

FlA = 2P\\V'1C' (CL&inf'^CDCOS<p')dr2a s i n * (lib) 

FiA
 =2P)\ V'2C' (C'L s[n<p' ~ cDCOS(p')clr2a cos * (lie) 

T\A = 2P)V' C' (C'L sin(?' ~ cbcos<p')(r2adr2a (lid) 

, J K ' 2 C (CL cos(p' + C'Dsm<p')riaco& * 

-r2asin •*)dr2a + -p\ j VllC'lC'mdrltt\cos * (lie) 

\P\v-a (a "L cosy' +C£,sin</3')(/-3asin * 

+ r2„cos ¥)dr2a--p j K'2C'2C,;,( dr2a sin * . (11/) 

a'=6'+ip'. (9) 

dr2a is a length element in the /^-direction. The integral sign 
Jz indicates integration along the wing. The specific limits of 
the integration will be discussed later. 

In equation (lie) a term (C£sin<p' — C'Dcos<p')rXa has been 
neglected compared to (CLcos<p' + Cbsinip')ria. This is justi­
fied since the present derivation deals with flat wings, where 
ria»>'\a and usually (CiCos<p' + C'Dsmtp')» (Ci,sin<p' - C'D 

cos<p'). 
In order to calculate the loads it is necessary to know the 

components V'p and V'T of the cross-sectional incoming flow. 
These components are the result of two main contributions: 

(a) the "dynamic component" due to the sinking speed and 
rotation of the wing and 

(b) the induced velocity due to the interaction between the 
wing and the surrounding fluid. 

In the next two subsections these two contributions will be 
presented in detail. 

3.2 The "Dynamic Component" of the Cross-Sectional In­
coming Flow. The absolute velocity of the representative 
quarter chord point of the cross-section is V^: 

Vi, = U + Axrc /4 . (12) 
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Fig. 3 The actuator disk and induced velocities 

Substitution of equations (2), (3a), (3*), and (7) into the last 
equation, and using equation (6), result in: 

Vz> = Vbla eia + V'D2cfila + V'm£l„ (13) 

where: 

^ina =["i + (YCOS/3-*cos7sin/3)/-3- (*sin7 + /3)/-2] (14a) 

Vina = ["2 + (isin7 + (3)r{ - (icos7COS/3 + 7sin/3)r3]cos ^ 

- [«3 + (icos7COS/3 + 7sin/3)r2 ~~ (TCOS/? 

- *C0S7sin/3)/-!]sin ^ (146) 

Vbia = ["3 + ($C0S7C0S/3 + ysinj3)r2 + ( *C0S7sin/3 

- -ycos/^Jcos ^ 

+ [u2+ (*sin7 + /3)r1-($cos7COS^ + 7SmlS)/-3]sin V. (14c) 

For the aerodynamic calculations the incoming velocity, as 
seen by an observer on the wing, U'D, is used (see Fig. 2) 

Ui, = - Vi, = - V'Dlifiu ~ V'mifi2a - V'm^T,a- (15) 

3.3 The Induced Velocity. The general momentum theory 
is applied in order to calculate the induced velocity. According 
to this theory the rotary wing is replaced by a disk. The radius 
of this disk is equal to the radius of rotation of the rotor tip. 

The details of the theory may be found in Glauert (1943). Here 
only the main equations, which are necessary for the com­
pleteness of the paper, are presented. 

The induced flow through the disk is axisymmetric, namely, 
the induced velocities are functions of the radial distance, r, 
from the disk center. If the sinking velocity of the disk is 
(t/x)-<», then the axial velocity through the disk will be (Ux)^„ 
(1 - a ) (see Fig. 3), where a is the axial induced-velocity coef­
ficient. As indicated above, " a " is in general a function of r. 
The fluid under the disk does not have any tangential (cir­
cumferential) velocity. After passing through the disk and ap­
plying an aerodynamic torque on the wing, the fluid in return 
(according to Newton's third law) develops a rotation in the 
opposite direction. It is convenient to express this component 
as wr (see Fig. 3), where co is the "angular velocity" of the 
fluid. It is further convenient to describe co itself as: 

co = 2aQ. (16) 

fi is the angular velocity of the wing (see the positive direction 
in Fig. 3), while a is the tangential induced-velocity coefficient 
which is in general a function of r. 

According to the momentum theory, an annular element of 
the disk will be considered (see Fig. 3). This element has a 
radius r and a thickness dr. Expressions for the vertical- force 
dT, that is applied on the annular element by the fluid passing 
through it, are obtained by applying conservation laws 
of: axial momentum, angular momentum, and energy. Ac­
cording to the general momentum theory of Glauert (1943): 

dT= 4irp(C/x)_oo (1 -a)aFrdr (17) 

dT= 47rpfi2a(l + cTfFpdr. (18) 

F is a tip (effect) factor that accounts for the fact that there 
is a finite number of blades and not really a disk. According 
to Prandtle (see Glauert, 1943, p. 263), for the case of a single 
blade: 

F=(2/w) cos~'(e~f) (19a) 

/=(Vl+/x2/2/x)(l-r/i?) (19b) 

lx = (Ux).M-a)/(.QR). (19c) 

If can be seen that, as expected, the aerodynamic load drops 
to zero toward the tip. 

By comparing equations (17) and (18), the following relation 
between the axial and tangential induced velocities is obtained: 

(Ux)l„ (1 - a)a = QV(1 + a)S. (20) 

If we consider equations (17) and (20), we have three un­
knowns (dT, a, a). Thus, in order to solve for the induced 
velocity, a third equation is required. This equation is the axial 
force dT, as obtained by using the blade element calculations. 
Since the blade element calculations in Subsection 3.1 were 
carried out using the aerodynamic system of coordinates, in 
order to be able to work with these three equations it is nec­
essary to write the momentum relations (equations (17) and 
(20)) using the aerodynamic coordinates. Namely: (£/*)_<», 
0, r, dr, and consequently dT, should be expressed as functions 
°f ir\a, r2a, r2a). In order_tojdo that a new rotating system of 
coordinates is defined: X, Y, Z. X is parallel to X and is the 

' axis of rotation of the wing. The system X, Y, Z rotates about 
Xwith the same angular velocity as the wing itself, 0, where: 

Q = i. (21) 

The rate of descent of the wing, (f/v)_00, is the component of 
U (equation (2)) in the (-ex) direction. After using equation 
(1), the following expression is obtained: 

(Ux)-o°= -«iCOS7COS/3 + w2cos7sin/3-M3sin7. (22) 

In the case of helicopter or propeller blades, where 7 and /3 
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are small angles and w2 and «3 (in axial flight) are negligible 
compared to uit (ux) -<»> is approximately equal to -ux. In the 
present case such an assumption may lead to increasing errors. 
Thus, equation (22) should be used in spite of the nonlinearities 
it introduces. 

Since the system X, Y, Z, rotates at the same rate as the 
wing, it is clear that the orientation of the wing system (1, 2, 
3), relative to X, Y, Z, is not changing with time (in the present 
case of "steady" vertical descent). Without losing any gen­
erality, we may choose, X, Y, Z in such a manner that the 
azimuth angle of the axes Y and Z, relative to the axes Y and 
Z, respectively, is equal to *. It can be shown that in this case 
r, which is the radial distance from the axis X to a point r2a 

along the wing axis, is given by (see Fig. 3): 

r = ( r ? + / | ) i / 2 (230) 

r9= Fm +/'20cos|8cos1i' (23b) 

/>=Z,„ + r2a (sin7sin,6cos,ir - cos7sin^) (23c) 
Y„, and Zm are the Pand Z coordinates, respectively, of the 
center of mass of the wing, and are given by: 

?,„ = [ - M!sin7Cos(3 + «2sin7sin^ + W3COS7]/* (24a) 

Zm = - (u, sin/3 + u2cos/3)/*. (24b) 

By differentiating equation (23a) and using equations (23b), 
(23c), we obtain: 

dr 1 
—— = - [/^os/Scos^ +/•z-(sin7sin(3cos^r - cos7sin^)]. (25) 
dr2a

 r 

If fl, (Ux)-„,r, and dr in equations (17) and (20) are replaced 
by equations (21), (22), (23), and (25), then two equations with 
respect to the aerodynamic system (1„, 2a, 3a) are obtained. As 
already mentioned above, the third equation will be the expres­
sion for dT according to the blade element theory (see Sub­
section 3.1). Based on the definitions of Section 2, it can be 
shown that: 

dT= [ (L' cos.p' + D' sinp' )cos7Cos/3 + (L' smtp' 

- D' cos</3' )(shrycosMr - cos7sin/3sin>Ir)]G?/'2ff • (26) 

From the three equations, dT, a, and a can be calculated. 
The induced velocity is given relative to the system X, Y, 

Z. If ex, e$ and eg are unit vectors in these coordinates direc­
tions, respectively, then the vector of induced velocity, v, will 
be: 

v = (u^aen + Qafcif-rfgi). (27) 

For the aerodynamic calculations the induced velocity should 
be expressed relative to the aerodynamic system of coordinates. 
Using the transformations between the different systems of 
coordinates, we obtain: 

"'= via'e{a+v{a'ila + v^eia (28) 

where: 

v[a =
 _ (Ux) _0„acos7cos(3 + Qa(/>sin|3 + /jtsin7Cos/3) (29a) 

v 2a = (Ux) - 0o«(cos7sin/3cos'4r + sin7sin^) 

+ Qd[rgcosl3cosy - rf (sin7sin(3cos^r - cos7sin^)] (296) 
via = (Ux) - oog(cos7sin/3sinM'r - sin7Cos^) 

+ fiaT/jCosiSsin^ - ^ji(sin7sinlSsin^r + cos7cos^)]. (29c) 

The small underlined terms in the last equations, which present 
the influence of the axial and tangential components of the 
induced velocity, on the tangential and axial cross-sectional 
components of the incoming flow, respectively, are negligible 
in most of the rotary wing applications. Yet, these terms will 
be retained in the present derivation since, as already men­
tioned above, the angles /3 and 7 are much larger in the present 
case than in regular rotary wing applications. 

3.4 The Resultant Incoming Flow. The resultant incoming 
flow velocity, as seen by an observer on the wing, is V . This 
velocity is the sum of the dynamic contribution U 'D as defined 
by equation (15), and the induced velocity v ' as defined by 
equation (28). Thus, we may write (see Fig. 2): 

V' = V'D + v ' = Vi£Xa + V'se2a - V'je,a (30) 

where, according to equations (15) and (28), 

V'„=-V'DU,+ Vu' (31fl) 

V's=-Vina+vJa' (316) 

V'T= Vina-v*,'. (31c) 

The components V'ma, V'D2a, V'ma are given by equations (14a)-
(14c), while via, v2a, v3a are given by equations (29a)-(29c). 

3.5 The Effect of the Spanwise Velocity Component. As 
indicated above, the spanwise component of the incoming ve­
locity does not have any influence within the context of the 
classical blade element theory. Yet, due to the presence of a 
relatively large conning angle (much larger than in most other 
rotary wings applications), the spanwise component in the 
present case is more significant. Thus, it has been decided to 
include a correction for this effect. This correction is based 
on replacing the classical cross-section of the wing (see Fig. 
2), which is perpendicular to the wing axis, by a skewed cross-
section, as shown in Fig. 4. The skewed cross-section lies in 
the direction of the flow resultant in the plane 2a-3a. Thus, 
it is clear that the direction of this cross-section is varied along 
the wing. 

A linear two-dimensional aerodynamic analysis shows that 
the lift that will be obtained based on skewed cross-section 
calculations will be identical to the lift as obtained by calcu­
lations based on the perpendicular cross-section (see Rosen 
and Rand, 1985). On the other hand, there will be a change 
in the drag force calculations. If it is assumed that the drag 
force acts in the resultant velocity direction, then a spanwise 
drag component will appear. If it is assumed that in the im­
portant regions of the wing V'l « V'j, then the spanwise 
component of the aerodynamic force per unit length of the 
wing can be approximated as: 

F's = \pV V'SC'DC. (32) 

Integration of this force over the wing yields a resultant aero­
dynamic force in the spanwise direction. 

3.6 The Procedure of Calculating the Aerodynamic 
Loads. When entering the aerodynamic calculations, the val-
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ues of ux, u2, u}, P, y, and $ are assumed to be known. The 
aerodynamic calculations can be divided into two main 
stages: The first stage includes an iterative procedure which 
is repeated at a few cross-sections along the wing. After this 
stage is accomplished, the second stage of calculating all the 
loads along the wing and integrating them to obtain the re­
sultant force and moment components, is carried out. 

The first stage includes the following steps: 
(a) A cross-section r2a is chosen such that R0<r2a<RT. RT 

is the tip radius of the wing. R0 is the root radius and 
its choice will be discussed in what follows. 

(b) Initial values of a and a are chosen. 
(c) fi, (Ux)^x, r, r9, rt, and dr are calculated as functions 

of $, «i, u2, Us, /3,7, r2a, and dr2a< according to equations 
(21), (22), (23a)-(23c), (24a)-(24b), and (25). F is cal­
culated by using equations (19ff)-(19c). 

(d) The components V'ma, V'D2a, and V'Dia are calculated 
using equations (14a)-(14c) and the induced-velocity 
components v{a, v2a, t>3'0 are calculated using equations 
(29a)-(29c). Then, the resultant incoming velocity com­
ponents V'p, V's, and V'T are calculated according to 
equations (31«)-(31c). 

(e) The cross-sectional resultant velocity V, the inflow angle 
ip', and the angle of attack a' are calculated using equa­
tions (8«), (8&), and (9), respectively. 

(/) The lift and drag forces per unit length are calculated 
using equations (10tf), (10b). 

(g) The axial force dT is obtained from equation (26). 
(h) Another expression for the axial force dT is obtained 

after substituting the expressions for (Ux)-„, F, r, and 
dr, as obtained in (c), into equation (17). 

(/) The two expressions for dT(g, h) and equation (20), are 
used to solve for a and a. 

(J) The new results for a and a are compared with the values 
of a and a that were assumed at the beginning of the 
iteration. If convergence has been achieved, then the 
cross-sectional iterative procedure is terminated. Oth­
erwise, new values of a and a are assumed and the pro­
cedure is repeated again from (c). 

After convergence is achieved at all the cross-sections, the 
resultant aerodynamic forces and moments are calculated by 
using equations ( l la ) - ( l l / ) . The influence of the spanwise 
aerodynamic force is added according to equation (32). 

4 Solution of the Steady Vertical Descent 

4.1 General Scheme. In a steady vertical descent U\,u2,Ui, 
7, |8, and $ are constant. In this case, equations (5a)-(5/) are 
reduced to a system of nonlinear coupled algebraic equations 
in the above six parameters. For a certain known wing (ge­
ometry, mass distribution, and aerodynamic properties are 
given), the nonlinear system is solved by the Powell algorithm 
(More, Jore, 1980) which is an improved version of Newton's 
method. 

4.2 The Lift and Drag Coefficients. The lift and drag coef­
ficients determine the aerodynamic forces. In the case of sa­
mara wings in nature, or the experimental model that will be 
described in what follows, the determination of the lift and 
drag coefficients is problematic because of the following three 
aspects: 

(«) The cross-sections of samara wings operate at Reynolds 
numbers in the range Re= 10 3 - 105. This range is very 
low compared to helicopter rotors or propellers. This 
range is typical to birds or airplane models, and espe­
cially insects' wings. 

(b) As will be shown later, and as indicated by previous 
researchers, large regions of the samara wing are char­
acterized by relatively high local angles of attack, beyond 
the stall limit. Such angles of attack are not typical to 

0 10 20 30 40 SO 60 70 80 90 

a(deg) 

Fig. 5 The lift and drag coefficients as functions of the angles of attack 

airplane models, but are common in insects' and birds' 
flight, 

(c) The cross-sections of samara are not smooth as typical 
aeronautical profiles. Instead they are corrugated, have 
a concentration of ribs at the leading edge, and a rough 
surface. These characteristics are also typical to the cross-
sections of insect and bird wings. 

All the above aspects and examination of the relevant ma­
terial in the existing literature indicate that probably the best 
way to determine the lift and drag coefficients in such cases 
is through direct experiments with the samara wings in carefully 
controlled wind tunnel tests. Unfortunately, such measure­
ments are fairly complicated, require special instrumentation 
that was not available, and therefore were beyond the scope 
of the research. Instead, it was decided to determine the CL 

and CD characteristics based on the data that exist in the lit­
erature for insects' and birds' wings. 

A detailed literature survey which was described by Seter 
(1989) led to the CL and CD plots which are shown in Fig. 5. 
Since it was not possible to find a single source that could give 
the entire spectrum of information, these plots represent an 
accumulation of information from different sources. Few of 
these sources include: Nachtigall (1981), Rees (1975), Vogel 
(1967), and Withers (1981). 

It is clear that the inaccuracy associated with the aerody­
namic coefficients can be quite large. Therefore, in a sequel 
to this paper the sensitivity of the solution to changes in the 
CL and CD plots will be presented. 

4.3 The Aerodynamic Moment About the Quarter Chord 
Point. The cross-sections are considered as two-dimensional 
flat-plates. According to the classical theory, there is no aero­
dynamic moment about the quarter chord point in this case. 
Bradford (1954) showed that practically there is an aerody­
namic moment about the quarter chord point, which is a func­
tion of the local angle of attack. Norberg (1973) considered 
this effect as the mechanism that stabilizes the wing in pitch. 
Thus, because of the importance that this effect may have 
(according to Norberg), its influence on the steady vertical 
descent will be investigated. The calculations will be based on 
the data that were presented graphically by Bradford (1954). 

4.4 The Root Region. At the root region of the wing the 
velocities are relatively small, and the angles of attack fairly 
high. Therefore, in this region the blade element momentum 
theory is not applicable. Instead, since in this region the flow 
is approximately normal to the surface, it can be treated as a 
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Table 1 Comparison between calculated and measured results 

-*!£ 

I "»a 

*1 

CROSS-SECTION 
A-A 

CROSS-SECTION 

B-B 

Fig. 6 The experimental model; all dimensions in mm 

flat-plate in normal flow. Thus, it is assumed that a drag force 
£>root is acting on this region in the X direction. This force is 
given by: 

-^root — - P t / j e W > r o o t " r o o f (33) 

Sroot is the root region area, while C/>00t is the drag coefficient 
of this region, which because of the analogy to a flat-plate in 
normal flow (two-dimensional) will be taken as C^OM = 2.25 
(Bradford, 1945). 

5 The Experimental Setup 
The research included also relatively simple experiments that 

yielded fairly good results for verification purposes. 
The samara models were made up of cardboard. These 

models were not simple scale-up models of samara wings in 
nature. Instead, a trial and error procedure led to models that 
exhibited stable and relatively efficient autorotation. The model 
that will be used in the paper is shown in Fig. 6. The thickness 
of the cardboard was 0.35 mm. An aluminum wire of 1-mm 
diameter was used to strengthen the leading edge of the wing, 
and the trailing edge at the tip. This wire also simulates the 
concentration of ribs along the leading edge, that exists in most 
of the samara wings in nature. 

The mass concentration at the root is obtained by placing 
a plasticine (putty) there (see Fig. 6). This technique is very 
convenient since it allows quick and simple variations of the 
mass at the root. The total mass of the model was 17.3 g, 
where the root mass accounted for 60 percent of the total mass, 
as compared to a typical 85 percent in samara wings in nature. 

The wing was painted black with the root region white. White 
strips were also painted at: the leading and trailing edges, 
along the span wise coordinate on both sides of the wing, and 
the midchord on one side. All these white strips were helpful 
in analyzing the photographs of the wing (taken while it sank 
vertically) and determining the orientation of the wing in space. 

A variety of devices were used to photograph the experi­
ments. Polaroid and video cameras were used to obtain im­
mediate pictures and synchronize the instruments. Then, in 
order to obtain higher quality pictures, a super 8-mm movie 
camera, and stills camera with a special winder for quick shots, 
were used. 

The experiments were carried out in a closed room in order 
to avoid any winds. The initial tests indicated that it took the 
wing between six to ten meters to enter a steady-state auto­
rotation after it was released from rest. This left a relatively 
short distance to investigate the steady motion. Therefore, it 
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was decided to give the wing an initial rotation while releasing 
it. In this case it entered steady autorotation after falling a 
distance of two meters only. 

Based on the techniques used for the measurements of the 
different variables, the maximum errors are estimated as fol­
lows: 5 percent in the sinking rate, 25 percent in the conning 
angle, and 15 percent in the angular rate. 

6 Comparison Between Theoretical and Experimental 
Results 

Calculations were carried out for the experimental model 
that was described in Fig. 6 which will be denoted EM in what 
follows. Calculations were also carried out for a Norway Maple 
(Acer platenoides) winged seed that will be denoted AP. Ex­
perimental results for the AP were presented by Norberg (1973). 

The experiments in both cases included measurements of 
the: sinking rate Ux, angular rate $, and the conning angle 
/3. In Table 1 the experimental results for these three variables 
are compared with theoretical results. It can be seen that a fair 
agreement is presented for the EM, if one recalls the uncertainty 
in the aerodynamic coefficients. It can be shown that relatively 
small changes in the coefficient (which are all within the range 
of the possible inaccuracies), may lead to changes in the results 
which are in the range of the deviations presented in the Table. 
In the case of the EM the largest deviation between the meas­
urements and the calculations appears in the case of the conning 
angle (25 percent). In the case of the AP the deviation in the 
sinking rate exceeds 43 percent. The larger errors in the case 
of the AP can be the result of incomplete information con­
cerning the mass distribution, which requires certain assump­
tions that, if not accurate, may result in increasing deviations. 
The reader should note the relatively high values of the conning 
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angles in both cases as compared to other rotary wing appli­
cations (usually less than 10 deg). These high conning angles 
are one of the reasons for the differences between the model 
of a samara wing and other rotary wings. 

Table 1 also presents the rest of the variables which were 
calculated, but not measured experimentally.One should note 
the relatively high spanwise velocity component u2, and the 
high negative value of the pitch angle 7. These values are much 
higher than the same variables in other cases of rotary wings. 
Ym and Zm define the location of the center of mass relative 
to the rotation center. The calculations in both cases predict 
that the center of rotation is very close to the center of mass 
of the wing, and thus still within the wing itself. While for the 
case of the AP also the experiments indicated a rotation center 
which is very close to the center of mass, in the EM case the 
observation was that the center of rotation was outside the 
wing and thus much further from the center of mass than the 
theoretical predictions. 

7 Conclusions 
A theoretical model of a samara wing in vertical descent has 

been developed. This model is more accurate and complete 
than all the models that have been used previously for this 
purpose. The inertial effects are dealt with in an accurate 
manner. The blade element/momentum theory is used to model 
the aerodynamic contributions. 

The aerodynamic behavior of typical samara wings is dif­
ferent in many aspects from helicopter blades or other rotary 
wings. This involves higher conning and attack angles (beyond 
stall), low Reynolds numbers, etc. These differences required 
a derivation of a theoretical model which is different from 
existing models. Thus, for example, the present model includes 
corrections for the spanwise aerodynamic force, which is usu­
ally ignored. 

The obtained model is highly nonlinear and requires a com­
plex iterative solution procedure. 

In order to verify the model an experimental investigation 
was also carried out. Quite good agreement was presented 
between the theoretical and experimental results involving the 
present experiments with a cardboard model, and previous 

experimental results for a winged seed. Deviations may be the 
result of lack of accurate information concerning the two-
dimensional aerodynamic properties of the wing cross-sections. 
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Vibration Localization by Disorder 
in Assemblies of Monocoupled, 
Multimode Component Systems 

Disorder in nominally periodic engineering structures results in the localization of 
the mode shapes to small geometric regions and in the attenuation of waves, even 
in the passbands of the corresponding perfectly periodic system. This paper inves­
tigates, via probabilistic methods, the transmission of steady-state harmonic vibra­
tion from a local source of excitation in nearly periodic assemblies of monocoupled, 
multicomponent mode substructures. A transfer matrix formulation is used to derive 
analytical expressions for the localization factor {the rate of exponential decay of 
the vibration amplitude) in the limiting cases of strong and weak modal coupling. 
The degree of localization is shown to increase with the ratio of disorder strength 
to modal coupling. The increase is nearly parabolic for small values of this ratio, 
and logarithmic for large values. Furthermore, the localization factor increases very 
rapidly with the passband number. Typically, the transition from weak to strong 
localization occurs from one passband to the next, and severe vibration confinement 
is unavoidable at high frequencies, even for very small disorder. 

1 Introduction 
The dynamic analysis of repetitive engineering structures is 

greatly simplified by assuming perfect periodicity. However, 
unavoidable manufacturing and material tolerances destroy 
this mathematical idealization. Typical examples of often-as­
sumed-periodic structures are bladed disk assemblies and large 
space structures. 

Unfortunately for the designer and analyst confronted with 
repetitive structures, slight disruption in their periodicity may 
alter drastically the dynamic response from the assumed-pe­
riodic predictions. For example, under conditions of weak 
internal coupling, the extended mode shapes of the periodic 
structure become localized to a small geometric region when 
small disorder (or mistuning) is introduced. This phenomenon, 
known as normal mode localization, was first evidenced by 
Hodges (1982) in structural dynamics. 

The motivation for studying localization is threefold. First, 
the occurrence of localization may severely reduce the effec­
tiveness of structural models, associated control schemes, and 
identification techniques that assume perfect periodicity. For 
example, a control strategy based upon the erroneous extended 
modes of a perfectly periodic structure would be unpredictable. 
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Second, localized vibrations increase amplitudes and stresses 
locally and may result in severe damage. For instance, single-
blade failure in turbomachinery rotors is a plausible result of 
blade mistuning. Third, when localization occurs, irregularities 
exhibit a damping-like effect that could be used as a passive 
control of vibration transmission. This has applications in 
flexible and lightly damped structures such as truss beams in 
space. However, although disorder and dissipation both result 
in a spatial decay of the amplitude, the localization and damp­
ing mechanisms are intrinsically distinct: For localization the 
vibrational energy is confined near the source of excitation by 
disorder, while for damping the energy is dissipated as it prop­
agates. 

Research on localization in structural dynamics has been 
limited mostly to deterministic analyses of the free modes of 
disordered one-dimensional structures. Here we cite several 
representative studies. Pierre and Do well (1987) investigated 
mode localization by perturbation methods for a chain of 
coupled oscillators. Other works by Bendiksen (1987), Corn-
well and Bendiksen (1989a), and Wei and Pierre (1988) ex­
amined localization in mistuned cyclic periodic structures such 
as large space reflectors and blade assemblies. Pierre and Cha 
(1989) tackled localization analytically in assemblies of mul­
timode subsystems and showed that confinement effects in­
crease rapidly with frequency. This result was confirmed 
recently by Cornwell and Bendiksen (1989b), who examined a 
similar (but cyclic) structure by defining a deterministic lo­
calization length scale. 

Considerably fewer probabilistic studies of localization have 
been conducted. Hodges and Woodhouse (1983) formulated 
a statistical treatment of the transmission of harmonic forced 
vibrations from a local excitation source. They applied the 

1072 / Vol. 58, DECEMBER 1991 Transactions of the ASME 
Copyright © 1991 by ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Beam 1 Beam 2 

Fig. 1 Assembly of coupled, component systems (cantllevered beams) 

work of Herbert and Jones (1971) to calculate localization 
factors (the exponential spatial decay rate of the amplitude) 
for a simple model of a stretched string with irregularly spaced 
masses attached. Their work exhibited two types of localiza­
tion—weak and strong—depending on the magnitude of in­
ternal coupling in the structure. Recently, Kissel (1987, 1988) 
chose the wave description of Ishii (1973) to calculate locali­
zation factors for several one-dimensional structures. He stud­
ied systematically the dependence of the localization factor on 
frequency in the limiting case of weak disorder. However, the 
models he chose did not allow him to vary the relative mag­
nitudes of internal coupling and disorder, thereby restricting 
his findings to weak localization effects. Recently, Pierre (1989) 
utilized stochastic perturbation methods to calculate locali­
zation factors in terms of frequency, coupling, and disorder 
strength. He evidenced both weak and strong localization re­
gimes. His study, however, was restricted to chains of single-
mode subsystems. 

This paper investigates weak and strong confinement effects 
of random disorder in assemblies of multimode component 
systems. To highlight the effects of disorder, we do not include 
damping in the model. A statistical treatment of the structural 
irregularities is chosen. Special attention is paid to the de­
pendence of the degree of localization on frequency, both 
inside a passband (or, equivalently, for a group of modes) and 
from passband to passband. The transmission of vibration 
from a local excitation source and the propagation of incident 
waves are studied by techniques that are reviewed in Section 
2. The frequency stopbands and passbands of the ordered 
assembly are discussed in Section 3. Statistical perturbative 
techniques are used to derive the localization factors in the 
two limiting cases of strong and weak modal coupling in Sec­
tion 4, and these analytical results are verified by Monte Carlo 
simulations in Section 5. In Section 6, the dependence of lo­
calization effects on disorder strength, modal coupling, and 
passband number is investigated. Finally, the relevance of the 
localization phenomenon to structural dynamics applications 
is illustrated. 

The contributions of this study are twofold. First, analytical 
results of general significance to the theory of localization in 
engineering structures are presented. For example, the de­
pendence of localization effects on frequency and disorder 
strength is examined for both weak and strong localization 
regimes. Second, it is shown that, for assemblies of multimode 
subsystems, confinement effects at high frequencies are severe, 
and unavoidable even if the internal coupling is very large and 
the disorder very small. This has important consequences for 
structural dynamics applications. 

2 Calculation of Localization Factors 

2.1 Equations of Motion. Consider an undamped assem­
bly of N, monocoupled, one-dimensional, almost identical 

AAAA-
i i+i 

ZZZmy 

AAAA-
Site i + 1 

/zm$7 
Fig. 2 Site representation for wave formulation 

component systems (see Fig. 1). Each subsystem is coupled to 
its nearest neighbors through linear springs of stiffness ks lo­
cated at x=xc along each component structure. To study vi­
bration transmission, the system is excited at its left end by a 
simple harmonic force of frequency, to, and the steady-state 
response of the right-end component is examined. Applying 
component mode analysis (Dowell, 1972), the nominal com­
ponent system is represented by its modal representation, (Kp, 
4>p(x))p=\ M, where Mis the number of component modes, 
\p thepth eigenvalue (the square of thepth natural frequency), 
and 4>p(x) the corresponding mode shape. In the presence of 
disorder, the modes of the /'th (uncoupled) component system 
are slightly perturbed, becoming 

= \p(l+dWp),p=\, ...,M,i=l,...,N 

<j>i
p(x)=<pp(xKl+d<t>i

p(x)),p=l, . . . ,M, i = l N, 

(1) 
wherep denotes the component mode number, and / the com­
ponent system number. 

For simplicity, we assume no component mode shape per­
turbation due to disorder, as well as constant modal mistun-
ing;2thus, 4>'P (x) = 4>p{x) anddK'p = dK'. Furthermore, denoting 
the pth modal mass of a subsystem by Mp, we choose them to 
be identical for all component modes;3 thus, Mp = '3fl. These 
assumptions allow for all the important localization effects to 
be captured in a relatively straightforward analysis. For har­
monic motion the deflection amplitude of the /th component 
system is expanded as 

M 

^W = YiMx)Vp >i=1> •••,N, (2) 
p=i 

where d'p is the pth normal coordinate amplitude for the /th 
subsystem. Applying Lagrange's equations gives (see the de­
rivation in (Pierre and Cha, 1989)) 

2This is exact for Euler-Bernoulli beams with random flexural rigidities. In 
general, we found that the effect of mode shape disorder is small compared to 
that of frequency (or diagonal) disorder (Pierre and Cha, 1989). 

3This is the case if the modes are normalized consistently. 
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R 

[0] [0] 

[0] -[A] [B!] -[A] [0] 

L[0] 

where 

[A] 

[B1] 

[0] 

-*&, 

9' 

L 9 W J 

arc 

L 0 J 

([A](l+rfX') + 2i?*c*c7 co2[7]) 

(3) 

(4) 

and 9 '= [..., 8'P,...]T is the M-vector of amplitudes for the z'th 
component system, F the forcing amplitude, 911 the modal 
mass, * /= [..., <f>p(Xf),...]T the M-vector of modal deflections 
at the forcing location, R = ks/W. can be regarded as a coupling 
frequency squared, [A] = [diag(X„)] is the Mx M diagonal ma­
trix of the eigenvalues of the nominal subsystem, [7] the MxM 
identity matrix, and * c is the M-vector of modal deflections 
at the constraint location, xc. 

While the theoretical results derived in this paper hold for 
a generic assembly of component systems, numerical calcu­
lations are performed on an assembly of clamped-free Euler-
Bernoulli beams (see Fig. 1). We assume there is no domain 
perturbation and that disorder originates from discrepancies 
among the flexural rigidities (EI)' of the beams. Thus, the 
modal mass is 911 = ml, the component modes, 4>p(x), are the 
modes of a clamped-free beam (see the expression in Pierre 
and Cha, 1989), and the equations of motion (3) are divided 
by El/ml4 to introduce the dimensionless parameters R = 
k,/(EI/f), \ = \„/(EI/ml4), a;2 = U 2 / (£7 / /M/ 4 ) , and 
F=F/(EI/li), where EI is the flexural rigidity of the nominal 
beam. 

2.2 Wave Formulation. We choose a traveling wave per­
spective to examine the spatial decay of the vibration ampli­
tude. Since the assembly in Fig. 1 is monocoupled, it carries 
a single pair of waves and thus can be modeled by 2 x 2 transfer 
matrices. We choose the z'th bay to consist of the z'th component 
system and the coupling spring to its right, as shown in Fig. 
2. Defining the state vector of normal coordinates at the z'th 
site by [9', 9'~ ' ] r , a 2Mx 2Mnormal coordinate transfer ma­
trix that relates the states at adjacent sites is obtained from 
equation (3): 

(5) 
[A] [Of 

[0] [A] 

- e / + r 

9 ' 

[B'] 

[A] 

-[A] 

[0] 

9 ' 

9 " 

c*-

Next, we note that the deflection of the z'th subsystem at the 
constraint location, w'(xc) = w'c, is the coupling coordinate be­
tween subsystems. It can be expressed in terms of the normal 
coordinate amplitudes as 

= * c
r 9 ' . (6) 

Combining equations (5) and (6), we obtain the 2 x 2 displace­
ment transfer matrix4 for the rth bay, which relates the con­
straint deflections at adjacent sites: 

Hi 
IT] 

wc with [T] = 
1 

- 1 

0 
(7) 

where j3' is given in Appendix A. For a disordered system the 
[T]'s are random transfer matrices, their average matrix being 
that of the ordered structure, 

m= i 

- i 
0 (8) 

where /3° is obtained as /3' with d\' = 0. 
The displacement amplitudes are expressed in terms of the 

right and left-traveling wave amplitudes by the transformation 
(Brillouin, 1953; Kissel, 1988) 

= [X] with [X] -• 
1 1 

(9) 

where the columns of [X] are the eigenvectors of the ordered 
transfer matrix [T°] and k is a (complex) wave number related 
to the frequency, o , by the dispersion relation. Substituting 
equation (9) into equation (7) leads to a wave transfer matrix 
that relates the wave amplitudes at sites i and / + 1, 

with [Wi] = [X\-*[Ti][X\. (10) 

One can show, for real wave number k, 

p/+'l 
.Rl+1. 

= [W] 
r /•/] 
_R''_ 

[W] = 
•(!>)*/(?)* 1 / ( 0 ' 

(11) 

where*4 denotes a complex conjugate, and z"'and r1 are the 
complex transmission and reflection coefficients for the z'th 
bay. 

For an ordered site, the wave transfer matrix is diagonal 
consisting of the eigenvalues of [T°], and there is no reflection 
( / = 0). For frequencies such that k is real, there is no atten­
uation, and such frequencies define a passband. For k not real, 
there is attenuation, and the frequency belongs to a stopband. 
For a disordered site, [X] does not diagonalize [7"], and thus 
there is reflection ( /V0). This scattering from the random sites 
leads to localization. 

We now consider the transmission of a wave of amplitude 
a, incident from the left, through an N-site disordered system 
(z = 1,..., N) embedded in an otherwise ordered infinite system. 
The wave transfer matrix for the disordered segment relates 
the wave amplitudes entering and leaving it. For frequencies 
in a passband: 

R* 
: [ ^ 

R1 

[<WN]=\]J[W'] 
l/r" -pN/^\ 

.-(/WcA" i/(/y 
(12) 

9.63 18.25 26. 

where r1^ and pN are the transmission and reflection coefficients 
for the disordered segment. Since there is no reflection for the 

35.50 44.13 52.75 61.38 7o.oo tuned sites, R = a and L = 0 . It follows that the ratio of 

An exact formulation for the displacement transfer matrix is possible for an 
assembly of cantilevered Euler-Bernoulli beams. This was used to check the 

Fig. 3 Real part of propagation constant versus frequency in the first convergence of the component mode analysis. In all cases excellent agreement 
three passbands of an ordered system. Coupling is at the tip. was observed. 
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1.00 9.75 18.50 27.25 36.00 44.75 53.50 62.25 71.00 

Fig. 4(a) 

1.00 9 7 5 18.50 27.25 36.00 44.75 53.50 62.25 71.00 

Fig. 4(b) 
Fig. 4 Real part of propagation constant versus frequency for an or­
dered system with xc = 0.75; (a) and xc = 0.78 (6). The dimensionless cou­
pling is fl = 15.0 The node of the nominal beam's second mode is at 
x = 0.7844. 

the amplitude transmitted through the disordered segment 
(RN+i) to the incident amplitude (a) is the transmission coef­
ficient, T^. Thus, the rate of exponential decay of the trans­
mitted wave amplitude is, for an infinite assembly, 

7= Mm Inlr^l, (13) 

which is determined by the (1,1) term in the overall wave 
transfer matrix. Equation (13) means that, asymptotically, the 
transmission coefficient decays exponentially with N at the 
rate y. For 7>0, the energy is confined near the excitation 
source. For an ordered system 7 is the real part of the prop­
agation constant (Mead, 1975). For a disordered system it is 
called the localization factor. 

2.3 Modal Formulation. The vibration amplitude trans­
mitted to the right end of the assembly due to a left-end ex­
citation can be calculated by applying the modal analysis 
technique developed by Herbert and Jones (1971) and used by 
Hodges and Woodhouse (1983) and Pierre (1989). This for­
mulation was not retained for the analytical evaluation of 
localization factors because the wave approach leads to simpler 
calculations, but it was used in some of the Monte Carlo 
simulations when the wave approach failed to provide satis­
factory results. From equations (2) and (3), the steady-state 
response amplitude of the Mh component system at the con­
straint location is 

= i*c
r[Fw]*/i, (14) 

where [FlN] is the (1,7V)th MxMsubmatrix of ([K] - u2[7])"', 
which can be obtained recursively by exploiting tridiagonality. 
This yields, assuming exponential decay of the vibration am­
plitude, 

7=lim —-]n\*J[FuA*f\. 

3 Passbands and Stopbands of the Ordered System 
The real part of the propagation constant is calculated for 

an infinite ordered assembly over the entire frequency spectrum 
by the wave formulation. 

3.1 Propagation Constant. For the ordered system, the 
eigenvalues of the transfer matrix [T°] in equation (8) are 

X,, = ? ± / l ^ (16) 

such that X!X2= 1 and /3° is a function of co. The modal and 
wave transfer matrices are 

m 
1 1 

l/Xi 1/X2 
[W°] = 

Xj 0 
0 x2 

(17) 

(15) 

For the ordered assembly the decay is identical for all sites; 
thus, from equation (13), 7 = In IX! I. Several cases are consid­
ered. 
9 For I /3°(w)/21 < 1, X] and X2 are complex conjugates of mod­
ulus 1. Letting/3°/2 = cosk(0<k<T), wehaveX1]2 = exp(±,/#)> 
where k is the real wave number. This readily yields 7 = 0, and 
the corresponding frequencies define the passbands. It can be 
shown that for a given wave number k, (|8°(o)2) - 2 cos k) has 
M zeros, defining M frequency bands. 
9 For l/3°(o))/2l >1 , Xi and X2 are real. The wave number is 
complex and 7 is positive, leading to attenuation. The corre­
sponding frequencies define the stopbands. 
" For I j3°(co)/21=1, there is a double eigenvalue Xi = X2 = 1 or 
- 1. Thus, 7 = 0, and the corresponding frequencies define the 
passband-stopband edges. The M zeros of 03o(co2) - 2) give the 
lower limits of the passbands, (w2

p)p=i M, while the zeros 

of (/3°(co2) + 2) give the upper limits, (c0pu)p=, M. For an exact 

representation of the assembly (M— °o), the number of pass-
bands is infinite. 

3.2 Results. Figure 3 illustrates the alternating bands of 
attenuation and propagation for an assembly of Euler-Ber-
noulli beams. The first band is a stopband, where 7 decreases 
to zero as the frequency increases to reach the first passband. 
In the second and higher stopbands, 7 becomes large and tends 
to infinity at some particular frequencies (these peaks are prob­
ably due to the poles of 0°(o)2)). The effect of spring stiffness 
is clearly illustrated in Fig. 3: An increase in coupling between 
the subsystems results in smaller values of the propagation 
constant and in a widening of the passbands. This is because 
vibration transmission is easier for larger coupling. Also, the 
width of the passbands diminishes rapidly with increasing pass-
band number. This is because an increase in the component 
mode number, p, results in a decrease in the dynamic coupling, 
R/\p (the square of the ratio of the coupling frequency to the 
pth component frequency). Thus, propagation becomes more 
difficult as the dynamic coupling decreases, or as p increases. 

The effect of constraint location on the propagation constant 
is displayed in Fig. 4. Here, the static coupling is strong, and 
the constraint is near the node of the second mode of a com­
ponent beam. Note the severe narrowing of the second pass-
band accompanied by the shifting of the stopband peak toward 
the left edge of the second passband. As the coupling constraint 
moves closer to the node, the peak of the stopband practically 
superposes onto the second passband and the corresponding 
frequency bandwidth becomes negligible. Thus, positioning 
the coupling constraint very close to the node of a component 
mode practically eliminates the corresponding passband. 

The bounding frequencies of the passbands are of impor­
tance. The lower limits are independent of the coupling and 
the constraint location (see Fig. 3), and simply equal the pth 
frequency of the nominal subsystem. As a check, we obtained 
the passband-stopband edges by considering the free vibration 
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natural frequencies of the tuned assembly. For an infinite 
assembly (N— oo), these frequencies lie densely in the pass 
bands, with the lowest and highest frequencies in each cluster 
corresponding to the edges (Mead, 1975). In all cases, the 
passband edges obtained by the wave formulation were found 
to be identical to the bounding free vibration frequencies ob­
tained by Cha and Pierre (1989). 

4 Localization Factors of the Disordered System 
In general, localization factors cannot be calculated in closed 

form, and one must resort to numerical evaluations. However, 
analytical approximations can be obtained in the two limiting 
cases of strong and weak modal coupling. This is presented 
here with the aid of probabilistic perturbation methods. Since 
strong attenuation already occurs in the tuned system's stop-
bands, we focus on disorder effects in the passbands. The 
mistunings dk' are assumed to be independent and identically 
distributed random variables of mean zero and standard de­
viation a. 

Next, we approximate In 11 + z I by z. Since the mistunings are 
uncorrected and identically distributed, all terms for l^m 
vanish, which justifies retaining only the first-order terms. We 
obtain 

7 = 
2 i 2 2 

SR2<pp sin2A: + o 
RVP, 

(23) 

Using the dispersion relation /3°(o)) = 2 cos k gives y in terms 
of frequency: 

K(C)(") = 2/?2<^(4-/30V>) 
(24) 

where y (c) denotes the classical approximation of the locali­
zation factor, which holds for strong modal coupling. The/rth 
representation of y is preferred for frequencies in the pth 
passband, as it exhibits the dependence of 7 on modal coupling. 

If the pth component mode contributes largely to the motion, 
we can use a single-mode approximation. Then /3° = 
CKp + 2R4>2

p-o>2)/{R(j)2^, ap= 1, and the wave number is related 
to frequency by 

4.1 Small Disorder To Coupling Ratio. Here we assume 
that the elements of R$rc$l are much larger than those of 
dW[A]. Thus, 0{a/(R4>2p/\p)<\, p=\,...,M, where O(-) de­
notes the order of the argument and R(f>p7\p is the "modal" 
coupling in the pth component mode. Since disorder is small, 
it implies that the modal coupling is finite or large. A classical 
perturbation method (CPM) that treats disorder as the per­
turbation is applied to derive the localization factor. 

For frequencies inside the pth passband, it is convenient to 
rewrite the (1,1) term of the transfer matrix as 

0'=^(4-rf[4r 
R(j)p 

%) (p=l , . . . ,M). (18) 

Although equation (18) holds for all values of p and all fre­
quencies, it is preferable to use the pth representation of /3' for 
frequencies in the pth band. Equation (18) is justified in Ap­
pendix B. 

The random transfer matrix for the /th site is written as, 

[T'] = 
~/3° 

L1 
- f 

0 J 
+ 

~8ff 

L ° 
0" 

0 
= [r] + [8T], (19) 

where /3° and 5/3' are given in Appendix B. In a passband, the 
wave transfer matrix for the rth site is [FK'] = [W°] + [8W] 
where, from equation (10), 

\W°]-

[bW 

e* 0 
0 e-J" 

.( d\' 
y \2s in ; ) -;* 

e* 
-jk (20) 

The wave transfer matrix for an N-site disordered segment is, 
to the first order in the disorder to coupling ratio, from equa­
tions (12) and (20), 

N / f T
2 X 2 N 

[V?N]^[W°]N+y] [W°]'~1[6WN-'+l][W°f~'+0' [j£A 

(21) 

where O'(-) consists of terms d\'d\m for l?±m. We take the 
modulus of the (1,1) term in equation (21) to calculate the 
localization factor: 

N \ / N 

<4 = \p + 4R<t>2
psm2-,0<k<ir, p = l , . . . , M , (25) 

where \p and (hp + 4R<t>p) are the pth passband edges, and up 

lies in the pth passband. The one-mode approximation of the 
localization factor is 

^ (26) 7 < C ) K)=-
' - \ 1+4-R4>\ 

We can make some observations about the localization fac­
tor. First, in the pth passband, the classical approximation is 
only valid for small values of a/{R(j>p7\p), the ratio of mistuning 
to modal coupling. Second, 7<c) goes to infinity at the pass-
band-stopband edges. Thus, we expect the approximation to 
deteriorate near the stopbands. Finally, y<c) is primarily a 
function of the ratio of mistuning to modal coupling, the same 
that governs the strong localization of the free modes (Pierre 
and Cha, 1989). Equation (26) shows that this is exact for a 
one-mode analysis. 

4.2 Large Disorder To Coupling Ratio. Here we assume 
that the elements of dh'[A] are much larger than those of 
R$C$J. Thus, 0{p/(R<t>p7\p))> 1. Since disorder is small, this 
implies that modal coupling is weak. Note that even for ar­
bitrarily large static coupling, weak modal coupling inevitably 
occurs at high frequencies, because \p increases with the pass-
band number. Here we use a modified perturbation method 
(MPM) which treats coupling as the perturbation, while in­
cluding disorder in the unperturbed system to avoid degeneracy 
(Pierre and Dowell, 1987). This yields 

[T1]--
~fi 0" 

L° °J 
+ 

"0 

|_i 

- f 

0 J 
= [7™] + [571 (27) 

where, in this weak coupling case, 1/3'I » 1. Since the un­
perturbed matrix is diagonal, no transformation is needed to 
obtain the wave transfer matrix; thus, [W] = [T1]. Note that 
the modified perturbation scheme is valid in both passbands 
and stopbands. To the first order in the modal coupling to 
disorder ratio, the wave transfer matrix for an assembly of 
size N is 

7 = Km — I n 1 + 
2 N 2 

aDAD 

4R24>P sin2A: 
|><) (± *-) no- rii^S ((n>i) *n ( n in)). 

+ 0' 
^ X | 

R2tf 

(28) 

(22) A little algebra shows that the first-order terms in equation 
(28) do not contribute to [*»"]. Thus, from equation (13), 
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3.45 3.96 4.47 4.99 5.50 6,01 6.52 7.04 7.55 

Fig. 5(a) First passband 

c-

21.96 22.12 22.28 22.44 22.60 22.77 22.93 23.09 23.25 

Fig. 5(d) Second passband 

c -

61.45 61.56 61.66 61.77 61.87 61.98 62.09 62.19 62.30 

Fig. 5(c) Third passband 

• J. 4. J. * i. 4. i. 4 

c -

_x 
120.80 120.85 120.90 120.95 121.00 121.06 121.11 121.16 121.21 

Fig. 5(d) Fourth passband 

Fig. 5 Localization factor in the first four frequency passbands, for 

x„=1.0, R = 3.0 and a = 2.0 percent ( ) ordered system; ( + ) Monte 
Carlo simulation; ( ) classical and modified perturbations in first two 
and last two passbands, respectively. 

3 ° '2 4 

0.12 \ 

3.40 4.41 5.42 6.44 7.45 8.46 9.47 10.49 11.50 

Fig. 6(a) First passband. ( ) classical perturbation. 

e-

22.0335 22.0339 22.0343 22.0348 22.0352 22.0356 22.0360 22.0365 22.036 

Fig. 6(b) Second passband. ( — ) multimode modified perturbation; 
(- •) single-mode modified perturbation, first mode representation; 
( — • — ) single-mode modified perturbation, second mode represen­
tation. 

f - 0.12 

61.65 61.72 61.79 61.86 61.92 61.99 62.06 62.13 62.20 

Fig. 6(c) Third passband. ( — ) classical perturbation. 

Fig. 6 Localization factor in the first three frequency passbands, for 

xc = 0.78, fl=15.0 and <r = 0.2 percent. ( ) ordered systems; ( + ) 
Monte Carlo simulation. 

disorder random variable, e (by definition, /3(e = e?A') = iS')> we 
obtain 

(30) 
1 f 

where the probability density function of disorder is assumed 
to be uniform of width 2W (cr= W/yJl). 

For a multimode system, we evaluate the integral (30) nu­
merically. However, because the coupling is weak, a single-
mode analysis that uses thepth mode of the nominal subsystem 
is often sufficient in the pth passband. Then, 

7<'"»M=limi-2lnl^l ! 

,. (l+d\)\p + 2R<j>l-4 

jv-oo N 
(29) 

/3' = 
R4>% 

(31) 

where y{m) is the weak coupling approximation of the locali­
zation factor. Considering the function /3 of the continuous 

where oip lies near the pth passband. This gives the one-mode 
approximation of the modified perturbation result, valid in 
the vicinity of the pth passband: 
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1+W+ 
2R<j>l <4 

2R(/)p Up 

2W 
2 In X_W+™&A (32) 
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5 Perturbation and Simulation Results 
The perturbation results are verified by Monte Carlo sim­

ulations for assemblies of cantilevered Euler-Bernoulli beams 
with random flexural rigidities. Simulations can be performed 
either by the wave or the modal formulation, by averaging the 
rate of decay in equations (13) and (15) over many realizations 
of disorder for assemblies of Nbeams. However, to offset the 
effect of boundary conditions, the modal scheme requires a 
much larger number of component beams than the wave sim­
ulation. This is particularly true when localization is weak, 
since the decay rate due to disorder must be orders of mag­
nitude larger than that arising inevitably from boundary con­
ditions. Thus, in general, wave simulations are considerably 
less expensive than modal ones. However, for strong locali­
zation, we observed that a modal simulation tracks the ana­
lytical result much better than a wave simulation, especially 
near the band edges. 

To keep the computer cost reasonable, 500 realizations each 
with 50 random sites are considered for the modal approach. 
This ensures that the standard error5 for the localization factor 
is consistently several orders of magnitude smaller than the 
mean. For the wave simulation, configurations are chosen 
according to the system parameters and are specified for each 
case considered. 

Figure 5 displays the localization factor versus frequency 
for R = 3.0, xc=l.O, and o- = 2.0 percent. Since disorder has 
little effect on the attenuation in the stopband_s, 7 is only shown 
in the passbands. The modal coupling, R4>pVXp, decreases rap­
idly as the passband number increases, because for a canti­
levered beam \p^[(2p- 1)TT/2]4. The ratios of disorder to 
modal coupling for passbands one to four are 0.021, 0.81, 
6.34, and 24.36, respectively. Therefore, we used the pertur­
bation method for strong coupling case in the first two pass-
bands, while we chose the weak coupling scheme for the last 
two. For all cases we used the full multimode representation 
of the subsystems. To validate the theoretical results, we per­
formed wave and modal Monte Carlo simulations in the first 
two and last two passbands, respectively. We used the modal 
simulation for the third and fourth bands because we found 
that the wave simulation results deteriorate near the band edges. 
We chose a configuration of 750 realizations of 10 random 
sites for the wave simulation, although we observed that taking 
only two random sites gives accurate results as well. 

The strong frequency dependence of 7 in the first two pass-
bands is readily observed in Fig. 5: Localization is maximum 
near the stopbands, an expected trend, and minimum near the 
midband. A consequence is that normal modes in the same 
passband can have very different degrees of localization.6 The 
agreement between the theoretical and simulation results is 
excellent in the first passband, where localization is very weak. 

Fig. 7(a) First passband 

5The estimates of the standard deviation of 7 divided by the square root of 
the number of realizations. 

'Accepting the conjecture by Ishii (1973) that the forced vibration and free 
mode patterns are governed by the same exponential envelope at a given fre­
quency. 
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Fig. 7(b) Second passband 
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Fig. 7(c) Third passband 

Fig. 7 Localization factor versus disorder at the first three midband 

frequencies, for R = 3.0 and xc=1.0. ( ) classical perturbation; 
(—) modified perturbation; ( + ) Monte Carlo simulation. 

The localization factor around midband increases approxi­
mately 1,000-fold from the first to the second passband. The 
agreement between simulation and perturbation is good over 
most of the second passband, except near the stopbands where 
the perturbation overpredicts the simulation; this is expected 
since 7<c)-»<x at the passband edges. The agreement becomes 
worse in the second passband because the CPM approximation 
deteriorates as the modal coupling decreases. This deteriora­
tion takes place first for frequencies leading to large 7, that 
is, near the passband edges. 

Figure 5 shows that localization becomes very strong in the 
third and fourth passbands. Unlike in the first and (to a lesser 
degree) second passbands, where 7 in the stopbands is orders 
of magnitude larger than in the passbands, for the strong 
localization case the localization factors in the passbands and 
the stopbands have comparable magnitude. Also, contrary to 
the first two passbands, 7 varies little with frequency in the 
third and fourth bands. Thus, we expect all normal modes to 
be strongly localized in these passbands. We also note that the 
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Fig. 8(6) Enlargement 

Fig. 8 Localization factor versus disorder at the second midband fre­

quency, for fl = 15.0 and xc = 0.78. ( ) classical perturbation; 
( ) modified perturbation; ( + ) Monte Carlo simulation. 

agreement between simulation and modified perturbation re­
sults is very good in the third passband. It becomes excellent 
in the fourth band because the modal coupling is smaller. 

Finally, we found that the single-mode approximation of 
the MPM result, equation (32), agrees with simulation nearly 
as well as the multimode result in the third and fourth pass-
bands. This confirms that the much simpler one-mode result 
is a valid approximation. 

Figure 6 illustrates the effect of constraint location on the 
localization factor. The coupling spring is very close to the 
node of the second component mode (̂ 2(̂ c) = 0), and the static 
coupling is large and the disorder very small. If the constraint 
were at the tip, we would expect y to be very small in the lower 
passbands, corresponding to weak localization. From Fig. 6, 
the localization factor is indeed small in passbands 1 and 3. 
The agreement between the wave simulation and the classical 
perturbation method is excellent in the first passband and good 
over most of the third band. Since the coupling constraint is 
near the node of the second mode, the corresponding modal 
coupling is very small (R<j>\/\2 — 0.000025); thus, the multi-
mode modified perturbation method is used in the second 
passband, and excellent agreement with the modal simulation 
is noted. We observe that localization in the second passband 
is severe, due to the location of the constraint, although it is 
weak in the neighboring passbands. 

We found that the single-mode modified perturbation scheme 
(p = 2 in equation (32)) grossly overestimates the localization 
factor in the second passband (this is shown in Fig. 6(b)), even 
though it gives very good results in cases of small coupling in 
Fig. 5. We can tentatively explain this by noting that thepth 
passband is nearly lost when the constraint location is near a 
node of the/rth component mode; thus, the system practically 
does not vibrate in the pth mode, and the frequency range 

where the single-mode MPM for the (p — l)th passband applies 
is extended to encompass the pth passband. Indeed, we applied 
the MPM using the first modal representation (p = 1 in equation 
(32)) for frequencies in the neighborhood of the second pass-
band. Figure 6(b) shows that the maximum difference between 
the Y'S obtained with MPM and simulation is less than 4 per­
cent. This confirms our conjecture. 

6 Localization. Factors at Midband 
The dependence of localization effects on the disorder to 

modal coupling ratio and the passband number is investigated 
by considering the midband frequencies, (o3Pr )P=I,...,M, ob-

tained from the dispersion relation for k-—, or /3° = 0. In the 

strong coupling case, equation (24) gives, at midband, 

yic) = 
'Pm 

*Pm 

%R2<t>P/\2
P' 

(33) 

The single-mode approximation of the localization factor at 
midband is given by equation (33) for ctPm = 1. For weak cou­
pling, the single-mode approximate modified perturbation 
scheme is used; from equations (25) and (32): 

yZ'= ln 
Rti/K, 

+ In V 3 - 1 . (34) 

The coefficient a„ is an explicit function of «„ , which Pm' 
itself depends on R. Upon numerical examination, we found 
that ap remains relatively constant when R varies, especially 
in the higher passbands, where it is almost equal to one. In 
the lower bands, where the CPM is valid, we found that aPm 
is a slowly increasing function of R. Thus, from equation (33), 
the localization factor does not vary exactly parabolically with 
a/(R(j>p/\p) in the weak localization case, but increases at a 
slightly slower rate. Equation (34) exhibits its logarithmic var­
iation in the strong localization case. Thus, as the disorder to 
coupling ratio increases from zero, the localization factor first 
increases nearly parabolically; once it reaches a large value (of 
the order of 0.5), its increase is more moderate, according to 
a logarithmic law. 

Figure 7 displays the variation of y in _terms of the disorder 
strength for midband excitation with R = 3.0 and xc=1.0. 
Monte Carlo simulation and multimode classical and modified 
perturbation results are shown. In the first passband, where 
weak localization occurs, the CPM tracks the numerical so­
lution very well until a =9 percent. In the second passband, 
the simulation and CPM results are in excellent agreement for 
CT<4.5 percent. As a keeps increasing, the simulation diverges 
from the classical perturbation solution, and approaches the 
modified perturbation result. The Monte Carlo and the mod­
ified perturbation results are in excellent agreement in the third 
passband for a>1.0 percent, corresponding to strong locali­
zation. Only for very small disorder is the CPM a good ap­
proximation in this weak coupling case. Figure 7 displays clearly 
the transition from parabolic to logarithmic variation (that is, 
from weak to strong localization). Similar results are expected 
if y is plotted versus \/R instead of a. 

The dependence of 7 on disorder strength is also investigated 
when the constraint is located near a component mode's node. 
ITere, xc = 0.78, near the second mode's node. Only the second 
passband is considered, since in other bands the variation of 
7 is similar to that in Fig. 7. Figure 8 shows that for very small 
disorder the CPM approximates 7 well, and that as disorder 
increases the MPM tracks the simulation result remarkably 
well. Interestingly, the localization factor reaches a saturation 
value as disorder increases to approximately 0.1 percent, and 
remains relatively constant thereafter. Thus, when the coupling 
constraint is near a node, disorder has an effect only up to a 
certain point, beyond which an increase in disorder strength 
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does not cause stronger localization. We found that this sat­
uration value of 7 = 2.75 is approximately equal to the decay 
factor in the stopbands adjacent to the second passband (this 
can be seen in Fig. 4(b)). 

Finally, we consider the dependence of the localization factor 
on passband number. For a cantilevered beam, the free vi­
bration eigenvalues increase asymptotically as \p — [{2p- \)ir/ 
2]4, and equation (33) becomes 

2048R2<j>4
P 

(35) 

while equation (34) yields 

7<™»-4 1n I2p - l l+ ln 
16R<j>2

p 
+ l n V 3 - l . (36) 

For simplicity, we assume that <j>p is independent of p (this is 
true for coupling at the tip). For the case of weak localization, 
where the classical perturbation method applies, the locali­
zation factor varies approximately as pg (exactly so for a one-
mode analysis), but only as (o/R)2. Thus, the degree of lo­
calization is much more sensitive to the passband number than 
to either the disorder or the static coupling strength. This 
implies that the transition from weak to strong localization 
occurs very rapidly with increasing passband number, which 
is observed in Fig. 5 from passband 2 to passband 3. Once the 
strong localization regime is reached, the degree of localization 
increases logarithmically with passband number, the same de­
pendence it has on the disorder and coupling strength. This 
indicates that assemblies of beam-like subsystems, such as 
bladed-disk assemblies, are highly sensitive to irregularities, 
especially at high frequencies where several localization occurs. 

probabilistic perturbation methods and Monte Carlo simula­
tions. While for an ordered assembly there are alternate fre­
quency bands of propagation and attenuation, irregularities 
result in an exponential amplitude decay for all frequencies. 
The degree of localization depends primarily on the ratio of 
disorder to modal coupling: This dependence is nearly par­
abolic for small values of this ratio, and logarithmic for large 
values. Localization is strong for weak internal coupling, and 
the transition from weak to strong confinement occurs very 
rapidly with increasing passband number p (for small values, 
7 varies as ps). Therefore, severe spatial attenuation is una­
voidable at high frequencies. 

Several fascinating issues regarding localization remain to 
be tackled. First, we must explore how (small) dissipation 
affects localization. Our goal is to identify the decay due to 
damping and that due to disorder in a typical structure. Second, 
since all engineering structures are finite, we must examine 
whether the "infinite" localization factors we calculate de­
scribe adequately confinement in structures with boundary 
conditions. For finite structures a modal analysis formulation 
may be more appropriate than the wave approach. Finally, we 
must determine whether the average localization factor de­
scribes the behavior of a typical nearly periodic structure (see 
the discussion in Hodges and Woodhouse, 1989). Deterministic 
techniques may have to be resorted to when there is consid­
erable dispersion about the average. 
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7 Significance of Localization Effects 
To illustrate confinement effects in engineering structures, 

consider the case R = 3.0, xc= 1.0, and a = 2 percent. The sim­
ulated localization factors at the lower four midband fre­
quencies are 0.000086,0.068,1.42, and 2.76, respectively. Since 
the vibration amplitude is governed, on the average, by 
exp(-7JV), 8100 sites are needed for the amplitude to decay 
by a factor of two in the first passband, but only ten sites are 
required in the second passband. In terms of energy, only 0.02 
percent is transmitted to the third site in the third passband, 
and less than 0.002 percent is transmitted to the second site in 
the fourth passband. Recall that for a perfectly periodic (un­
damped) system 100 percent of the energy is transmitted. This 
spectacular localization is caused by a disorder of strength 2 
percent only, which is difficult to avoid in engineering struc­
tures. 

Our study has shown that strong modal coupling and small 
disorder lead to weak localization, characterized by very small 
rates of spatial decay. Typically, several thousand subsystems 
are needed for confinement to be significant. Few, if any, 
engineering structures consist of so many components. Fur­
thermore, the effects of end conditions and damping probably 
conceal that of disorder when the localization factor is so small. 
Thus, weak localization appears to be of little importance in 
structural dynamics. 

On the other hand, disordered assemblies with weak modal 
coupling experience strong localization, such that energy is 
confined to a few subsystems. Even for large static coupling 
and small disorder, strong localization is unavoidable at high 
frequencies. The placement of the coupling constraint near a 
node may also cause strong localization. Structural dynamicists 
should be fully aware of these drastic effects of small disorder. 

8 Conclusions 
The effects of disorder on the dynamics of assemblies of 

monocoupled, multimode subsystems were investigated by 
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A P P E N D I X A 

Transfer Matrix Derivation 
Consider the MxM matrix [L], whose pth column is the 

vector of modal deflections at xc and whose only other nonzero 
elements are l's on the diagonal. This definition allows us to 
select a passband p of interest. For example, for p=\, pre-
multiplying the first block equation in equation (5) by [L] ~' 
gives, after manipulations: 

(Al) 

v c
+ r 

0 

0 

= m~ \Bf\[L\-T 

v; 
4 

.8'M. 

-

vf-»-
0 

0 

Partitioning the above triple matrix product yields 

~w;l~ 
0 

~E 

.*"' 

F ' r " 

[G']_ 
v; 
_e_ 

Vr1' 
0 

(A2) 

where E, F' and [G'] have dimensions 1 x 1_, (M- 1) x 1, and 
(M- 1) x (M- 1), respectively. Eliminating G' in equation (A2) 
gives equation (7), where 

0 = E?-FiT[G']-% (A3) 

and [G'] is nonsingular since [B1] is positive definite. 

A P P E N D I X B 

Transfer Matrix Expansion 
For frequencies near the pth passband, we factor \P/R in 

[B'\ to obtain a dimensionless frequency squared, w2/\p. We 
also factor \/<t>p in [L], such that its pth diagonal element is 
1. Thus, 

iLri[B'][Lr 
R<t>2

p 

np 

K [&„]. 
(Bl) 

which yields equation (18). For small disorder to coupling ratio, 
we write [B1] = [B°] + [b'], where [B°] is given in equation (4) 
for d\' = 0 and [bP] = [A]d\'/R. Thus, 

K IG>„. 

F° 

F° rp 

F° 1 rp 

[G°P}_ 
+ dh! 

' ep Aj" 

-AP \Sp}_ 
(B2) 

Substituting equation (B2) into equation (A3) and expanding 
to the first order gives ff = /3° + 5/3', where 

0° = 
RQP 

^2 (Ep- K [G°]"'F°) (p=l,...,m) 

\pd\' 
2 (ep-F°p [Cft-% 

< 
R<t>p 

K [G°p] -
lF° + K [G°p] -' [gp] [G°p] ~ ' F ° ) 

R<t>p 
^otpdh' (p=l,...,M) 

(B3) 

where ap is a function of xc and to. 
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On Natural Frequencies of Geometrically Imperfect, 
Simply-Supported Rectangular Plates Under Uniaxial 
Compressive Loading1 

S. Ilanko2 and S. M. Dickinson3 

Introduction. The effects of geometric imperfections on 
the vibration behavior of biaxially compressed, simply-sup­
ported thin rectangular plates, with all edges free to move 
tangentially (shear free) but constrained to move with constant 
displacement in the direction normal to the edges, have been 
studied by Hui and Leissa (1983). A solution for von Karman's 
equations for finite deflections in terms of out-of-plane dis­
placements and Airy stress functions was described. The com­
patibility equations were solved exactly, based on the 
assumption that the out-of-plane buckling (and/or vibration) 
modes were decoupled, and the Galerkin procedure was used 
to obtain an approximate solution for both the static and 
dynamic equilibrium equations. It was found that the natural 
frequencies increased considerably with initial geometrical im­
perfections as was observed subsequently by other researchers 
(Kapania and Yang, 1986; Ilanko and Dickinson, 1987) for 
similar problems. 

In the present Note, a similar approach is described which 
is applicable to uniaxially loaded, simply-supported rectan­
gular plates having two different sets of in-plane boundary 
conditions: Case (1), loaded edges subject to uniform static 
loading and free to move normally during vibration, with the 
other two edges free during both loading and vibration, and 
all four edges free to move tangentially at all times (that is, 
shear free); Case (2), as in Case (1), except that all four edges 
are fully tangentially restrained at all times (that is, shear 
diaphragm conditions). For these problems, Airy stress func­
tions could not be obtained in exact, closed form; instead, 
they are taken as the summation of a series of beam functions 
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(Bassily and Dickinson, 1977), the coefficients in the series 
being determined by solving the compatibility equations ap­
proximately using Galerkin's method. 

Graphical results for the static deflection and fundamental 
frequencies of square plates, obtained using single terms for 
the out-of-plane displacements, are shown and agree very 
closely with equivalent results from a Rayleigh-Ritz displace­
ment formulation (Ilanko and Dickinson, 1987). 

Static Analysis. Consider the simply-supported geometri­
cally imperfect plate of material having uniform thickness h, 
Young's modulus E, and Poisson's ratio v with its edges lying 
in the xy-plane along x = 0, a and y = 0, b. It is subject to 
uniform, uniaxial compressive loading of value Nx per unit 
width acting in the x-direction and applied along edges x = 
0, x = a. The compatibility equation may be written in terms 
of Airy stress function F (Hui and Leissa, 1983) 

y) Z,xxZ,yy ' Zo,xxZo,yy\: V4F=Eh[(z,xy)
2-(z0,> (1) 

where the initial imperfection z0 and the static deflection under 
in-plane loading (both measured from the plane containing the 
edges of the plate) are given by 

z0 = Z0sin(/arx/a)sm(liry/b) 

and 

z = Zsin(kirx/a) sin (fay/b). 

Substitution into equation (1) yields the equation 

V4F=Ehir*(Z2 - Z0
2)k2l2[cos(2k^x/a) 

(2a) 

(2b) 

+ cos(2hy/b)]/(2aibi). (3) 

It is convenient to express F as 

F=F0 + FZ, (4) 

where F0 and Fz are the stress functions due to in-plane dis­
placements and out-of-plane displacements, respectively, and 
F0 satisfies the equation V4F0 = 0 and Fz satisfies equation 
(3). The function F must also satisfy the in-plane boundary 
conditions which are as follows: 

Case (1): At x = 0 and x = a, 
0, and aty = 0 andy = b, FtXX = FiX} 

yy = -NxandF,xy = 
0. These are satisfied, 

provided that the function F0 and Fz meet the conditions that 
F0,yy = -Nx, F0tSy = FZ:Xy = Fz<yy = 0 at x = 0 and x = a, 
and F0iXX = F0iXy = FZ:XX = Fz<xy = 0 at y = 0 and y = b. 

-Nr and F Case (2): At x = 0 and x = a, F>yy 

vFjy = 0, and at y = 0 and y = b, FtXX = F_yy - vF^ 
,xx 
= 0. 
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BRIEF NOTES 

These are satisfied if Foyy = -N F — vF = F = 
1 yxi L o,xx vl o,yy 1

 z,yy FZlXX - vFZiyy = 0 at x = 0 and x = a, and F0<xx = F0<yy 

vF0,xx = FZtXX = Fz%yy ~ vFZiXX = 0 at / = 0 and / = b. 

Following an analogy between the Airy stress function and 
the out-of-plane displacement of a thin plate (Bassily and Dick­
inson, 1977), the function Fz may be expressed in the form 

Fz = LLaPQ<pp(x)^g(y), p, <7=1,2 . . . (5) 

where <$>p(x) and \l/q(y) are the characteristic functions for a 
flexurally vibrating clamped/clamped beam for case (1) and 
for a simply-supported/simply-supported beam for case (2). 
These functions satisfy the appropriate boundary conditions 
for Fz. The coefficients aPQ may be determined in terms of z 
by using <f>r(x) i/s(y) as the weighting function in a Galerkin 
solution of equation (3): 

a ftb 

W%<t>r(xHs(y)dxdy 
x=0 vy = 0 

= (Eh-rc\z2 - Z0
2)/(kl/ab)2/2) 

\ [cos(2kirx/a) + cos(2hy/b)]<j>r(x)^s(y)dxdy. 

An Airy stress function F0 satisfying the boundary condition 
for case (1) may be written, simply, F0 = -Nxy

2/2, but for 
case (2) it is necessary to use a series for F0. One such series 
is 

F0 = (4b2Nx/ir
3h)Em (l/rr?)4>0 (x)sin(mry/b) 

+ Jl„ZmBmnsm(mirx/a)&m(mry/b), (6) 

where <f>0(x) = 1 - va2/(4b2) + (va2/(4b2))cos(2mTrx/a), and 
m, n = 1 , 3 , 5 . . . . The coefficients Bmn are determined by 
solving the Galerkin equation 

CV4Fo)sm(nx/a)sm(siry/b)dxdy = 0 and are 
'x=0 •>y = 0 

- 4yNxa
2[vmn(y4 + 8y2 + l6)/(ym2 - 4yn2) 

+ yn(4~ vy2)/m]/[ir4h(m2 + y2n2)2], in which y = a/b. 

The final step in the static analysis is the solution of the 
equilibrium equation (Hui and Leissa, 1983) 

£>V4(Z-Z0) = [FjyZjx + FjaZjy-lFjcyZjy], (7) 

where D is the plate rigidity given by D = Eh3/12(1 - v2). 
Substitution of equations (2) and (4) into equation (7) and 
again using Galerkin's method with the weighting function 
sm(kirx/a)sin(liry/b) leads to the equation, in nondimensional 
form, 

(lx-^0) = ̂ Nx/Nxc-lli(li
2-lx0

2). (8) 

Here, n = Z/h, /x0 = Z0/h, Nxc is the critical in-plane load 
of a uniformly stressed, simply-supported plate corresponding 
to the (k, I) mode and is given by Nxc = D(ira/k)2[(k/a)2 + 
(l/b)2]2, and the coefficients £ and f depend upon the case 
being considered. 

Vibration Analysis. The dynamic out-of-plane displace­
ment in the (m, n) mode is expressible w(x, y, t) = W(x, 
y)e'"', where w is measured from the static, loaded, equilibrium 
position, co is the radian natural frequency, and W the max­
imum displacement with respect to time and is given by 

W= Hsm(mirx/a)sm(niry/b). 

The compability equation in terms of the dynamic Airy stress 
function/is (see Hui and Leissa, 1983) 

As in the static analysis, the dynamic Airy stress function/ 
can be expressed in the form 

/ = 5 j ^]&pq<t>p(X)'l'q(y)>P> 9 =-1.2,3 . . . (10) 

where <j> and \p are appropriate beam vibration characteristic 
functions. Here it is not necessary to consider/ = f0 + fz as 
there is no dynamic edge loading. 

Substitution for z and w into equation (9) and using Gal­
erkin's method-gives 

5 5 WEEWAJWM 
x=0 y = 0 \ p q / 

S a nb 

G(x,y)Msdxdy, 
x = 0 J j . = 0 

where G(x, y) = (Eh-w47(d2b2))[2klmncos(k-wx/a)cos(m-Kx/ 
a)cos(niry/b)cos(Iiry/b) - (ifn + l2m2)sm(mirx/a)sin(mry/ 
b) sin(kirx/a) sin(hy/b) ]. 

Finally, Galerkin's method is again used to solve the equa­
tion of motion for small amplitude flexural vibration to obtain 

x = 0 •>y = 0 

V w - (pha2/D)w]sm(mirx/a)sm(mry/b)dxdy 

!

a [,b 

\ xF yyW xx + r XXW yy — At\xyrv\xy+J\yyZtXX 

x = 0 JJ> = 0 

+f,xxz,yy-2ftXyztXy]sm(mirx/a)s'm(mry/b)dxdy, 

where p is the density of the plate material. After some algebra, 
this equation can be written in nondimensional form 

1 - (co/fi)2 - HNX/NXC + m
2 + 5 (ix2 - ,x0

2) = 0, (11) 

where Q is the radian natural frequency of the corresponding 
flat, stress-free plate. In the special case where k = m and / 
= n (that is, vibration and static deflection shapes being the 
same), it can be shown that the coefficients 17 = 2f and 5 = 
f. 

3 . 0 

2 . 0 -

1 . 0 

0 . 0 
0 . 0 0 . 5 

V4f=Eh( 2z,xy WiXy - z,xx W,yy - z,yy W%xx). (9) Case 2 

1.0 1.5 
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Fig. 1 Load-deflection relationship; Galerkin's Case 1 
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Fig. 2 Load-frequency relationship (key as for Fig. 1) 

Results and Discussion. Numerical results were calculated 
for the static deflection and fundamental natural frequency of 
vibration for square plates having various degrees of initial 
imperfection. The imperfection and subsequent static and dy­
namic displacements were all taken to be of the single term 
form, sin(irx/a)sm(Try/a), corresponding to the fundamental 
vibration and buckling mode shape, with the central displace­
ments Z0, Z, and H, appropriately. For the Airy stress function 
series (5) and (10), the first three symmetrical beam modes 
were taken (p, q = 1,3,5) and, in equation (6), the first series 
was summed to infinity and the double series was summed 
over m, n = 1, 3, 5 . . . 11. A value of 0.3 was used for 
Poisson's ratio. 

The values calculated for £ and f were, respectively, 1.000 
and 0.177 for Case (1) and 0.730 and 0.418 for Case (2). These 
agree closely with those obtained from a Rayleigh-Ritz dis­
placement solution (Ilanko and Dickinson, 1987), using an 
equivalent number of terms, which gives 1.000, 0.178, 0.731, 
and 0.417, respectively. The results are shown graphically in 
Figs. 1 and 2, where the considerable effect of the initial im­
perfection may be observed. The stiffening effect of the tan­
gential edge restraint in Case (2) is also very evident in Fig. 1, 
where the flat-plate buckling load may be seen to have been 
increased by 37 percent and the square of the nondimensional 
central deflection, <x2, is very significantly reduced. The effect 
of the tangential restraint on the natural frequency parameter 
(oj/0)2 is rather more complicated since the frequencies tend 
to increase due to the in-plane stiffening effect but to decrease 
due to the reduced out-of-plane curvature. 
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Accurate Dilatation Rates for Spherical Voids in 
Triaxial Stress Fields 

Y. Huang4 

Introduction 

In the course of a study of cavitation in elastic-plastic solids 
(Huang, Hutchinson, and Tvergaard, 1989), it was discovered 
that the well-known and widely used formula of Rice and 
Tracey (1969) significantly underestimates the dilatation rate 
of an isolated void subject to stress fields with moderate to 
high triaxiality. The purpose of this Note is to indicate why 
earlier analyses lead to underestimates and to provide accurate 
results. 

Attention is limited to a spherical void in an infinite rigid-
perfectly plastic solid characterized by the Mises yield con­
dition, ae = aY, where (Te = (3sijsij/2)l/2 with s,j as the stress 
deviator. Remote from the void, the nonzero stresses satisfy 
a™, = a™2 and <T™3-(j°\\ = <JY- The nonzero strain rates in the 
remote field are e "3 = - 2 e Ti = - 2 e ™2 = e with e > 0. 

The Rice-Tracey high triaxiality approximation for the effect 

of the remote mean stress, am= -<fkk, on the dilatation rate is 

( £ ) - 0.850 e , p ( g = ) , 1 , 

where V is the current volume of the void and V is the volume 
increment induced by the remote strain increment e. 

2 Variational Principle and Solution Method 

The solution method is that suggested by Rice and Tracey 
(1969) and later adopted by Budiansky, Hutchinson, and Slut-
sky (1982). It involves minimization of the functional of the 
velocities 

* = [ {s,j-sTj)eijdO-aTj \ ridels (2) 

where e,y = -(i>,-j+ Vjj), 0 is the infinite volume exterior to the 

void, S is the surface of the void, and «,- is the unit normal 
vector to S pointing out of the void. The solid is incompressible 
so the velocity field must satisfy vkik = 0. The deviator stress 
in equation (2) is that associated with e^ through the yield 
condition, i.e., 

su = oyiu/(3kuku/2)l/2. (3) 

The remote strain rate ey is prescribed and an additional 
velocity field y*is defined so that 

e(j = eTj + etj with efj = - (vfj + vfj). (4) 

Among all additional fields satisfying v* = o(r~3/2) as r—00, 
the exact field minimizes <&. 

Radial and azimuthal components, v* and vfj, of the axi-
symmetric additional field can be generated from a stream 
function xirfi) according to 

v?=-r-2(smdyl(Xsin9\g,v$ = r-s
Kr. (5) 

Following Budiansky et al. (1982), we take 

x(r,d)=Acotd+ J] Pk,e(cos 6)fk{r) (6) 
lt = 2,4,... 

where Pk is the Legendre Polynomial of degree k. The first 

4Division of Applied Sciences, Harvard University, Cambridge, MA 02138. 
Manuscript received by the ASME Applied Mechanics Division, Dec. 28, 1989; 

final revision, Oct. 18, 1990. 

1084 / Vol. 58, DECEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 

Load R a t i o N x / N x c 

Fig. 2 Load-frequency relationship (key as for Fig. 1) 

Results and Discussion. Numerical results were calculated 
for the static deflection and fundamental natural frequency of 
vibration for square plates having various degrees of initial 
imperfection. The imperfection and subsequent static and dy­
namic displacements were all taken to be of the single term 
form, sin(irx/a)sm(Try/a), corresponding to the fundamental 
vibration and buckling mode shape, with the central displace­
ments Z0, Z, and H, appropriately. For the Airy stress function 
series (5) and (10), the first three symmetrical beam modes 
were taken (p, q = 1,3,5) and, in equation (6), the first series 
was summed to infinity and the double series was summed 
over m, n = 1, 3, 5 . . . 11. A value of 0.3 was used for 
Poisson's ratio. 

The values calculated for £ and f were, respectively, 1.000 
and 0.177 for Case (1) and 0.730 and 0.418 for Case (2). These 
agree closely with those obtained from a Rayleigh-Ritz dis­
placement solution (Ilanko and Dickinson, 1987), using an 
equivalent number of terms, which gives 1.000, 0.178, 0.731, 
and 0.417, respectively. The results are shown graphically in 
Figs. 1 and 2, where the considerable effect of the initial im­
perfection may be observed. The stiffening effect of the tan­
gential edge restraint in Case (2) is also very evident in Fig. 1, 
where the flat-plate buckling load may be seen to have been 
increased by 37 percent and the square of the nondimensional 
central deflection, <x2, is very significantly reduced. The effect 
of the tangential restraint on the natural frequency parameter 
(oj/0)2 is rather more complicated since the frequencies tend 
to increase due to the in-plane stiffening effect but to decrease 
due to the reduced out-of-plane curvature. 
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Accurate Dilatation Rates for Spherical Voids in 
Triaxial Stress Fields 

Y. Huang4 

Introduction 

In the course of a study of cavitation in elastic-plastic solids 
(Huang, Hutchinson, and Tvergaard, 1989), it was discovered 
that the well-known and widely used formula of Rice and 
Tracey (1969) significantly underestimates the dilatation rate 
of an isolated void subject to stress fields with moderate to 
high triaxiality. The purpose of this Note is to indicate why 
earlier analyses lead to underestimates and to provide accurate 
results. 

Attention is limited to a spherical void in an infinite rigid-
perfectly plastic solid characterized by the Mises yield con­
dition, ae = aY, where (Te = (3sijsij/2)l/2 with s,j as the stress 
deviator. Remote from the void, the nonzero stresses satisfy 
a™, = a™2 and <T™3-(j°\\ = <JY- The nonzero strain rates in the 
remote field are e "3 = - 2 e Ti = - 2 e ™2 = e with e > 0. 

The Rice-Tracey high triaxiality approximation for the effect 

of the remote mean stress, am= -<fkk, on the dilatation rate is 

( £ ) - 0.850 e , p ( g = ) , 1 , 

where V is the current volume of the void and V is the volume 
increment induced by the remote strain increment e. 

2 Variational Principle and Solution Method 

The solution method is that suggested by Rice and Tracey 
(1969) and later adopted by Budiansky, Hutchinson, and Slut-
sky (1982). It involves minimization of the functional of the 
velocities 

* = [ {s,j-sTj)eijdO-aTj \ ridels (2) 

where e,y = -(i>,-j+ Vjj), 0 is the infinite volume exterior to the 

void, S is the surface of the void, and «,- is the unit normal 
vector to S pointing out of the void. The solid is incompressible 
so the velocity field must satisfy vkik = 0. The deviator stress 
in equation (2) is that associated with e^ through the yield 
condition, i.e., 

su = oyiu/(3kuku/2)l/2. (3) 

The remote strain rate ey is prescribed and an additional 
velocity field y*is defined so that 

e(j = eTj + etj with efj = - (vfj + vfj). (4) 

Among all additional fields satisfying v* = o(r~3/2) as r—00, 
the exact field minimizes <&. 

Radial and azimuthal components, v* and vfj, of the axi-
symmetric additional field can be generated from a stream 
function xirfi) according to 

v?=-r-2(smdyl(Xsin9\g,v$ = r-s
Kr. (5) 

Following Budiansky et al. (1982), we take 

x(r,d)=Acotd+ J] Pk,e(cos 6)fk{r) (6) 
lt = 2,4,... 

where Pk is the Legendre Polynomial of degree k. The first 
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1.6 
PRESENT RESULTS 
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Fig. 1 Dilatation rate in a rigid-perfectly plastic solid as computed at 
various levels of approximation. The high triaxiality approximation 
\VI(i V)\o in (1) is used to normalize the results. The present results are 
believed to have converged. 

term in (6) generates the spherically symmetric contribution to 
the field. The amplitude A and the unknown functions fk(r) 
must be chosen to minimize $. The dilatation rate is computed 
using 

V=\vrdS = 4rA (7) 

involving just the spherically symmetric term. The additional 
terms in (6) influence the shape change of the void and the 
dilatation rate through their interaction with A. 

3 Dilatation Rates 

The high triaxiality approximation (1) was obtained by Rice 
and Tracey (1969) by minimizing $ with respect to just the 
spherically symmetric term in (6) with amplitude A. They also 
investigated the accuracy of (1) by carrying out a numerical 
study in which they minimized $ with respect to pairs of func­
tions, involving A and the amplitude of a term with fixed/2(r). 
They found relatively little sensitivity to the particular choice 
of/2. A plot of the dilatation rate, V/( k V), obtained from 
one of their two-term numerical solutions is shown in Fig. 1, 
where the high triaxiality approximation (1) is used as a nor­
malization. 

Budiansky et al. (1982) let 

1=1,2 , . . . 

and minimized $ with respect to A and various sets of the 
A^'s. Most of their calculations were carried out with the 
seven amplitude factors: A, Al'] with k = 2,4 and ;'= 1,3. The 
dilatation rate computed numerically using these seven terms 
in the minimization is also shown in Fig. 1. At very high 
triaxiality, the dilatation rate predicted using their choice of 
terms also appears to approach the high triaxiality approxi­
mation (1). 

A systematic convergence study was conducted in the present 
work using as many as five sets of terms in the 6 expansion in 
(6) and ten terms in each of the fit(r) for a total of 51 free 
amplitude factors (i.e., A and Af,0 for k = 2,4,6,8,10 with 
/= 1,10). An example illustrating convergence with the number 
of terms in the expansion of the fk(r) is shown in Fig. 2. The 
results presented in Fig. 1 were obtained using 51 free amplitude 
factors and are believed to have converged. (It should also be 
mentioned that considerable care was taken to ensure that no 
error arose from the numerical integrations involved in min­
imizing $.) 

1.6 

V/(£V) 

[V/(eV)], 

1.0 l , . . - « - - - ! ' " ~ I I I I 
0 2 4 6 8 10 

I 
Fig. 2 Convergence study for omlor = 4. Minimization is carried out 
with respect to 5 /+1 terms (A, A1!? for 4 = 2,4,6,8,10 and / = 1,/). 

As seen in Fig. 1, the high triaxiality approximation (1) 
underestimates the dilatation rate by about 50 percent at all 
triaxiality levels above am/aY= 1. A fairly good approximation 
for om/aY> 1 is clearly 

For lower triaxiality, 

^ i ->o (a«\- (3am\ 1 ff,„ - r - = 1.28 ( — 4 exp - — , - < — s i (10) 
e V \aY/ \2o"y/ 3 aY 

gives a reasonable fit to the present results in Fig. 1. At remote 
uniaxial tension, am/aY= 1/3, the error is less than 1 percent. 
For l/3<<xm/<Ty<l, the maximum error of (10) is less than 5 
percent. 

4 Effect of Elasticity on Dilatation Rates 
Elasticity has a significant effect on the dilatation rate of 

an isolated void at high triaxiality. Huang et al. (1989) cal­
culated the normalized dilatation rate of a void in an elastic-
perfectly plastic solid at several levels of yield stress to Young's 
modulus, aY/E, including the rigid-perfectly plastic limit, 
aY/E = 0, presented in this work. The elastic-perfectly plastic 
solid has a cavitation limit in that the dilatation rate becomes 
unbounded as am/aY approaches a limiting value. For a Pois-
son's ratio of 0.3, the cavitation limit of am/aY is about 
3.6 for aY/E= 0.005, 3.9 for aY/E = 0.003, and 4.7 for 
aY/E= 0.001. The cavitation limit is unbounded as aY/E-~0. 
Elasticity clearly influences the dilatation rate at triaxiality 
levels above am/uY-2. Further details are given in the paper 
by Huang et al. (1989). 
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A New Expression of the Energy Theorem in Discrete 
Mechanical Systems 

Rene Souchet5 

Recently, Kane and Levinson proposed testing numerical in­
tegrations by a checking function using an expression of the 
energy theorem involving the well-known Hamiltonian func­
tion. This paper deals with a new expression of this energy 
theorem that gives an alternative to the Kane-Levinson check­
ing function. 

1 Introduction 
Kane and Levinson (1988) proposed to test numerical in­

tegrations of equations of motion of discrete mechanical sys­
tems by using the checking function C defined as: 

C=H+Z, H=V+K-,-Kn. (1) 

In this formula, Kis a potential function for given forces, 
K2 and K0 are the usual homogeneous parts of the kinetic energy 
K, and Z is a function defined by the differential equation: 

Z=f{t, Qu •••, Qm "l up), (2) 

q = (qu ..., q„) being generalized coordinates, and uu ..., up 

(p<n) being generalized velocities (Kane and Levinson, 1985). 
The function/takes into account some nonintegrable parts of 
both kinetic energy and dissipative forces. 

However, it is possible to propose alternatives to the above 
function C. In order to highlight the real behavior of equation 
(1), we now turn to the introductory example given by Kane 
and Levinson (1988). Using the notations of Kane and Levinson 
(1988), we have the energy equation: 

dt dt 
(3) 

where 

V= - mgRcosq!, K2 = -mR2u2, K„ = - mR2tohvaLqi. (4) 

We note that H depends explicitly of /, if Q. is not constant. 
Applying the results of Kane and Levinson (1988), we define 
Zby: 

Z = 
dH dKn „•>„ • . •> 
dt dt 

so that we have 

C=V+K2-K0 + Z. 

Now, if we develop (3), we obtain: 

d 

(5) 

(6) 

dt 
V+K2)-mR2QQsm2ql 

- mR2Q2 QiSinqiCosqi + /n^QQsin2^ = 0 

where two terms cancel out. Therefore, we can define a func­
tion Z] by 
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so that 

Zi= —mR fl Uisinq[COsqi, ui = ql, 

C, = V+Ki + Z, 

(7) 

(8) 
is the new checking function. 

It is the purpose of this paper to show how one can directly 
obtain the functions Z\ in general cases. In order to perform 
this work, it is necessary to briefly survey the main features 
of the dynamics of nonholonomic systems for both funda­
mental and technical' reasons. 

2 Kinematics 
We consider a dynamical system E, containing rigid bodies 

Sa, a=l,...,A, whose configuration in a reference frame 
N= [0;xiX2X3) can be specified by coordinates q={qr\ 
r=\,...,n}: 

OP=F(t,q(t),PD) (9) 

where P0 is the initial position of the particle actually situated 
in P. The velocity v of particle P in N is defined as: 

frfdqr dt 

„ » - Y V f l tfl-— tf- — 

(10) 

(11) 

where ifir and ift are functions of t, q, and P, and are referred 
to as the holonomic partial velocities of P in N. 

Following Kane's scheme (Kane and Levinson, 1985), we 
introduce generalized speeds ur, r= \,...n, in such a way that: 

n 

qs=^£1Wsrur + Xs,s=\ n (12) 

where Wsr and Xs are functions of / and q. Then we can write: 

v(P) = v" + v"„ v"=J]v"run (13) 
r = l 

where it is possible to have v" and v", from (11). 
Now we suppose that E is a nonholonomic system, subject 

to (n-p) constraints expressed as: 
p 

uk=Y^Akrur + Bk, k=p+l,...,n, (14) 
r = l 

where Akr and Bk are functions of t and q. Among the relations 
(14), we have some motion constraints, i.e., some restrictions 
imposed on the positions and the velocities of rigid bodies Sa, 
a = 1,... ,A, and the constraints of rigidity for each body of 
the system, i.e., some relations between parameters q\,...,q„ 
when it is made use of hybrid coordinates, e.g., Euler param­
eters, for rigid body motions. Using constraint relations (14), 
we have: 

v(P) = V"+ v,u, V= J] Vr"ur. (15) 

Following Kane (Kane and Levinson, 1985), V" and V," func­
tions of t, q, and P, are referred to as the nonholonomic partial 
velocities of P in N. 

The above decompositions are, of course, applicable to any 
discrete system E. But, when £ is made up of rigid bodies, we 
can write for every particle P of the rigid body S: 

v(P) = v(G)+o>(S) AGP (16) 

where u(S) is the angular velocity of S in N, and G is the mass 
center of S. Now we use the following decomposition: 

p 

o>(S)=Q"(S) + Qu
t(S), Qu(S) = J]Qu

r(S)ur (17) 
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A New Expression of the Energy Theorem in Discrete 
Mechanical Systems 

Rene Souchet5 

Recently, Kane and Levinson proposed testing numerical in­
tegrations by a checking function using an expression of the 
energy theorem involving the well-known Hamiltonian func­
tion. This paper deals with a new expression of this energy 
theorem that gives an alternative to the Kane-Levinson check­
ing function. 

1 Introduction 
Kane and Levinson (1988) proposed to test numerical in­

tegrations of equations of motion of discrete mechanical sys­
tems by using the checking function C defined as: 

C=H+Z, H=V+K-,-Kn. (1) 

In this formula, Kis a potential function for given forces, 
K2 and K0 are the usual homogeneous parts of the kinetic energy 
K, and Z is a function defined by the differential equation: 

Z=f{t, Qu •••, Qm "l up), (2) 

q = (qu ..., q„) being generalized coordinates, and uu ..., up 

(p<n) being generalized velocities (Kane and Levinson, 1985). 
The function/takes into account some nonintegrable parts of 
both kinetic energy and dissipative forces. 

However, it is possible to propose alternatives to the above 
function C. In order to highlight the real behavior of equation 
(1), we now turn to the introductory example given by Kane 
and Levinson (1988). Using the notations of Kane and Levinson 
(1988), we have the energy equation: 

dt dt 
(3) 

where 

V= - mgRcosq!, K2 = -mR2u2, K„ = - mR2tohvaLqi. (4) 

We note that H depends explicitly of /, if Q. is not constant. 
Applying the results of Kane and Levinson (1988), we define 
Zby: 

Z = 
dH dKn „•>„ • . •> 
dt dt 

so that we have 

C=V+K2-K0 + Z. 

Now, if we develop (3), we obtain: 

d 

(5) 

(6) 

dt 
V+K2)-mR2QQsm2ql 

- mR2Q2 QiSinqiCosqi + /n^QQsin2^ = 0 

where two terms cancel out. Therefore, we can define a func­
tion Z] by 
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so that 

Zi= —mR fl Uisinq[COsqi, ui = ql, 

C, = V+Ki + Z, 

(7) 

(8) 
is the new checking function. 

It is the purpose of this paper to show how one can directly 
obtain the functions Z\ in general cases. In order to perform 
this work, it is necessary to briefly survey the main features 
of the dynamics of nonholonomic systems for both funda­
mental and technical' reasons. 

2 Kinematics 
We consider a dynamical system E, containing rigid bodies 

Sa, a=l,...,A, whose configuration in a reference frame 
N= [0;xiX2X3) can be specified by coordinates q={qr\ 
r=\,...,n}: 

OP=F(t,q(t),PD) (9) 

where P0 is the initial position of the particle actually situated 
in P. The velocity v of particle P in N is defined as: 

frfdqr dt 

„ » - Y V f l tfl-— tf- — 

(10) 

(11) 

where ifir and ift are functions of t, q, and P, and are referred 
to as the holonomic partial velocities of P in N. 

Following Kane's scheme (Kane and Levinson, 1985), we 
introduce generalized speeds ur, r= \,...n, in such a way that: 

n 

qs=^£1Wsrur + Xs,s=\ n (12) 

where Wsr and Xs are functions of / and q. Then we can write: 

v(P) = v" + v"„ v"=J]v"run (13) 
r = l 

where it is possible to have v" and v", from (11). 
Now we suppose that E is a nonholonomic system, subject 

to (n-p) constraints expressed as: 
p 

uk=Y^Akrur + Bk, k=p+l,...,n, (14) 
r = l 

where Akr and Bk are functions of t and q. Among the relations 
(14), we have some motion constraints, i.e., some restrictions 
imposed on the positions and the velocities of rigid bodies Sa, 
a = 1,... ,A, and the constraints of rigidity for each body of 
the system, i.e., some relations between parameters q\,...,q„ 
when it is made use of hybrid coordinates, e.g., Euler param­
eters, for rigid body motions. Using constraint relations (14), 
we have: 

v(P) = V"+ v,u, V= J] Vr"ur. (15) 

Following Kane (Kane and Levinson, 1985), V" and V," func­
tions of t, q, and P, are referred to as the nonholonomic partial 
velocities of P in N. 

The above decompositions are, of course, applicable to any 
discrete system E. But, when £ is made up of rigid bodies, we 
can write for every particle P of the rigid body S: 

v(P) = v(G)+o>(S) AGP (16) 

where u(S) is the angular velocity of S in N, and G is the mass 
center of S. Now we use the following decomposition: 

p 

o>(S)=Q"(S) + Qu
t(S), Qu(S) = J]Qu

r(S)ur (17) 
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involving par t ia l angular velocities Q"(S) and Q"(S). Specific f f 
expressions of V" and V," may be found as : 1 ^ ( 0 " t ' i = 1 <$>a)-v2. (28) 

JB JB 

Vr"(P) = Vr
u(G)+Q"r(S)AGP, V,U(P) A s ; t .s k n o w n ) t h e r e l a d o n s ( 2 7 ) a n d p g ) a r e m e a n i n g f u l ) 

= K,"(G) +fi"(S)AGP (18) on ly i f b o t h m t e r n a l a n d external forces, </>(/) and <ft{e) can be 
f h t- I D f c specified. 
to r eacn part icle P o t A. I n fact> k [s u s u a J tQ w d t e ( 2 ? ) a n d ( 2 g ) j n t h g f o l l o w i n g 

3 Kinetics 
equivalent forms when applied t o a mater ia l system E: 

Int roducing mass dis t r ibut ion, we define the resul tant /*(£) . y-Udm= <j>(i)-U+ <j>M-U (29) 
and the m o m e n t ff(E,0): . E E E 

/*(£) = J wftw, a (E ,0 ) = J OPAvdm (19) j <t>m-V=0 (30) 

If the vector u is expressed in terms of un r= 1, ..., p , we w h e r e ^ i s a n arbitrary vector field and Kan arbitrary rigid 
obtain, for /*(E) and CT(E,0), the following expressions: b o dy v e c t o r f ie ld- I n t h e dynamics of rigid bodies , the defi-

p ni t ion of internal forces for each rigid body Sa is no t necessary. 
H(L) = / (E) + n",(L), / (E) = Y\ / ( E K (20) I n f a c t ' equations of motions for E are obtained by choosing 

fr\ in (29) vector fields, U, which are rigid body vector fields on 
each rigid body Sa of E, and the equation (30) expresses the 

a(E,0) = a»(E,0) + ff,"(E,0), o*(E,0) = V „f'(E,0)«r (21) P r ' n d p l e ° f a c t i o n a n d r e a c t i o n f o r e v e r y p a i r ° f s o l i d s <S-

As an example, let us determine the Kane equations without 
multipliers. Taking, for U, the vector field V", we have: with 

tf (E) = J Mm, ffr"(E,0)= \oPAv«dm. (22) f y.v?dm= \ ^ .V»A ^ . v?t r= , p, 
Jr Jv J r 

(31) 

Since^the system E is m a d e up of rigid bodies Sm a = 1, ..., T h e r i g h t . h a n d s i d e o f n o t e d p n t h e i n t e r n a l f o r c e s o f r i g i d 

' ' bodies , and the forces involving constra int relat ions between 
",v\- V> <vc N Mr m _ \ S «/c m , ™ r i g i d b o d i e s a r e noncontributing forces in Fr. The left-hand 

Wh>~ 2 _ A ^ > W " u ; - Z A VoU)- (Zi> side is noted (-Fr). Explicitly, we obtain 
o r = 1 cc= 1 

So it is sufficient to derive formulae when the system is a rigid e*_vf— f<^ vuir\ — /<: r\o»iv\ 
body S. In this case we have the following classical results r ~~ Zjhitfi( "'' ( a + dt° a 

n(S)=mv(G),a(S,G) = I(G)o>(S) (24) " 
where m is the mass of S, G the center of mass, and 1(G) the „. „ „ ,. .„ , . . ,„„„, 
inertia tensor in G Finally, Kane equations are (Kane and Levinson, 1985): 

Next, we recall that the kinetic energy K(L) can be expressed F* + Fr = 0, r = 1,.. . ,p. (33) 
as a sum of homogeneous functions of ur of degrees 2, 1, and I n t h e s e q u e l > a t t e n t i o n i s f o c u s e d o n a n e n e r g y t h e o r e m . 
0; we use the usual form 

K=K2 + Kl+K0 (25) 5 Energy Theorem 
where, of course, we have In order to derive an energy theorem, we take, for U, the 

. » vector field V". We have 
*2(E) = ~ Vu-Vdm,KlW) , „ P 

^ ]7-K"d/» = 2/?«„i.e., 2](^,*+^)«,= 0. (34) 
= J V-Vfdm, K0(L) = | j V?-V?dm. (26) First> 

W h e n E is composed of rigid bodies , we obta in K(L) as the 1 7- V"dm= \ \ — V" + —V"\- Vdm 
sum of the kinetic energy of these rigid bodies . •'E JE \<# <# / 

Finally, in pract ical appl icat ions , we compu t e kinetic energy , , 
K(E) and vector fields [ /ti(E), CT(E,0)); then we obta in the above = — x2 + \ —V"- Vdm. (35) 
decompositions K2, Ku Kot and /x", a"r, /£,, d'„ from K, ft, a, dt JLdt 
by using an identif ication process . N o w w e c a n w r i t e 

4 Equations of Motions V F w = - — + £" (36) 
Classical dynamics is obtained from two main principles in r=\ dt 

a Newtonian reference frame. A first principle asserts that, . w h e r e t h e t e n t i a l f u n c d o n $ d ^ Qn ( md n . 
for every body B , the var ia t ion of the linear m o m e n t u m is due c o n t r i b u t i n g f o r c e s b e l n g t h e s a m e i n t h e K a n e equat ions with-
to bo th internal and external forces, *(/) a n d 0 ( c ) , appl ied to o u £ m u l t i l i e r s . So> w e o b t a i n t h e f o l l o w i n g e n e r g v f o r m u ] a 
B 

d_ 
dt 

vdm=\ </>(,)+ (A,,,,. (27) 
•>B •'B JB j t \K2(Z) + * ) - £ + j jtVt

u-V"dm = Q (37) 

A second principle asserts that, for every body B, the power 
of internal forces <j>{i) does not depend on reference frames, In applications, we must be able to derive easily the integral 
i.e., complementary term in (37). But we have 
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\Jty"-V^=±[iv"-VU^ (38) 
^ or = 1 °a 

So it is sufficient to derive formula for a rigid body S, Again, 
as in expressing the Kane equations we use the velocity field 
of S, by introducing the angular velocity. So we obtain 

[iv"-VUdm4v'U(G)\VUdm+j^S) 

• \ GPAVudm + U,u(S) • \ (u(S)AGP)AVudm. (39) 

The last term can be evaluated in the following manner: 

0,"(S)- ( (u(S)AGP)AVudm 

= 0,"(S)- I (o)(S)AGP)A(au(S)AGP)dm 

= fi,"(S)- \ {Qt
u(S)AGP)A(W(S)AGP)dm 

= -f i ,"(S)- f [Qt
u(S)AGP)-W(S)]GPdm 

= Q,"(S) • f [(Q,"AQ") -GP]GPdm 

= -fi,"(S) • {I(S,G) (Q,"AQ") j . 

So, we have 

Finally, we apply the energy formula to the second example 
of Kane and Levinson (1988). For the sake of brevity, we refer 
to the same notations and we only explicitly show the two 
following results: 

J d 2 

— V," • V'dm =-Mr(L + q4)Q
2u2 — M r ( L + q4)Q

2u2 
Bdt 5 

= --Mr(L + q4)Q.u2 

— (K2+V)--Mr(L + q4)Q
2u2 + 5{(ul-Q)ul + u2}=0. 

(44) 

Now, following Kane and Levinson (1988), we define a func­
tion Z\ of t that satisfies the differential equation 

7 
Zl = Sl(ui-Q)ui + ul}--Mr(L + q4)n

2u2. (45) 

Then, we have for the so-called checking function Ct: 

C^^oql + Zy+^MSdid + lul). (46) 

Recalling the results of Kane and Levinson (1985), the above 
authors define the function Z by: 

Z = dl(ui-Q)ul + u2}+-MQQ(L + q4)
2 

so that the checking function C is 

(47) 

I at 

+—a 
dt 

Vdm 

«"(S)-

= ^V,u(G)-,xu(S) 
dt 

?"(S,G) -(Qr"AGB) <y<" (S,G) 
(40) 

It is noteworthy that the above expressions can be easily ob­
tained from earlier calculations used in writing the Kane equa­
tions (33). 

However, a different, more classical expression of the above 
energy formula can be given (Kane and Levinson, 1985) in­
volving the difference [K2 — K0). In fact, we have: 

ljtv'-vudm-f^+\Xiv")-vdm-
Applying the same procedure as before, we easily obtain for 

a rigid body(S): 

jVt"-Vudm=-^-K0 + ^Vl
u(G)-^S) 

sdt dt dt 

+ jtQt"(S)-cj(S,G). (41) 

Understanding the method used in showing this last formula 
(41) it appears that we have introduced supplementary terms: 
In practical applications these terms must disappear, as it was 
seen in the introductory example. 

6 Examples 

Next, we return to the introductory example. Since P is a 
simple particle, we have only 

m—V,"- V= -mR2Q2qiSmqiCOsqi. (42) 
dt 

So, the energy formula has directly the simplified form 

— \-mR2q2 + mgRcosqi j -zwi^Q^sin^cosi?! = 0. (43) 

C=^aq\ + Z+^Mr2(2i^ + lu2
2)-^MQ2(L + q,)2. (48) 

7 Conclusion 
In order to test numerical integrations, Kane and Levinson 

have proposed an excellent method using a checking function 
that is obtained via the energy theorem. This function is ob­
viously nonunique, because it involves some decomposition of 
the energy theorem. In this paper we have proposed to use a 
new form of this energy theorem, inducing an alternative 
checking function. Finally, we note that our alternative may 
be of theoretical interest, and that the question of the supe­
riority of these checking functions is open. 
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\Jty"-V^=±[iv"-VU^ (38) 
^ or = 1 °a 

So it is sufficient to derive formula for a rigid body S, Again, 
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[iv"-VUdm4v'U(G)\VUdm+j^S) 
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the rotation of the local coordinate system along the crack 
front in order to calculate modes II and III stress intensity 
factors consistent with their conventional definitions and to 
reexamine and modify the twisting component of the line spring 
model, so that for long cracks, the corresponding plane strain 
results are recovered. A detailed discussion of these questions 
may be found in a recent study (Joseph and Erdogan, 1990) 
where the mixed-mode surface crack problem was considered 
for a flat plate, and the results were compared with the existing 
numerical solutions given by Sorensen and Smith (1977), Si­
mon, O'Donoghue and Atluri (1987), and Nikishkov and At-
luri (1987). It was shown that the results given by the line 
spring model for mixed-mode problems are nearly as accurate 
as the similar results found for mode I problems. In this Note, 
after briefly discussing the two questions mentioned, the mod­
ified results are presented which should replace Figs. 6 and 7 
and Tables 3-7 in the study on shells (Joseph and Erdogan, 
1988). 

Crack Front Curvature 

Unlike the mode I problem, the three-dimensional modes II 
and III crack problems are always coupled. For example, in 
a plate containing a surface crack of finite length 2a and con­
stant depth L and subjected to in-plane shear loading Nxy, even 
though the primary mode of deformation along the crack front 
z = constant is mode III and y = constant mode II, yz being the 
plane of the crack, the stress intensity factors corresponding 
to the secondary modes {k2 along z = constant and k3 along 
y = constant) are not zero (see Figs. 10-12, Joseph and Er­
dogan, 1990). Similarly, for a semi-elliptic surface crack the 
primary stress intensity factor would be k3 in the central portion 
of the crack and k2 near the ends. It is in the nature of the 
line spring model that the "stress intensity factors" k2 and k3 

are introduced into the model in the xz-plam, x being the 
coordinate perpendicular to the plane of the crack. Conse­
quently, these are the stress intensity factors calculated from 
the model, and are the ones given by Joseph and Erdogan 
(1988) for shells. On the other hand, the conventional defi­
nition of the stress intensity factors refer to the local coordinate 
system x',y',z' at the crack front with x' = x and y' and z' 
being, respectively, tangent and normal to the crack front. 
Thus, the physically relevant stress intensity factors k{, k2, 
and ki may be expressed in terms of k\, k2, and k3 given by 
the line spring model (Joseph and Erdogan, 1988) as follows: 

k{=ku 

k{ = £2cos(0) - Ar3sin(0), 

k{ = &2sin(0) + &3cos(0), (l«-c) 

where 6 is the angle between z, the normal to the plate and z' 
the normal to the crack front. 

Plane-Strain Result 
In three-dimensional planar surface crack problems, under 

various uniform loading conditions, it is expected that as the 
aspect ratio a/L (or for a fixed L/h, a/h) becomes unbounded, 
a and L being the half crack length and the crack depth, the 
stress intensity factors in the center part of the crack would 
approach the corresponding plane-strain and antiplane shear 
results. Applying the line spring model to surface crack prob­
lems in plates under mode I and mixed-mode loading condi­
tions, these two-dimensional elasticity limits seem to be 
recovered for all uniform loading, except the twisting moment. 
In preparing the paper on plates (Joseph and Erdogan, 1990) 
this was brought to our attention by the reviewers, and it was 
pointed out that similar difficulties were also observed by Des-
vaux (1985) in his M.S. Thesis. In shells as well as in plates 
with "long" surface cracks, the resistance to crack opening 
comes primarily from the net ligament forces, which are rep­

resented by the "line spring" terms in the integral equations. 
These are the algebraic terms having the coefficients ytj in 
equations (32)-(34) describing the shell problem (Joseph and 
Erdogan, 1988). There are also two secondary sources of re­
sistance. One is the clamping effect of the crack ends. In all 
cases this effect reduces to zero as h/a-~0. The second is the 
effect of the local plate or shell stiffness which, for h/a-~Q 
approaches zero in all cases except for twisting. For small 
values of h/a, the Reissner theory predicts resistance of the 
same order coming from the line spring terms and from twisting 
stiffness. Note that for the classical plate theory, this resistance 
is infinitely large. As h/a^0 the two effects are combined, 
and consequently, the plane-strain results are not recovered. 
The Reissner plate theory appears to be too stiff in twisting 
for the line spring model to work. Therefore, an adjustment 
in the plate or the shell theory is necessary in the limit to make 
the line spring model compatible with the plane-strain results. 

As pointed out by Joseph and Erdogan (1990), for long 
cracks the twisting kernel k55 in the shell formulation (equation 
(34), Joseph and Erdogan, 1988) behaves like a delta function. 
Since this behavior is independent of the shell curvature, the 
result is the same as in plates, and for ft/a—0, it can be shown 
that 

i r 
l m — \ 
h-co % J_„ 
lim 

a/h 
k5i{z)gi{t2)dt2 = 

-VTO \ &(x2~ t2)gs(h)dt2=-*JT0g5(x2) (2) 

where g5 is the relative crack surface rotation in the .yz-plane. 
Referring now to the integral equation (34c) associated with 
twisting, namely 

J_ f 
24ir J_ 

g£h) 
^At2-x2)

2^'s,\Rl'R2j j_e(f2-*2r" 

i 5 c° 
+ ~ 2 k5i(x2,t2)gi(t2)dt2 

1 
7T/!(1 - V2) 

Y54£4(*2) + 754 — g a t e ) + 755 7 Ss(.x2) 
K2 0 

- 1 
6E 

a5,{-a<x2<a), (3) 

and noting that all terms in (3) are normalized "force" quan­
tities, from (2) and (3) it is seen that for h/a~0 the term 
involving k55 approaches a force quantity that is independent 
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Fig. 1 The variation of the primary (mode III) and the secondary (mode 
II) stress intensity factors ki and fc2', along the crack front for a semi-
elliptic surface crack on the outside of a cylinder subjected to membrane 

shear loading N12; p = 0.3, fl/h = 10, a//i=1 
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Table 1 Normalized stress intensity factor k3(0)lk3l at the center of a 
semi-elliptic surface crack in a cylindrical shell under in-plane shear 

loading N,2; p = 0.3 

a / h - l a / h - 4 

R /h 
L / h 0 . 2 0 . 4 0 . 6 0 . 8 0 . 9 5 0 . 2 0 . 4 0 . 6 0 . 8 0 . 9 5 

Outer axial crack 

5 
10 
20 
50 

- .«> 

.928 

.930 

.930 

. 9 3 1 

.932 

.793 

.795 

.796 

.797 

.799 

.639 

.639 

.640 

. 6 4 1 

.642 

.456 

. 453 

.452 

.452 

.452 

.267 

.264 

.262 

. 2 6 1 

.260 

.986 

.989 

.990 

. 9 9 1 

. 993 

.952 

.952 

.954 

.956 

.959 

887 
883 
882 
883 
886 

.779 

.767 

. 7 6 1 

.757 

.756 

.608 

.589 

.578 

.570 

.565 

5 
10 
20 
50 

-» 

.936 

.934 

.933 

.932 

.932 

809 
805 
802 
800 
799 

.655 

.649 

.646 

.644 

.642 

I n n e r 

. 461 

.457 

.455 

.453 

.452 

a x i a l 

.264 

.262 

. 2 6 1 

. 2 6 1 

.260 

c r a c k 

.997 

.996 

.995 

. 994 

. 993 

.977 

.972 

.968 

.964 

.959 

. 9 2 1 

. 9 1 1 

.903 

.895 

.886 

.805 

.789 

.777 

.767 

.756 

.610 

. 594 

.582 

.573 

.565 

5 
10 
20 
50 
- K O 

.928 

.929 

. 930 

. 9 3 1 

.932 

. 7 9 1 

.794 

.796 

.797 

.799 

O u t e r 

.637 

.638 

. 639 

. 6 4 1 

.642 

c i r c u m f e r e n t i a l c r a c k 

.456 .269 

.453 .264 

.452 . 262 

.452 . 2 6 1 

.452 .260 

.987 .948 

.988 .949 

.989 . 9 5 1 

. 9 9 1 .955 

.993 .959 

884 
879 
879 
881 
886 

.786 

.768 

.759 

.756 

.756 

. 630 

.597 

. 580 
.570 
.565 

5 
10 
20 
50 
-+OD 

.937 

.935 

.933 

.933 

.932 

. 8 1 1 

.806 

.803 

. 8 0 1 

.799 

I n n e r 

.658 

. 6 5 1 

.647 

. 644 

.642 

c i r c u m f e r e n t i a l c r a c k 

.464 .265 

.458 .262 

.455 . 2 6 1 

.453 . 2 6 1 

.452 .260 

1 .000 .986 
.998 .978 
.996 . 971 
.995 .966 
.993 .959 

.939 

.920 

.907 

.897 

.886 

.829 

.800 

.782 

.768 

.756 

.633 

.602 

.585 

. 574 

.565 

Table 3 Normalized stress intensity factor k2{0)lk20 at the center of a 
semi-elliptic surface crack in a cylindrical shell under transverse shear 

loading V,; p = 0.3, R//i = 10 

L /h 
a /h 

0 .2 0 .4 0.6 0.8 

Outer axial crack 

Inner axial crack 

0.95 

0.5 
1 
2 
4 

.988 

.996 

.999 
1.000 

.883 

.953 

.986 

.997 

.685 

.851 

.951 

.988 

.467 

.693 

.878 

.966 

.277 

.487 

.726 

.893 

0 .5 
1 
2 
4 

0 .5 
1 
2 
4 

0 .5 
1 
2 
4 

.988 

.996 

.999 
1.000 

883 
954 
986 
997 

Outer circum 

.988 

.996 

.999 
1.000 

883 
953 
985 
995 

Inner circum 

.988 

.996 

.999 
1.000 

883 
953 
986 
996 

.685 

.852 

.952 

.990 

f e r e n t i a l 

.684 

.849 

.947 

.982 

f e r e n t i a l 

.685 

.851 

.951 

.986 

.467 

.694 

.881 

.971 

c rack 

.466 

.689 

.867 

.949 

c rack 

.466 

.693 

.878 

.963 

.277 

.489 

.731 

.901 

.277 

.483 

.711 

.863 

.277 

.487 

.726 

.888 

Table 2 Normalized stress intensity factor k3{0)lk3, at the center of a 
semi-elliptic surface crack in a cylindrical shell under in-plane shear 

00 OO 

loading N12 and twisting moment M,2; e = 0.3, R/h = 10 

In-Plane Shear Twisting 

L / h 

a/h ° 

0 . 5 
1 
2 
4 

0 . 5 
1 
2 
4 

0 . 5 
1 
2 
4 

0 . 5 
1 
2 
4 

0 . 2 

843 
930 
973 
989 

845 
934 
979 
996 

842 
929 
972 
988 

845 
935 
980 
998 

0 . 4 

. 6 4 1 

. 7 9 5 

. 8 9 8 

. 9 5 2 

. 6 4 5 

. 8 0 5 

. 9 1 6 

. 9 7 2 

. 6 4 1 

. 7 9 4 

. 8 9 6 

. 9 4 9 

. 6 4 6 

. 8 0 6 

. 9 1 9 

. 9 7 8 

0 . 6 

. 4 7 8 

. 6 3 9 

. 7 8 3 

. 8 8 3 

. 4 8 2 

. 6 4 9 

. 8 0 4 

. 9 1 1 

O u t e r 

. 4 7 8 

. 6 3 8 

. 7 8 0 

. 8 7 9 

I n n e r 

. 4 8 2 

. 6 5 1 

. 8 0 8 

. 9 2 0 

0 . 8 

O u t e r 

. 3 1 1 

. 4 5 3 

. 6 1 7 

. 7 6 7 

I n n e r 

. 3 1 1 

. 4 5 7 

. 6 2 9 

. 7 8 9 

0 . 9 5 

a x i a l 

. 1 5 9 

. 2 6 4 

. 4 1 4 

. 5 8 9 

a x i a l 

. 1 5 8 

. 2 6 2 

. 4 1 4 

. 5 9 4 

c i r c u m f e r e i 

. 3 1 1 

. 4 5 3 

. 6 1 6 

. 7 6 8 

. 1 6 0 

. 2 6 4 

. 4 1 6 

. 5 9 7 

c i r c u m f e r e i 

. 3 1 2 

. 4 5 8 

. 6 3 3 

. 8 0 0 

. 1 5 8 

. 2 6 2 

. 4 1 5 

. 6 0 2 

0 . 2 

c r a c k 

. 8 3 0 

. 9 2 5 

. 9 7 1 

. 9 8 9 

c r a c k 

. 8 3 3 

. 9 3 0 

. 9 7 9 

. 9 9 6 

0 . 4 

. 5 4 4 

. 7 4 7 

. 8 7 8 

. 9 4 4 

. 5 5 0 

. 7 6 1 

. 9 0 2 

. 9 7 1 

i t i a l c r a c k 

. 8 3 0 

. 9 2 5 

. 9 7 0 

. 9 8 7 

. 5 4 4 

. 7 4 5 

. 8 7 5 

. 9 3 9 

i t i a l c r a c k 

. 8 3 3 

. 9 3 1 

. 9 8 0 

. 9 9 8 

. 5 5 1 

. 7 6 3 

. 9 0 6 

. 9 7 8 

0 . 6 

. 1 3 0 

. 4 1 3 

. 6 6 2 

. 8 2 5 

. 1 3 7 

. 4 3 5 

. 7 0 5 

. 8 8 0 

. 1 3 0 

. 4 1 1 

. 6 5 6 

. 8 1 7 

. 1 3 8 

. 4 3 8 

. 7 1 4 

. 8 9 8 

0 . 8 

. 9 4 2 

. 5 8 8 

. 0 7 9 

. 3 9 4 

. 9 3 5 

. 5 6 1 

. 0 0 6 

. 5 0 3 

. 9 4 2 

. 5 9 1 

. 0 8 6 

. 3 8 8 

. 9 3 4 

. 5 5 5 

. 0 1 4 

. 5 5 7 

of the crack length rather than vanishing, and is of the same 
order as the line spring terms, ysjgj, (J = 4,5). In order to remove 
this inconsistency, which is due to the "plate" or "shell" 
approximation in (3), the delta function has to be subtracted 
from the kernel kS5 giving 

1 
24TT 

gsfe) 
dt2 + 

v2-x2y 
1 5 r° 

h_ /_1_ _3\ f 
lit [R^RJ J_a 

g3fo) 
(h-x2) 

dt2 

k$i (x2,t2)gi (t2)dt2 + sjl0g5(x2) 

Table 4 Normalized stress 
semi-elliptic surface crack in 

loading N12; c = 0.3., fl//7 = 10, 
1988) 

intensity factor k3{0)lk3l at the center of a 
a toroidal shell subjected to in-plane shear 

a/h = 1 (see Fig. 8 of Joseph and Erdogan, 

R . / R - l R. /R-» 

L / h 0 .2 0 .4 0 .6 0 .8 0 .95 0 .2 0 .4 0 .6 0 . 8 0 .95 

Crack 
P o s i t i o n 

A 

B 

C 

D 

i n n e r 
o u t e r 

i n n e r 
o u t e r 

i n n e r 
o u t e r 

i n n e r 
o u t e r 

.935 

.929 

.935 

.929 

.932 

.931 

.931 

.932 

.808 

.793 

.807 

.793 

.801 

.799 

.799 

.801 

.653 

.638 

.652 

.638 

.645 

.643 

.643 

.645 

.459 

.454 

.459 

.454 

.455 

.454 

.454 

.455 

.263 

.266 

.263 

.265 

.262 

.263 

.263 

.262 

.935 

.929 

.934 

.930 

.935 

.929 

.934 

.930 

806 
794 

805 
795 

806 
794 

805 
795 

.651 

.638 

.649 

.639 

.651 

.638 

.649 

.639 

.458 

.453 

.457 

.453 

.458 

.453 

.457 

.453 

.262 

.264 

.262 

.264 

.262 

.264 

.262 

.264 

1 
irh(l - v) 

x2 h 
754d?4te) + 754 T" g3(*2) + 755 7 Ss(.X2) 

R2 b 

- 1 

6£ 
<75, {-a<x2<d). (4) 

Thus, (4) should replace (34c) in the system of shell equations 
given by Joseph and Erdogan (1988). 

Results 

Modes II and III stress intensity factors k2 and k{ given in 
this Note are obtained by solving the integral equations (34a,b) 
and (4) and by using the transformation (1). Thus, Fig. 1 given 
in this Note should replace Figs. 6 and 7, and Tables 1-5 should 
replace Tables 3-7, respectively. In these results, too, the nor­
malizing stress intensity factors kir and k20 are the correspond­
ing two-dimensional elasticity results for a plate containing an 
edge crack under in-plane shear N^2 and transverse shear Vf, 
respectively. 
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Table 5 Normalized stress intensity factors k3(0)//«3, and k2(O)lk20 at the 
center of a semi-elliptic surface crack in a toroidal shell subjected to 

CO CO 

in-plane shear loading W12 and transverse shear I/, loading; i' = 0.3., W 
h = 10, a/h = 2, crack position A (see Fig. 8 of Joseph and Erdogan, 1988) 

Crack 
Position 

outer 

inner 

outer 

inner 

L /h 
0 

R./R 
l 

1 
4 
7 

->O0 

1 
4 
7 

~>00 

1 
4 
7 

-*CO 

1 
4 
7 

-+00 

0.2 

In-PL 

.971 

.971 

.972 

.972 

.981 

.981 

.980 

.980 

0.4 

ane Sh 

.895 

.896 

.896 

.896 

.921 

.920 

.919 

.919 

Transverse 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.985 

.985 

.985 

.985 

.986 

.986 

.986 

.986 

0.6 

CO 

ear N _ 

.780 

.780 

.780 

.780 

.813 

.811 

.810 

.808 

Shear V 

.946 

.946 

.946 

.947 

.951 

.951 

.951 

.951 

0.8 0.95 

: k3(0)/k3I 

.618 

.617 

.617 

.616 

.638 

.636 

.635 

.633 

1: k2 
.866 
.867 
.867 
.867 
.878 
.878 
.878 
.878 

.420 

.418 

.417 

.416 

.419 

.417 

.416 

.415 

(0)/k20 

.710 

.710 

.711 

.711 

.726 

.726 

.726 

.726 
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Eigenfunction Expansion for Creeping Flow in a 
Partially Obstructed Flow 

P. Luchini,9'11 A. Pozzi,10'11 and A. R. Teodori12 

1 The Problem and its Eigenfunctions 
We wish to show how an eigenfunction expansion similar 

to that used by Joseph (1977, 1978) and Scarpi (1981) for 
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creeping flow in a plane duct can be constructed for the case 
of a duct partially filled by a porous medium. We consider a 
two-dimensional duct of unit width in which the porous ma­
terial occupies the region h<y< 1, y being the transverse co-

- ordinate. We assume flow in this region to be ruled by the 
Darcy equation /xV = - K grad p (fi being the viscosity of the 
fluid, V andp its velocity and pressure, and Kthe permeability 
of the porous matrix). Although better approximations in­
volving higher derivatives of velocity could be considered (for 
instance, the second-order equation of Brinkman 1947), the 
consistent coupling conditions with the free flow region would 
then involve a considerable number of phenomenological coef­
ficients which can hardly be expected to be known in practice, 
as discussed in some detail by Saffman (1971). 

Insofar as the analysis is restricted to the Darcy approxi­
mation, the coupling conditions between the flow in the porous 
matrix and that in the free region may be formulated as the 
continuity of pressure and the two components of velocity. 
The problem is thus stated through the following equations 
and boundary conditions: 

ux(x, 0) = 0, »,(*, 0) = 0 (y = 0) (1) 

/xAjV^gradpi (fl<y<h) (2) 

Vi(x, K) = V2(JC, h), Pl(x, h) =p2{x, h) (y = h) (3) 

,xV 2 =-i :grad^ 2 (h<y<l) (4) 

v2(x,l) = 0 (y=l). (5) 

It must be noted that the pressure coupling condition does not 
include viscous stresses as it would, for instance, at the interface 
between different fluids, because viscous stresses are of the 
same order of magnitude as the higher-order interactions of 
the fluid with the porous matrix that are neglected in the Darcy 
approximation. Pressure may be eliminated from equations 
(l)-(5) by introducing the streamfunctions fa and fa and the 
vorticity oiu which turn out to satisfy the equations A ^ = 
COL A2oi = 0, and A2^2 = 0. The pressure coupling condition 
aty = h then becomes dfa/dy = -Kdoii/dy, the other bound­
ary conditions being straightforward. 

Having coefficients independent of x, the coupled system 
of equations (l)-(5) admits separable complex eigenfunctions, 
just as the uncoupled Stokes problem does, in which each 
unknown is proportional to ev, for a suitable set of complex 
eigenvalues for s„. Inserting the expressions i/-,- = Yit„{y)eSnX 

(/ = 1, 2) and ui = Un(y)eSnX into the equations and boundary 
conditions, we obtain a linear homogeneous system of ordinary 
differential equations whose solution turns out to be given by 

Q„ = 2s„cos s„ y+A, _„ 5^sin s„ y (6) 

Fi,„=^sin s„y+Au„(sm s„y-s„ycos s„y) (7) 

Y2,„=A2,„sm[s„(l-y)] (8) 

wherey4i,„ = N/D,A2,„ = [(S-wC)N+ hSD]/[Dsm(s„-w)], 
N = IKsfySS - s„hC,D = ^(hS + 2KCs„), S = sin w, C = 
cos w and w - s„h. 

The compatability condition of the homogeneous system, 
that is the dispersion equation that determines the eigenvalues 
s„, is 

snN{ wS sin[s„(l - h)] + (S- wQcos[s„(l - h)\} 

+ DI(S + wQsin[sn(l -h)] + wScos[s„(l -h)}}=0 (9) 

2 Series Expansion of Initial Conditions 
The problems of flow in a semi-infinite, partially obstructed 

duct with suitable initial conditions and flow in a finite duct 
section with conditions at both ends can be solved by an ex­
pansion in series of eigenfunctions, if it turns out possible to 
represent the initial or boundary conditions as such an expan­
sion. This is a well-known procedure for self-adjoint problems; 
it has been also shown to work for the Stokes problem, not 
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Table 5 Normalized stress intensity factors k3(0)//«3, and k2(O)lk20 at the 
center of a semi-elliptic surface crack in a toroidal shell subjected to 

CO CO 

in-plane shear loading W12 and transverse shear I/, loading; i' = 0.3., W 
h = 10, a/h = 2, crack position A (see Fig. 8 of Joseph and Erdogan, 1988) 

Crack 
Position 

outer 

inner 

outer 

inner 

L /h 
0 

R./R 
l 

1 
4 
7 

->O0 

1 
4 
7 

~>00 

1 
4 
7 

-*CO 

1 
4 
7 

-+00 

0.2 

In-PL 

.971 

.971 

.972 

.972 

.981 

.981 

.980 

.980 

0.4 

ane Sh 

.895 

.896 

.896 

.896 

.921 

.920 

.919 

.919 

Transverse 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.999 

.985 

.985 

.985 

.985 

.986 

.986 

.986 

.986 

0.6 

CO 

ear N _ 

.780 

.780 

.780 

.780 

.813 

.811 

.810 

.808 

Shear V 

.946 

.946 

.946 

.947 

.951 

.951 

.951 

.951 

0.8 0.95 

: k3(0)/k3I 

.618 

.617 

.617 

.616 

.638 

.636 

.635 

.633 

1: k2 
.866 
.867 
.867 
.867 
.878 
.878 
.878 
.878 

.420 

.418 

.417 

.416 

.419 

.417 

.416 

.415 

(0)/k20 

.710 

.710 

.711 

.711 

.726 

.726 

.726 

.726 
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Eigenfunction Expansion for Creeping Flow in a 
Partially Obstructed Flow 

P. Luchini,9'11 A. Pozzi,10'11 and A. R. Teodori12 

1 The Problem and its Eigenfunctions 
We wish to show how an eigenfunction expansion similar 

to that used by Joseph (1977, 1978) and Scarpi (1981) for 
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creeping flow in a plane duct can be constructed for the case 
of a duct partially filled by a porous medium. We consider a 
two-dimensional duct of unit width in which the porous ma­
terial occupies the region h<y< 1, y being the transverse co-

- ordinate. We assume flow in this region to be ruled by the 
Darcy equation /xV = - K grad p (fi being the viscosity of the 
fluid, V andp its velocity and pressure, and Kthe permeability 
of the porous matrix). Although better approximations in­
volving higher derivatives of velocity could be considered (for 
instance, the second-order equation of Brinkman 1947), the 
consistent coupling conditions with the free flow region would 
then involve a considerable number of phenomenological coef­
ficients which can hardly be expected to be known in practice, 
as discussed in some detail by Saffman (1971). 

Insofar as the analysis is restricted to the Darcy approxi­
mation, the coupling conditions between the flow in the porous 
matrix and that in the free region may be formulated as the 
continuity of pressure and the two components of velocity. 
The problem is thus stated through the following equations 
and boundary conditions: 

ux(x, 0) = 0, »,(*, 0) = 0 (y = 0) (1) 

/xAjV^gradpi (fl<y<h) (2) 

Vi(x, K) = V2(JC, h), Pl(x, h) =p2{x, h) (y = h) (3) 

,xV 2 =-i :grad^ 2 (h<y<l) (4) 

v2(x,l) = 0 (y=l). (5) 

It must be noted that the pressure coupling condition does not 
include viscous stresses as it would, for instance, at the interface 
between different fluids, because viscous stresses are of the 
same order of magnitude as the higher-order interactions of 
the fluid with the porous matrix that are neglected in the Darcy 
approximation. Pressure may be eliminated from equations 
(l)-(5) by introducing the streamfunctions fa and fa and the 
vorticity oiu which turn out to satisfy the equations A ^ = 
COL A2oi = 0, and A2^2 = 0. The pressure coupling condition 
aty = h then becomes dfa/dy = -Kdoii/dy, the other bound­
ary conditions being straightforward. 

Having coefficients independent of x, the coupled system 
of equations (l)-(5) admits separable complex eigenfunctions, 
just as the uncoupled Stokes problem does, in which each 
unknown is proportional to ev, for a suitable set of complex 
eigenvalues for s„. Inserting the expressions i/-,- = Yit„{y)eSnX 

(/ = 1, 2) and ui = Un(y)eSnX into the equations and boundary 
conditions, we obtain a linear homogeneous system of ordinary 
differential equations whose solution turns out to be given by 

Q„ = 2s„cos s„ y+A, _„ 5^sin s„ y (6) 

Fi,„=^sin s„y+Au„(sm s„y-s„ycos s„y) (7) 

Y2,„=A2,„sm[s„(l-y)] (8) 

wherey4i,„ = N/D,A2,„ = [(S-wC)N+ hSD]/[Dsm(s„-w)], 
N = IKsfySS - s„hC,D = ^(hS + 2KCs„), S = sin w, C = 
cos w and w - s„h. 

The compatability condition of the homogeneous system, 
that is the dispersion equation that determines the eigenvalues 
s„, is 

snN{ wS sin[s„(l - h)] + (S- wQcos[s„(l - h)\} 

+ DI(S + wQsin[sn(l -h)] + wScos[s„(l -h)}}=0 (9) 

2 Series Expansion of Initial Conditions 
The problems of flow in a semi-infinite, partially obstructed 

duct with suitable initial conditions and flow in a finite duct 
section with conditions at both ends can be solved by an ex­
pansion in series of eigenfunctions, if it turns out possible to 
represent the initial or boundary conditions as such an expan­
sion. This is a well-known procedure for self-adjoint problems; 
it has been also shown to work for the Stokes problem, not 
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self-adjoint under the usual L2 scalar product, by introducing 
an ad hoc scalar product mediated by a suitable 2x2 matrix 
which makes the problem self-adjoint (Joseph 1977, 1978). 

For the nonself-adjoint problem considered in this paper, 
we may apply the general procedure adopted by Van Kampen 
(1955) for microwave problems, which consists of explicitly 
determining the adjoint eigenfunctions, through the resolution 
of the adjoint system of differential equations, and then cal­
culating the coefficients of the expansion from the scalar prod­
uct of these adjoint eigenfunctions with the given initial 
conditions. Although the completeness of the eigenfunction 
expansion is not guaranteed for nonself-adjoint problems, and 
from a mathematical point of view needs to be proved case 
by case, we shall assume, without proof, that such an expansion 
exists for a physically significant problem like the one we are 
considering. 

The solution of the adjoint system of differential equations, 
whose derivation we do not have enough space to discuss here, 
gives the three functions 

n„ = ̂ i,„(sin s„y-s„y cos s„y) + Bny sin s„y (10) 
Yu„ = 2sn(Alt„ sin s„y + B„cos sny) (11) 

Y2,„ = A2:nsms„(l-y) (12) 
where J,,,, = -[(S+wQ cos Cs„-w)]/.si 4̂2,« = 2(CS+w) 
and B„ = hS cos (s„ - w). By construction these functions have 
the property that their scalar product with the eigenfunctions 
defined as 

[ (YUnYUm + QMdy + \ Y2,„Y2,mdy 

is zero whenever m ^ n. Therefore, once it is assumed that 
an eigenfunction expansion exists, its nth coefficient can be 
simply determined by scalarly multiplying the initial conditions 
by the nth adjoint eigenfunction and dividing the result by the 
scalar product of the wth eigenfunction times its adjoint. 

3 Test Results 
The problem of flow in a partially obstructed duct, as stated 

previously, is characterized by the two parameters h and K, 
both of which have been nondimensionalized with respect to 
the duct width which thus becomes unity. We have calculated 
the 30 smallest eigenvalues, by solving equation (9) numerically 
by Newton iteration, and solved a test initial-value problem 
in the three cases h = 0.4, K = 1; h = 0.4, K = 0.1, and h 
= 1, K = 0, the last of which represents the already studied 
case of flow in a free duct. The eigenvalues turn out to be 
partly real and partly complex, which is not surprising since 
of the two problems (Laplace and biharmonic equation) of 
which we consider the coupling one has real and the other 
complex eigenvalues. The initial conditions assumed in the test 
were \j/(x, 0) = sin 27ry and w(x, 0) = 0. In all three cases the 
error in the representation of the initial conditions by the 
eigenfunction expansion decreases consistently with increasing 
number of terms, thus confirming the assumption that such a 
representation exists. Some caution is needed, however, as 
already noted by Joseph (1977, 1978) in connection with the 
free-flow problem, in dealing with the expansion for vorticity, 
which does not turn out to be converging in the ordinary sense 
at x = 0. This difficulty is easily circumvented, mathematically, 
by first summing the series for x nonzero and then letting x 
tend to zero; numerically, by summing the series for a nonzero 
x which is chosen smaller and smaller with increasing number 
of terms. The error in the streamfunction, whose convergence 
is on the contrary uniform, was of the order of a few percent 
with ten terms and decreased to 1-2 percent with 30 terms in 
the expansion. 

We acknowledge the support of the Italian Ministry of Public 
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Dynamic Response and Buckling Failure Measures for 
Structures With Bounded and Random Imperfections 

H. E. Llndberg13 

Comparisons between an unknown-but-bounded imperfection 
model and a random imperfection model show that for simple 
pointwise failure measures, at least, the two models give the 
same expressions for their measures of response, but each 
measure has a distinctly different interpretation. The former 
gives the maximum possible response for any imperfection 
within a specified bound. The latter gives the standard devia­
tion of response, which, together with the statistical distri­
bution, can be used to specify the maximum response at a 
specified confidence level. However, since the statistical dis­
tributions of imperfections, and hence of the response are often 
unknown, confidence levels are difficult to define, especially 
in the tail of the distribution at high confidence levels. The 
unknown-but-bounded model requires less information about 
the imperfections to come to a well-defined bound on response. 
It is further shown that, while the maximum possible response 
might seem to be a severe failure avoidance criterion, it can 
be less constricting than having to impose artificially high 
confidence levels with poorly known statistical distributions. 

1 Introduction 
An unknown-but-bounded imperfection model was intro­

duced by Ben-Haim and Elishakoff (1989b) for the study of 
dynamic response and failure of structures under pulsed par­
ametric loading, in particular for elastic bars under dynamic 
axial loads. Imperfections were taken as a series of N terms 
of the natural vibration (and buckling) mode shapes of the 
structure, with coefficients A„ specified to be bounded by an 
ellipsoid in A'-dimensional Euclidean space. Failure was de­
fined by several measures of response, including deflection of 
the bar at a particular position and time, the spatial integral 
of the deflection at a particular time, and the spatial integral 
of the square of the deflection. For each measure of failure, 
a formula was derived for the maximum possible response for 
any imperfection vector A within or on the ellipsoid. This work 
was a sequel to an earlier application of the method to im­
perfection sensitivity in static buckling (Ben-Haim and Elis­
hakoff, 1989a) based on an approach developed in the field 
of estimation and control (Schweppe, 1973). These are all 
examples of convex modeling, a general set-theoretical ap­
proach to representing uncertainty, described more completely 
in Ben-Haim and Elishakoff (1990). 
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For the nonself-adjoint problem considered in this paper, 
we may apply the general procedure adopted by Van Kampen 
(1955) for microwave problems, which consists of explicitly 
determining the adjoint eigenfunctions, through the resolution 
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is zero whenever m ^ n. Therefore, once it is assumed that 
an eigenfunction expansion exists, its nth coefficient can be 
simply determined by scalarly multiplying the initial conditions 
by the nth adjoint eigenfunction and dividing the result by the 
scalar product of the wth eigenfunction times its adjoint. 

3 Test Results 
The problem of flow in a partially obstructed duct, as stated 

previously, is characterized by the two parameters h and K, 
both of which have been nondimensionalized with respect to 
the duct width which thus becomes unity. We have calculated 
the 30 smallest eigenvalues, by solving equation (9) numerically 
by Newton iteration, and solved a test initial-value problem 
in the three cases h = 0.4, K = 1; h = 0.4, K = 0.1, and h 
= 1, K = 0, the last of which represents the already studied 
case of flow in a free duct. The eigenvalues turn out to be 
partly real and partly complex, which is not surprising since 
of the two problems (Laplace and biharmonic equation) of 
which we consider the coupling one has real and the other 
complex eigenvalues. The initial conditions assumed in the test 
were \j/(x, 0) = sin 27ry and w(x, 0) = 0. In all three cases the 
error in the representation of the initial conditions by the 
eigenfunction expansion decreases consistently with increasing 
number of terms, thus confirming the assumption that such a 
representation exists. Some caution is needed, however, as 
already noted by Joseph (1977, 1978) in connection with the 
free-flow problem, in dealing with the expansion for vorticity, 
which does not turn out to be converging in the ordinary sense 
at x = 0. This difficulty is easily circumvented, mathematically, 
by first summing the series for x nonzero and then letting x 
tend to zero; numerically, by summing the series for a nonzero 
x which is chosen smaller and smaller with increasing number 
of terms. The error in the streamfunction, whose convergence 
is on the contrary uniform, was of the order of a few percent 
with ten terms and decreased to 1-2 percent with 30 terms in 
the expansion. 
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Comparisons between an unknown-but-bounded imperfection 
model and a random imperfection model show that for simple 
pointwise failure measures, at least, the two models give the 
same expressions for their measures of response, but each 
measure has a distinctly different interpretation. The former 
gives the maximum possible response for any imperfection 
within a specified bound. The latter gives the standard devia­
tion of response, which, together with the statistical distri­
bution, can be used to specify the maximum response at a 
specified confidence level. However, since the statistical dis­
tributions of imperfections, and hence of the response are often 
unknown, confidence levels are difficult to define, especially 
in the tail of the distribution at high confidence levels. The 
unknown-but-bounded model requires less information about 
the imperfections to come to a well-defined bound on response. 
It is further shown that, while the maximum possible response 
might seem to be a severe failure avoidance criterion, it can 
be less constricting than having to impose artificially high 
confidence levels with poorly known statistical distributions. 

1 Introduction 
An unknown-but-bounded imperfection model was intro­

duced by Ben-Haim and Elishakoff (1989b) for the study of 
dynamic response and failure of structures under pulsed par­
ametric loading, in particular for elastic bars under dynamic 
axial loads. Imperfections were taken as a series of N terms 
of the natural vibration (and buckling) mode shapes of the 
structure, with coefficients A„ specified to be bounded by an 
ellipsoid in A'-dimensional Euclidean space. Failure was de­
fined by several measures of response, including deflection of 
the bar at a particular position and time, the spatial integral 
of the deflection at a particular time, and the spatial integral 
of the square of the deflection. For each measure of failure, 
a formula was derived for the maximum possible response for 
any imperfection vector A within or on the ellipsoid. This work 
was a sequel to an earlier application of the method to im­
perfection sensitivity in static buckling (Ben-Haim and Elis­
hakoff, 1989a) based on an approach developed in the field 
of estimation and control (Schweppe, 1973). These are all 
examples of convex modeling, a general set-theoretical ap­
proach to representing uncertainty, described more completely 
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Another approach has been to specify the imperfections by 
a modal series with coefficients taken as random quantities 
having a Gaussian distribution with zero mean value and stand­
ard deviation a„ that varies with mode number n. In early work 
of this type, a„ was taken as constant to a maximum mode 
number Nand zero thereafter, i.e., band-limited white noise. 
Statistics of buckle wavelengths for such imperfections were 
found for bars (Lindberg, 1965) and cylindrical shells (Lind-
berg and Herbert, 1966) under axial impact. Extension of these 
results to variable a„ is straightforward. In later work, a„ was 
taken to decrease with increasing n to more realistically rep­
resent imperfections measured in cylindrical shells (Arbocz, 
1982; Kirkpatrick and Holmes, 1989) while also maximizing 
numerical efficiency in finite element calculations (Lindberg, 
1988; Kirkpatrick and Holmes, 1989). Buckle shapes were cal­
culated at a sequence of times for a few sets of random coef­
ficients. In Lindberg (1988) the statistical distribution of peak-
to-peak buckle amplitudes was calculated at a time beyond 
which the buckle shapes remained essentially fixed, thus giving 
the statistics of failure by this measure. Monte Carlo calcu­
lations for other response measures were done by Elishakoff 
(1978). 

In the present paper, the bounded imperfection model is 
extended to include the mode-dependent amplitude ideas used 
with random imperfection model, and relationships between 
the two models and their respective measures of response are 
demonstrated which give better insight into both. 

2 Bounded Imperfection Model 
In the following, the derivation of the maximum possible 

response given by Ben-Haim and Elishakoff (1989b) is given 
with more complete intermediate steps and additional discus­
sion of the nature of the imperfection bounds. The approach 
is similar for the other measures of response analyzed by this 
model, so here we consider only the deflection u (x,t) at position 
vector x and time t. Also, this particular example allows a 
simple solution for its probabilistic counterpart in the next 
section. A general solution for the deflection is assumed to be 
available in modal series form: 

N 

u(*,0 = J]A„<t>t,(x,n=AT<l>(x,0 (1) 
n = l 

where AT= [At,- • -AN] and similarly for 4>, and 4>n(x,t) is 
defined such that w(x,0) is the total initial imperfection shape. 
Thus, 

4>„(x,0 = U + <7„(OWx) (2) 

in which q„(i) are modal response amplitudes, with initial 
conditions q„(0) = dqn(0)/dt = 0, and >p„(x) are the mode shapes. 

2.1 Unknown-But-Bounded Imperfections. Uncertainty 
in the initial imperfection profile is represented by allowing 
the imperfection vector A to vary on a set of values bounded 
by an ellipsoid: 

Z(0 ,W)=(A: A^WA^fl2] (3) 

where W is an NxN positive definite real symmetric matrix 
that specifies the shape of an ellipsoid in Af-dimensional space 
and 6 is a positive number that specifies its size. The set of 
extreme points of the set Z(0,W) is the ellipsoidal shell: 

C(0,W)={A: ArWA = 02}. (4) 

Because the total displacement u(x,t) is a linear function of 
the Fourier coefficients, and because Z(0,W) is a convex set, 
the maximum Mmax(x,r) occurs on the set of extreme points 
C«?,W). 

In the examples in Ben-Haim and Elishakoff (1989b), W 
was taken as the identity matrix I, which assumes no systematic 
dependence of the imperfections on n. The bounding shell is 
then a sphere and the constraint on set Z(0,I) is 

A\ + A2
2+---+A2

n+---A2
N<62. (5) 

The nominal value of each and every coefficient An is zero 
and its range is ±6, found by setting Ak = 0 for k^n. The 
constraint shell for W = I is 

A\+A\+---+A2
N=62. (6) 

Observe that as more terms are included in the analysis, i.e., 
as N is increased, this constraint appears to become more 
severe. For example, with N= 2 the coefficients At and A2 are 
constrained to the circle A2 + A2 = 62. With JV=3, the coeffi­
cients A\, A2, and A^ are constrained to a sphere of the same 
radius. Thus, for nonzero A-$, A3 = c, the coefficients Ai and 
A2 are now constrained to a circle of smaller radius given by 
the cut of the plane A^ = c through the sphere. However, the 
7V=3 constraint still allows Ax and A2 to fall on the iV=2 
circle (i.e., ^3 = 0) if that happens to give greater response. An 
example comparison of responses from bounded and from 
random imperfections given in the next section shows that 
holding d fixed with increasing N is analogous to (but not the 
same as) holding the standard deviation of the imperfection 
coefficients constant for all N. 

The examples actually worked out are for a case in which 
W is not the identity matrix but instead specifies a known 
systematic dependence of the imperfection coefficients on n. 
Such a dependence is needed, for example, in analysis of pulse 
buckling under very high axial loads, in which response is 
dominated by modes with large values of n and hence requires 
large values of N. It is then essential to account explicitly for 
the known systematic decrease in imperfection amplitudes with 
increasing n. For this purpose, W is taken as 

W = diag[l", 2", ••• rf, ••• N"). (7) 

The bounding ellipsoid for the set Z(0,W) is then 

A2 + 2pA2+---+npA2,+ ---+NpA2
N<d2 (8) 

and the range for each A„ is from ~Rn to +Rn, where 

R„ = en-p/2. (9) 
Measurements of imperfection in cylindrical shells (Arbocz, 

1982) suggest that reasonable values for the exponent p are 
somewhat larger than 2. In Lindberg (1988) it is suggested that 
conservative analyses can be done with p = 1, since this value 
is the separator between convergent and divergent series (as 
jV— oo) for the power spectral density of the total initial im­
perfection, as shown in the next section. The measurements 
reported in Arbocz (1982) suggest that imperfection coeffi­
cients in low-order modes, to about n = 8, tend to be nearly 
constant with n. The point here is that all such prior knowledge 
of the systematic variation of A„ with n, but not in specific 
values, must be incorporated into W. 

2.2 Maximum Response. Return now to determining the 
maximum deflection umm(x,t) that can be obtained for any 
imperfection vector A in set Z(0,W). Thus, from equation (1) 
and the convexity of the bound, we wish to maximize AT<j> 
subject to the constraint that A falls on the extreme points of 
Z, that is, on A rWA = 62. The desired maximum is found with 
the Hamiltonian 

H=AT<t> + \(ATWA-62) (10) 

in which Ar</> is the function to be maximized and X is a 
• Lagrangian multiplier for the constraint. The extremum con­
dition is 

0 = ^ = </, + 2XWA. (11) 
dA 

To express X in terms of </> and 0, the symmetry of W is first 
used to transpose the extremum condition: 

</>r=-2XArW. (12) 

This expression is then post multiplied by W"1 to obtain 
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0 r W _ 1 = - 2 X A 7 (13) 

Each side of this equation is post multiplied by the corre­
sponding sides of the untransposed extremum condition (11) 
to give 

</>
7W~1</> = 4\2A7WA = 4 \ 2 r (14) 

The desired expression for the Lagrange multiplier is then 

1 
x=±-V^vr^. (15) 

The extremum condition is now premultiplied by A r t o obtain 

(16) AT4> = - 2XArWA = =F 6 ^ ^ v F T 0 

and hence 

umax(x,t) = OsJ<t>(x,t)TW-'<t>(x,t) (17) 

in which the signs have been dropped. The imperfection that 
gives this maximum response is 

0W-1</.(x,O 
A «, r — " 

[<^(x,O rW-^(x,0] ' 
(18) 

Observe that umax depends directly on the imperfection am­
plitude parameter 6 and on W, but is independent of the vector 
A of individual imperfection coefficients. This dependence was 
removed by the maximization. Thus, any influence of system­
atic variations with n of the imperfection coefficients on max­
imum response must be included in the definition of W. 

With W from (7), the maximum response from (17) in ex­
panded form is then 

N . "11/2 

«max(x,O=0 E;3*»(*,0 \rf 
(19) 

2.3 Comparison to Random Imperfection Model. In the 
random imperfection model, the deflection is expressed by 

N 

"(*•') = 2>A(x>o (2°) 
«=i 

in which the coefficients a„ are independent random variables 
with zero mean value and variance a1,. Corresponding to the 
example for W in (7), this variance is taken as 

J-n = <?n-p (21) 

where a2 is a positive constant. From equations (2), (20), and 
the independence of a„, the variance of the initial imperfection 
M(X,0) is 

N 

<rto = a2^n-p<p2
n(x). (22) 

n = i 

Since <p2„(x) is bounded and positive, this series converges (as 
N-~ oo) in general for p > 1 and diverges for p< 1, as mentioned 
in the previous section. 

More generally, the standard deviation of the response u (%,t) 
is found by the same procedure, which gives 

au(x,t) = a T,ZjtiM :« " 
(23) 

When this expression is compared with (19), one sees imme­
diately that 

W ( M ) = -ff«(x,/). 
a 

(24) 

Thus, the maximum deflection from the bounded imperfection 
model is proportional to the standard deviation of the deflec­
tion from the random imperfection model. Also, recall from 
(9) that the semi-axis range of A„ in the bounded imperfection 
model is Rn = dn~p/1, and, from (21), the standard deviation 

of A„ in the random imperfection model is a„ = an~p/1. The 
two models therefore give the same numerical result (6 = a in 
(24)) when the semi-range of the individual Fourier coefficients 
in the bounded imperfection model is equal to the standard 
deviation of the individual coefficients in the random imper­
fection model. This is a more general case of the statement 
made earlier that (for p = 0) holding 6 fixed with increasing TV 
is analogous to holding the standard deviation <x„ constant for 
allJV. 

However, it must be emphasized that the two imperfection 
models are distinctly different and the physical interpretation 
of the response measures from the two models are also dif­
ferent. The usefulness of the result in (24) is in problems for 
which the analyst does not have enough information to decide 
which imperfection model best describes the actual imperfec­
tions. For example, it is satisfying to know that if the statistical 
distribution of imperfections must be assumed, and hence the 
resulting statistics of response are questionable, the calculated 
response can also be interpreted in terms of the maximum 
possible response if the imperfections were bounded rather 
than random. 

Furthermore, the constraints on loading or structural pa­
rameters, to ensure that the response is less than the maximum 
possible response, are comparable to the constraints to ensure 
a specified confidence level. In the example, the maximum 
possible response with bounded imperfection coefficients is 
equal to the standard deviation of response with random im­
perfections coefficients that have standard deviations equal to 
the semi-ranges of the bounded imperfections. The degree of 
conservativeness in specifying imperfection bounds (based on 
the same available data, the semi-range bounds will be sub­
stantially larger than the standard deviations) is comparable 
to the conservativeness in estimating response at confidence 
with poorly defined statistics (the probabilistic response at high 
confidence must be taken substantially larger than the standard 
deviation of the response). 

3 Summary and Conclusions 
The nonprobabilistic unknown-but-bounded model is a use­

ful alternative in modeling uncertainty of imperfections, based 
on the idea of set membership and convex modeling. In ap­
plication of this model, it is crucial to incorporate systematic 
variations of imperfections with mode number n into the def­
inition of the matrix W. An example is the decrease in im­
perfection coefficients as n—oo, required to ensure a bounded 
total imperfection shape. Without such variations included in 
W, their influence on the calculated maximum response meas­
ures will be lost. 

In the example application, the bounded and random im­
perfection models give the same analytical expression for their 
respective measures of response Hmax and ou (within a multi­
plying constant), but each is interpreted in a different way. 
The response measure for the bounded imperfection model is 
useful in that within the specified bound one knows that no 
other set of imperfections results in a greater response. Inter­
pretation of response with the random imperfection model is 
statistical; the maximum possible value of u is unbounded but 
one can associate a confidence level with the maximum being 
less than a multiple of <ju. When the statistical or bounded 
nature of the imperfections is open to question, it is useful to 
know that the two measures of response have the same func­
tional form so that interpretation of response from the two 
points of view can be made by simply scaling the results by a 
constant. 
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Thermoelastic Problems of Reinforced Rectangular 
Panels 

Victor Birman 

The static response of isotropic reinforced panels in nonuni­
form thermal fields is discussed. The effects of temperature 
on material properties are included into consideration. The 
governing equations formulated in the Note allow the solution 
both by energy methods and using equilibrium equations. The 
theory is applied to estimation of the effect of a uniform 
temperature on stability of compressed reinforced panels and 
to the problem of thermal bending of unstiffened plates. 

Introduction 
Problems of structural response of panels in thermal fields 

are important both for development of thermoelastic theory 
as well as in aerospace and nuclear engineering and in other 
applications. The number of investigations in this area is very 
large; we mention here only the classical book of Boley and 
Weiner (1960) dealing with the problem, and the recent review 
of Tauchert (1986) concentrating on thermoelasticity of plates. 

Typically, the studies of thermoelastic plate problems are 
based on an assumption that material properties are insensitive 
to temperature. This approach, justified in many practical 
problems, becomes questionable for composite materials and 
new alloys operating at high temperatures resulting either from 
aerodynamic heating in supersonic or hypersonic flight or from 
a technological process. The formulations of thermoelastic 
problems for unstiffened composite material cylindrical shells 
and rectangular panels incorporating temperature-dependent 
material properties were presented by Ambartsumian (1970, 
1974) and Tauchert (1986). The review of Noda (1986) presents 
a list of works on thermoelasticity of isotropic plates with 
temperature-dependent material properties. However, these 
solutions dealt only with unstiffened plates. Laminated rec­
tangular plates with temperature-dependent properties were 
considered by Chen and Chen (1989). Note here also the recent 
results presented for beams with temperature-dependent prop­
erties by Artemian (1988) and Birman (1990). 
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In this Note thermoelastic problems of reinforced rectan­
gular panels manufactured from an isotropic material are con­
sidered. Governing equations are developed, and the solutions 
of sample problems for reinforced and unstiffened panels are 
obtained. 

Governing Equations 
Consider a rectangular reinforced_panel subject to in-plane 

compressive loads of intensities Nx, Ny, lateral distributed load­
ing q = q(x,y) and nonuniform temperature T=T(x,y,z), as 
shown in Fig. 1. The following assumptions are used in this 
Note: 

8 materials of the stiffeners and the plate are isotropic; 
• the properties of materials depend on temperature; 
9 materials remain in the linear elastic range; 
• the strain-displacement relationships are linear. 
The stiffeners are assumed to be attached to the plate so 

that their deformations occur without slipping. Therefore, nor­
mal strains in the plate and in the stiffeners vary linearly in 
the thickness direction. According to the classic approach (Bar-
uch, 1964, 1965), the shear membrane force exists in the plate 
only. Torsional stiffness of the stiffeners is taken into consid­
eration. 

Strain-displacement relationships in the middle plane of the 
plate are: 

tx = u. 

(1) 

where u and v are the in-plane displacements in the x and y 
directions, respectively, and the superscript o indicates the 
strains in the middle surface. The changes of curvatures and 
twist of the middle surface are the following functions of the 
lateral deflection w: 

Kx= -W.xx 

Kv = — Vf v v 

K-xy ~ *SW,xy (2) 

The strains at the distance z from the middle surface are 
ex = e° + ZKx 

€y == 6y I ZKy 

yxy = y°y + ZK-Xy. (3) 
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Thermoelastic Problems of Reinforced Rectangular 
Panels 

Victor Birman 

The static response of isotropic reinforced panels in nonuni­
form thermal fields is discussed. The effects of temperature 
on material properties are included into consideration. The 
governing equations formulated in the Note allow the solution 
both by energy methods and using equilibrium equations. The 
theory is applied to estimation of the effect of a uniform 
temperature on stability of compressed reinforced panels and 
to the problem of thermal bending of unstiffened plates. 

Introduction 
Problems of structural response of panels in thermal fields 

are important both for development of thermoelastic theory 
as well as in aerospace and nuclear engineering and in other 
applications. The number of investigations in this area is very 
large; we mention here only the classical book of Boley and 
Weiner (1960) dealing with the problem, and the recent review 
of Tauchert (1986) concentrating on thermoelasticity of plates. 

Typically, the studies of thermoelastic plate problems are 
based on an assumption that material properties are insensitive 
to temperature. This approach, justified in many practical 
problems, becomes questionable for composite materials and 
new alloys operating at high temperatures resulting either from 
aerodynamic heating in supersonic or hypersonic flight or from 
a technological process. The formulations of thermoelastic 
problems for unstiffened composite material cylindrical shells 
and rectangular panels incorporating temperature-dependent 
material properties were presented by Ambartsumian (1970, 
1974) and Tauchert (1986). The review of Noda (1986) presents 
a list of works on thermoelasticity of isotropic plates with 
temperature-dependent material properties. However, these 
solutions dealt only with unstiffened plates. Laminated rec­
tangular plates with temperature-dependent properties were 
considered by Chen and Chen (1989). Note here also the recent 
results presented for beams with temperature-dependent prop­
erties by Artemian (1988) and Birman (1990). 
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In this Note thermoelastic problems of reinforced rectan­
gular panels manufactured from an isotropic material are con­
sidered. Governing equations are developed, and the solutions 
of sample problems for reinforced and unstiffened panels are 
obtained. 

Governing Equations 
Consider a rectangular reinforced_panel subject to in-plane 

compressive loads of intensities Nx, Ny, lateral distributed load­
ing q = q(x,y) and nonuniform temperature T=T(x,y,z), as 
shown in Fig. 1. The following assumptions are used in this 
Note: 

8 materials of the stiffeners and the plate are isotropic; 
• the properties of materials depend on temperature; 
9 materials remain in the linear elastic range; 
• the strain-displacement relationships are linear. 
The stiffeners are assumed to be attached to the plate so 

that their deformations occur without slipping. Therefore, nor­
mal strains in the plate and in the stiffeners vary linearly in 
the thickness direction. According to the classic approach (Bar-
uch, 1964, 1965), the shear membrane force exists in the plate 
only. Torsional stiffness of the stiffeners is taken into consid­
eration. 

Strain-displacement relationships in the middle plane of the 
plate are: 

tx = u. 

(1) 

where u and v are the in-plane displacements in the x and y 
directions, respectively, and the superscript o indicates the 
strains in the middle surface. The changes of curvatures and 
twist of the middle surface are the following functions of the 
lateral deflection w: 

Kx= -W.xx 

Kv = — Vf v v 

K-xy ~ *SW,xy (2) 

The strains at the distance z from the middle surface are 
ex = e° + ZKx 

€y == 6y I ZKy 

yxy = y°y + ZK-Xy. (3) 
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The constitutive relations for the plate are 

E 

l-v 

E 

" l - < 

2[(ex-aT) + v(ey-aT)] 

2l(ey-aT)+u(ex-aT)] 

(4) 

Equations (4) are not new; however, here we emphasize that 
the modulus of elasticity (£), the Poisson's ratio (v), the shear 
modulus (G) and the coefficient of thermal expansion (a) are 
functions of temperature at the point. If the coefficients of 
thermal expansion depends on temperature, a is a function 
chosen so that the integral of this coefficient over the range 
of temperature is equal to aT. 

The stresses in the stiffeners in the x and y directions are 

Ox = Es(ex-asT) 

and 

4 = Es(ty-asT), (5) 

respectively. The index "s" indicates a property of the 
stiffener. Note that ES = ES(T) and ots=as{T). 

Integration of the stresses given by (4) and (5) with respect 
to the thickness coordinate yields stress resultants and stress 
couples: 

Nx =(£•,+ EA) e° + (E2 + Es2) KX + E3e°y + E4Ky - N
T

X 

Ny= (El+Es3)e°y + (E2 + Es4)Ky + E3e° + E4Kx-N
T

y 

Nxy = Glyxy + G2Kxy 

MX=(E2 + Es2)e°+(E5 + Es5) KX + E4e°y + E6Ky - M
T

X 

My= {E2 + Es4)e° + (Es+E^Ky + E^ + EsKx-Mj; 

Mxy = G2yxy + G3Kxy - -r J^Hy-y^Jk+^Hx-x^Jj 
L k j 

(6) 

The last term in the expression for Mxy includes torsional stiff­
ness of the stiffeners. Here, Jk and Jj are torsional constants 
of the stiffeners in the x and y directions, respectively, and Gs 

is an average value of the modulus of rigidity of the stiffeners 
material which can be used since the effect of torsional stiff­
nesses is usually relatively small. 

The stiffnesses of the plate (Ej) as well as the stiffnesses of 
the stiffeners (ESJ) are, in general, functions of in-plane co­
ordinates calculated by the following formulae: 

(U.Z2) \ ' d z 
-hn l-V (Z) A/2 

A/2 

J ni t. 

- h/-> 

E(z) 

1-" 2 U) 

Hz)E(z) 

A/2 

A/2 

1 •AZ) 
dz 

r 
(GUG2,G})= {\,z,z1)G(z)dz 

J~h/2 

Es(i,2,s)=J]Hy-yk) \ Es(z)Pk(z)(l,z,z2)dz 
k JZk 

£'S(3,4,6) = 2 ] 5 ( x - ^ ) J Es(z)l3j(z)(l,z,z2)dz. 
j zj 

In (7), &k{z) and /3y(z) are the widths of the stiffeners in the 
x and y directions, respectively, xj and yk are the coordinates 
of the stiffeners and 8 is Dirac delta function. 

Note that for a thermal field without a gradient in the z-
direction, the stiffnesses calculated by (7) reduce to conven­

tional stiffnesses of the theory of reinforced plates; however, 
they will still be functions of x and y. Thermal terms in (6) 
are given by: 

Nl= 

T [" 

a(z)E(z)T(z) 

i l-Kz) 
dz+^]&(y-yk) 

as(z)Es(z)fik(z)Tdz 

a(z)E(z)T(z) 
zdz+*^y>(y-yk) 

as(z)Es(z)Mz)T(z)zdz. (8) 

The terms Nj and My can be obtained from Nx and Mx in 
(8) by replacement of symbols j-~k, x~y. 

Equations of equilibrium in terms of stress resultants and 
stress couples are: 

Nx,x + Nxy,y = 0 

Nxy,x + Ny_y = 0 

MXiXX + 2MxyiXy + Myyy +(NxwiX+Nxywjy),x 

+ (.Nxyw:X+Nyw:y)jy=-q. (9) 

In a geometrically linear problem, the stress resultants in the 
third equation (9) must be taken as 

NX = NX-Nl 
Ny = Ny- Ni (10) 

A^ = A^ = 0 
where external loads Nx and Ny are positive in tension. 

If the temperature is uniformly distributed over the surface, 
i.e., T= T(z), the substitution of both the constitutive relations 
(6) as well as the equations (10) into the equilibrium equations 
(9) yields 

(E, + Esl) ujXX + GiU,yy + (E3 + d) viXy 

-(E2 + Es2)wiXXX- (E4 + 2G2)wiXyy = Nlx 

(Ei + Es3 )vyy+G1viXX+(E3 + Gl) uiXy 

- (E2 + Esi) w_yyy -(E4 + 2G2) wiXxy = Ny,y 

(E2 + Es2) utXXX +(E4 + 2G2) uiXyy +(E2 + Es4) viyyy 

+ (E4 + 2G2)vxxy- (E5 + Es5)wiXXXX- (E6 + Es6)wiyyyy 

G, 
E6 + 2G.-^ 2j5(y-yk)Jk+ 2J8(X-XJ)JJ 

k j 

+ l(Nx - Ni) wJiX + [ (Ny - Nj) wj,y = 

-q + MT
XjXX + MT

y>yy. (11) 

The effect of uniformly distributed temperature on stability 
can be easily estimated. Consider a reinforced simply-sup­
ported panel with arbitrary in-plane boundary conditions sub­
ject to constant compressive stresses of intensity Nx. The 
comparison of equation (11) for the panel subject to Nx, only 
with these equations in the case of simultaneous action of 
Nx and temperature, yields 

1ft* r(T) -Nxcr(Q)-Nx-\wtXX-Nywiyy = Q (12) 

where Nxcr (T) and Nxcr (0) are critical intensities of the external 
stresses for 7V0 and T=0, respectively. Note that the Pois­
son's effect due to resistance of the edges y = Q, y = b can be 
incorporated by including the terms v[Nxcr(T)-Nxcr(Q)wiyy. 
The nondimensional buckling load of the panel corresponding 
to m half-waves in the x-direction and the n half-waves in the 
j>-direction is 
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Fig. 2 Effect of uniform temperature on stability of reinforced panels: 
a/6=1.5, n = 0.3, m=n = A,Al = 0, 1;4 t = 0, 2: Ak = 0.5, 3: 4 k=1.0 

Fig. 3 Effect of uniform temperaturejpn stability of reinforced panels: 
a/6=1.5, J< = 0.3, m = n=1,A/ = 0.5, 1: Ak = 0, 2:Ak = 0.5, 3: Ak=1.0 

NX=\+NT
X 1 + 

na\' N: 

where 

Tr Mxcr(T) 
N, 

mb N, 

Nl 
N„ 

(13) 

(14) 
'*r(0) AWO) 

The nondimensional buckling loads are shown for a uniformly 
heated panel with closely spaced identical stiffeners in each 
direction in Figs. 2 and 3. In this case 

Nj, 1 + (1 - v)Aj. 

N'x \+{\-v)Ak 
(15) 

where (Aj, Ak) = I ^A/hl, ^Ak/hd 

1 and d being the spacings of the respective stiffeners. Figure 
2 illustrates the result for panels reinforced in the x direction 
only. Nondimensional buckling loads for panels reinforced in 
both directions are shown in Fig. 3. Such figures, which are 
easy to generate and analyze, can be useful in the preliminary 
design to estimate the effect of temperature on stability of 
compressed panels. 

Analytical Solutions of Thermoelastic Problems 
Two analytical methods often used in the theory of plates 

and shells are those of Rayleigh-Ritz and Galerkin. The ad­
vantage of the Rayleigh-Ritz method is that the modal func­
tions in expressions for displacements do not have to satisfy 
static boundary conditions. To the contrary, modal functions 
used in the Galerkin procedure must satisfy both kinematic 
and static boundary conditions. This can be rather difficult in 
thermoelastic problems due to the presence of thermal terms 
which depend on temperature and, in general, are not equal 
to zero at the boundaries. However, a generalized Galerkin 
method can be useful in thermoelastic problems: In this method 
static boundary conditions are included in the formulation 
(Tauchert, 1986). Here the solution of the problem of thermal 
bending of unstif fened plates with temperature-dependent ma­
terial properties is considered. 

Consider a rectangular plate subject to the action of a lateral 
load q and nonuniform temperature T(x,y,z). The potential 
energy of such a plate is (Boley and Weiner, 1960): 

U= 7x/ixy 

-aT(ax + ay)]d(V)-^\jqwd(A) (16) 

(A) 

where {V) and ^4) denote volume and area of middle surfaces, 
respectively. The substitution of (l)-(5) into (16) and integra­
tion in the thickness direction yields 

H0>'* -2E2uiXwiXX + E5wtX 

where 

+ 2EiuiXVfy - 2E4U:Xwiyy - 2E4V ywiXX + 2E6wiXXwiyy 

+ Ex if? - 2E2vyWMyy + E5w?yy + Gxu^y, + G{ v% + 2GiU,yvx 

+ 4GiW*xy - 4G2uiywiXy - 4G2vxwjXy - 2NT(u:X +vy-l) 

+ 2MT(wiXX + wiyy)-2qw]dxdy (17) 

E(z)a(z)T(z) 
(NT,MT) = j ( ! , « ) • 

1-K«) 
-dz. (18) 

Naturally, if the plate is reinforced, the potential energy of 
reinforcements must be added to (17). 

If displacements are represented by the series 

U=YjYjU">nfum(x)<j}u„(y) 
m n 

V = 2 2 V»">fvm (X)<j)m 0>) 
m n 

w=y\y\wmjWm{x)<i>m(y) 
mn (19) 

where £/„,„, Vmn, and Wmn are constant coefficients and/,„, </>,•„ 
(i=u,v,w) are the modal functions which satisfy the kinematic 
boundary conditions, the Rayleigh-Ritz method yields 

dU dU 

dUm„ dVm, 

dU 
'~dWmn 

= 0. (20) 

The solution of a thermal bending problem can be obtained 
from the set of equations (20). 

Consider, for example, a rigid simply-supported plate with 
the edges prevented against in-plane displacements subject to 
a thermal field T= T(z) and to a uniform pressure q. The 
potential energy of such a plate is 

U=-
n <Jn 

+ 2E6wjXXwiyy + 4GiW%y + 2MT( wiXX + wiyy) - 2qw]dxdy (21) 

where the term independent of deformation has been omitted. 
' Note that if temperature does not affect material properties, 
equation (21) reduces to that presented by Tauchert (1986). 

Representing lateral deflections by 

*H xH . m-irx . niry 

m=1n~ 1 

(22) 

and substituting (22) into (21), one obtains a set of rxs al­
gebraic equations from which the amplitudes of harmonics in 
(22) can be easily evaluated: 
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Fig. 4 Effect of sensitivity of the modulus of elasticity to temperature 
on deflections of unstiffened panels; m = n=1 , curve 1: « = 0, curve 2: 
a= -0 .1 , curve 3: a = -0.2 
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In (23), m and « are odd numbers; otherwise Wm„ = Q. 
In a particular case where 

r(z) = r,2+r0 

E=EiT+E0 

a = aiT+a0, 

equation (23) is reduced to 

W =-
''run 

1 + v (a\2AEaT+l6(E + a + T) 
.3—4 

where 

mnir \h 

H/ 
'* m. 

1 + 
w6 

(24) 
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— +T 

T= 
Tih 

^>,T T0 
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An example illustrating bending deflections of a plate in a 
thermal field T(z) = T\Z+ 7^ is shown in Fig. 4. In this example, 
a/b= 1.5, a/A = 100, and the Poisson's ratio e = 0.3. The ther­
mal field was characterized by Txh= -200°C and T0= 150°C. 
These values correspond to the surface temperatures T(h/ 
2) = 50°C and T{ - h/2) = 250°C. 

The relationships E(f) and a(T) were given by (24). The 
modulus of elasticity usually decreases with temperature; i.e., 
the ratio Ex/E0 is negative. The values of E\/E0 in Fig. 4 cover 
the range from the modulus of elasticity insensitive to tem­
perature (E\/E0 = G) to the modulus decreasing by 50 percent 
as temperature increases by 500°C. 

The curve 1 was obtained by assumption that the coefficient 
of thermal expansion was independent of temperature. The 
curves 2 and 3 correspond to the coefficients increasing with 
temperature. In particular, the curve 2 was obtained for 
a0/u\ = 1850°C and the curve_3 corresponded to a0 /ai = 850°C. 

Note that the values of W were negative; i.e., the convex 
surface had a higher temperature. Thermally induced deflec­

tions decreased if the modulus of elasticity decreased with 
temperature. To the contrary, deflections increased if the coef­
ficient of thermal expansion increased with temperature. Three 
curves in Fig. 4 are almost parallel, which means that the latter 
effect remains valid for materials with a range of variations 
of E\/E0. 

Conclusions 
Static thermoelastic problems of isotropic rectangular panels 

are considered. The effect of temperature on the elastic prop­
erties of the panel material is included in the analysis. The 
panels can be reinforced or unstiffened. The governing equa­
tions are formulated for stiffened panels within the framework 
of geometrically linear theory. These equations can be used 
for the solution of bending and buckling problems. As illus­
trations of the application of the theory, analytical solutions 
of the following thermoelastic problems are obtained: 

« effect of uniform temperature on stability of reinforced 
panels, and 

» thermal bending of unstiffened rectangular plates with 
temperature-dependent properties. 
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An example illustrating bending deflections of a plate in a 
thermal field T(z) = T\Z+ 7^ is shown in Fig. 4. In this example, 
a/b= 1.5, a/A = 100, and the Poisson's ratio e = 0.3. The ther­
mal field was characterized by Txh= -200°C and T0= 150°C. 
These values correspond to the surface temperatures T(h/ 
2) = 50°C and T{ - h/2) = 250°C. 

The relationships E(f) and a(T) were given by (24). The 
modulus of elasticity usually decreases with temperature; i.e., 
the ratio Ex/E0 is negative. The values of E\/E0 in Fig. 4 cover 
the range from the modulus of elasticity insensitive to tem­
perature (E\/E0 = G) to the modulus decreasing by 50 percent 
as temperature increases by 500°C. 

The curve 1 was obtained by assumption that the coefficient 
of thermal expansion was independent of temperature. The 
curves 2 and 3 correspond to the coefficients increasing with 
temperature. In particular, the curve 2 was obtained for 
a0/u\ = 1850°C and the curve_3 corresponded to a0 /ai = 850°C. 

Note that the values of W were negative; i.e., the convex 
surface had a higher temperature. Thermally induced deflec­

tions decreased if the modulus of elasticity decreased with 
temperature. To the contrary, deflections increased if the coef­
ficient of thermal expansion increased with temperature. Three 
curves in Fig. 4 are almost parallel, which means that the latter 
effect remains valid for materials with a range of variations 
of E\/E0. 

Conclusions 
Static thermoelastic problems of isotropic rectangular panels 

are considered. The effect of temperature on the elastic prop­
erties of the panel material is included in the analysis. The 
panels can be reinforced or unstiffened. The governing equa­
tions are formulated for stiffened panels within the framework 
of geometrically linear theory. These equations can be used 
for the solution of bending and buckling problems. As illus­
trations of the application of the theory, analytical solutions 
of the following thermoelastic problems are obtained: 

« effect of uniform temperature on stability of reinforced 
panels, and 

» thermal bending of unstiffened rectangular plates with 
temperature-dependent properties. 

Acknowledgment 
Discussions with Prof. Charles W. Bert of the University of 

Oklahoma and Dr. Robert W. Laurenson of McDonnell Doug­
las Missile Systems Company are warmly appreciated. 

References 
Ambartsumian, S. A., 1970, Theory of Anisotropic Plates, Technomic, Stam­

ford, Conn. 
Ambartsumian, S. A., 1974, General Theory of Anisotropic Shells, Nauka 

Publishers, Moscow (in Russian). 
Artemian, E. G., 1988, "Vibrations of Elastic and Viscoelastic Beams in a 

Nonuniform Thermal Field," Izvestiya, AkademiaNauk Armyanskoi SSR, (in 
Russian) Vol. 1, pp. 13-20. 

Baruch, M., 1964, "Equilibrium and Stability Equations for Stiffened Shells," 
Israel Journal of Technology, Vol. 2, pp. 117-124. 

Baruch, M., 1965, "Equilibrium and Stability Equations for Discretely Stiff­
ened Shells," Israel Journal of Technology, Vol. 3, pp. 138-146. 

Birman, V., 1990, "Buckling and Bending of Beams Subject to a Nonuniform 
Thermal Field," Mechanics Research Communications, Vol. 17, pp. 41-45. 

Boley, B. A., and Weiner, J. FL, 1960, Theory of Thermal Stresses, John 
Wiley and Sons, New York. 

Chen, L.-W., and Chen, L.-Y., 1989, "Thermal Buckling of Laminated Com­
posite Plates with Temperature-Dependent Properties," Composite Structures, 
Vol. 13, pp. 275-287. 

Noda, N., 1986, "Thermal Stresses in Materials with Temperature-Dependent 
Properties," Thermal Stresses I, R. B., Hetnarski, ed., Chapter 6. 

Tauchert, T. R, 1986, "Thermal Stresses in Plates-Statical Problems," Ther­
mal Stresses I, R. B. Hetnarski, ed., Chapter 2. 

Symmetrization of Some Conservative Systems of the 
Second Kind 

B. L. Ly15 

1 Introduction 
Certain nonself-adjoint systems have only divergence type 

of instability, despite the presence of the polygenic force. 
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a self-adjoint system a conservative system of the second kind. 
He showed that such a system is self-adjoint with respect to 
an assigned self-adjoint operator, hence self-adjoint in a gen­
eralized sense. For such a system, there exist a Lyapunov for 
predicting stability (Walker 1974; Leipholz 1974a) and a gen­
eralized Rayleigh quotient for determining the buckling load 
(Leipholz 1974a). Inman and Olsen (1988) included velocity-
dependent forces in conservative systems of the second kind. 
They proved the generalized self-adjointness and the existence 
of eigenfunctions for these systems. 

For certain asymmetric .discrete systems, Inman (1983) 
showed that there exists a similarity transformation that trans­
forms the asymmetric system into an equivalent symmetric one; 
i.e., one having the same eigenvalues. Here it is shown that 
for certain conservative systems of the second kind, an equiv­
alent self-adjoint system can be found. In this way, a con­
servative system of the second kind is symmetrized, like the 
symrnetrization of an asymmetric discrete system. As a result, 
stability study can be performed on the symmetrized system, 
which is usually easier to manage. 

2 The Pfluger Column 
The Pfluger column is a simply-supported column under a 

uniform tangential follower force. Walker (1972) generalized 
it to include damping and nonuniform follower force. Here, 
we include columns with guided ends. Stability of the gener­
alized Pfluger column is described by the eigenvalue problem 
governed by the differential equation 

-Q2w+w!v+pf(x)w" =0, 0 < x < l , (1) 

and the boundary conditions 

w=w"=0 (2a) 

for a pinned end, or 
W ' = w" '=0 (2b) 

for a guided end. w(x) is the lateral deflection of the column, 
fi is a frequency parameter, p > 0 is a load parameter, and 
f(x) is a bounded function related to the distribution of the 
force. A guided-guided column admits a translatory isometric 
mode. If only the flexural modes are of interest, this column 
can be included in the consideration. 

The operator f(x)d2 is not self-adjoint with respect to the 
prescribed boundary conditions. However, the operator - f i 2 

+ d4 + pf(x)d2 is self-adjoint in a generalized sense (Leipholz, 
1974) with respect to the operator d2 under the boundary con­
ditions in (2). The generalized self-adjointness implies 

f (-Q2u + uh'+pfu")v"dx 
Jo 

= \ (-n2v+viv+pfv")u"dx, (3) 
Jo 

where u and v are admissible functions satisfying all the bound­
ary conditions prescribed for w. 

Here, the generalized Pfluger column is shown to be a con­
servative system by explicitly symmetrizing it. Also, it is shown 
that Leipholz's generalized self-adjointness can be reduced to 
the classical self-adjointness. 

Differentiate (1) with respect to x once and denote w' by y. 
Then (1) becomes 

-Q2y+yiv+plf(x)y']' = 0. (4) 

As can be seen, the follower force now assumes the same 
appearance as a unidirectional loading. However, whether or 
not the operator in (4) is self-adjoint also depends on the 
boundary conditions for y. 

At a pinned end of the column, w" = 0 implies y' = 0. 
Also, from (1), w = w" = 0 implies W = 0, which in turn 
implies .y"' = 0. In other words, a pinned end for w becomes 

a guided end for y. At a guided end of the column, w' = 0 
implies y = Oand w'" = 0 impliesy" = 0, respectively. That 
is to say, a guided end for w now becomes a pinned end for 
y. It is interesting to note from the foregoing that the boundary 
conditions for the systems in (1) and in (4) have a conjugate 
relationship between them. 

The system in (4) is equivalent to that in (1), because the 
equation in (4) and the corresponding boundary conditions are 
derived from (1) and (2) via the transformation^ = w'. Hence, 
the eigensolutions of (1) are also the eigensolutions of (4). 

The operator in (4) is self-adjoint. It can be shown in the 
usual manner that 

f [-Q2y+yiv+p(fy')']zdx 

= [ [-Q2z + z!v+p(fz')']ydx. (5) 
Jo 

In fact, (5) can also be derived from the generalized self-
adjointness in (3) by integration by parts to obtain 

I [-Q2u'+u"+p(fu")']v'dx 
Jo 

= f [-Q2v' + v"+p(fv")'}u'dx, (6) 
Jo 

then by denoting u' by y and v' by z. 
Because the operator in (4) is self-adjoint, the generalized 

Pfluger column can only have divergence-type of instability. 
Therefore, the static Euler approach can be used to study the 
stability. From the classical elastic stability theory, the buckling 
load p„ has a Rayleigh quotient 

( (y")2dx 

Per = mf — , (7) 

[ f(x)(y')2dx 

or, in terms of vc, 

\ (w'")2dx 
Jo 

Per = m f — . (8) 

( f(x)(w")2dx 

The foregoing derivation shows that a generalized Pfluger 
column can be symmetrized into a self-adjoint system. Stability 
of the generalized Pfluger column can be studied via its equiv­
alent self-adjoint system. The relationship between the gen­
eralized Pfluger column and its equivalent self-adjoint system 
is as follows: 

Systems Loading End Conditions 

generalized Pfluger tangential follower P-P P-G G-P G-G 
column force 

equivalent self- unidirectional G-G G-P P-G P-P 
adjoint system force 

P stands for pinned end, and G stands for guided end. 
As an example, to determine the buckling load of a guided-

guided column under a uniform tangential follower force, one 
can instead study the stability of a pinned-pinned column under 
its uniform self-weight. While the former is a nonconservative 
problem, the latter is a well-known self-adjoint problem. The 
critical weight of the conservative problem is equal to 18.57, 
so is the buckling load of the nonconservative problem. 
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3 The Greenhill Shaft 
Greenhill's shaft is a pin-ended bar in torsion. The system 

is not self-adjoint except when 6, the angle between the applied 
torque vector and the tangent to the end of the bar, is equal 
to 1/2. Leipholz (1974a) studied a pure tangential torque (6 
= 0) and showed that the Greenhill shaft is a conservative 
system of the second kind. Walker (1973) considered the case 
8^1/2 and included an axial compression and a damping 
force. He developed a Lyapunov functional for stability study. 
Here, we examine a bar in a viscoelastic medium of low density 
under a pure tangential torque and a pure axial torque (0 = 
1), respectively. We will symmetrize the systems and improve 
the stability boundary obtained by Walker for these two cases. 

The linearized system (Bolotin, 1963) is described by the 
differential equation 

iLx 

, 2 We will further transform (16) by letting M(x) = w(x)e2 so 
that 

w(0) = w(l) = 0 (17) 

and 

(r2 + cr + k)\ H(x,y)w(y)dy+w"+ (p + -—)w = 0 (18) 

where 

" l 

"2 
+ C 

U\ 

" 2 
+ 

d4+pd2 + k 
-Ld3 

Ld5 

d4+pd2 + k "2 
= 0 (9) 

Per = inf • 

H(x,y) = G(x,y)e~'2 ' ^ =H* (y,x) 

is a symmetric kernel. As can be seen, (18) is self-adjoint. So 
the Greenhill shaft has been symmetrized. 

For a given k and L, the critical load pcr has a Rayleigh 
quotient 

I (w')2dx-k \ \ H(x,y)w(x)w(y)dxdy- — \ w2dx 
J0 J0 J0 4 J0 

( rfdx 
•'O 

. 1 »1 

= - — + inf — 
4 w 

\ (w')2dx-k \ 1 H(x,y)w(x)w(y)dxdy 
Jn Jn Jn 

r (19) 

w2dx 

and the boundary conditions 

dLd 
-6Ld 

= 0 (10) 

with 6 = 0, or d = 1, respectively. U\ and «2
 a r e the deflections 

in the principal directions, 3 denotes d/dx, L is the torque, p 
is the axial end compression, and c and k represent the vis­
coelastic medium. 

Let us transform variable by denoting z(x)en = U\ + iu2. 
Then, the differential equation and the boundary conditions 
become 

(r2 + cr + k)z + z!"+pz" -iLz" = 0 (11) 

and z = 0 

z"-i6Lz'=0, (12) 

respectively. 
For the case of a pure tangential torque (6 = 0), let us denote 

Then, 

at either end, and 

z"=M. 

M=0 

where 

* ( * ) = [ G(x,y)M(y)dy 

x(y-l) for 0 < x < ^ 

(13) 

(14) 

(15) 

G(x,y) = 
(y(x-\) for>»<^<l 

is Green's influence function. 
With use made of (13) and (15), the equation in (11) becomes 

It is noted that 

( ( H(x,y)w(x)w(y)dxdy=- \ g'g'dx (20) 

where g is the solution of 

g" (x) = w(x)exp 
iLx 

(21) 

with 

g(0) = g(l) = 0. 

An estimate of pcr can be obtained from (19) by assuming, 
for example, w(x) = simrx, resulting in 

Pcr= -T+TT 

r-7)\T-W-**L2(l+cml 
2\ 4 

-. (22) 

When k = 0, pcr = - —- + w2 is the necessary and sufficient 

condition for stability because (18) becomes 

w " + \p + — )w = 0, w(0) = w(l) = 0, (23) 

which describes the free vibration of a string, with p + — 

playing the role of the frequency parameter. The fundamental 
frequency of a string is equal to o? = ir2. When L = 0, 

(r2 + cr+k)\ G(x,y)M(y)dy + M" +pM-iLM' =0 . (16) 2 k 
pcr = ir +—. 

7T 

(24) 
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On the other hand, when L = ± lit, 

k(\ 3 \ 
P* = j{1 + 7). (25) 

Therefore k > 0 does increase the stability boundary, directly 
confirming Walker's conjecture about an increase in the upper 
bound on L2 + 4p. 

The case of a pure axial torque (ft = 1) is considered next. 
Let (11) be integrated with respect to x twice to obtain 

(r2 + cr + k) \ G{x,y)z(y)dy 

+ z" +pz-iLz' =al + a2x. (26) 

The constants of integration ax and a2 are found to be equal 
to zero, in view of the boundary conditions z = 0 and z" — 
iLz' = 0. Therefore, (26) becomes 

(r2 + cr+k) \ G(x,y)z(y)dy + z" +pz-iLz' = 0. (27) 

The dependent variable needs to satisfy only the boundary 
conditions z(0) = z(l) = 0. Since (27) is the same as (16), the 
symmetrized system in (18) and the stability boundary in (22) 
also hold true for the Greenhill shaft under an axial torque. 
Therefore, the shaft under an axial torque and that under a 
tangential torque behave in a very similar manner and both 
have the same equivalent symmetrized system. 

4 Conclusions 
Some of the conservative systems of the second kind we 

considered here had been studied by Walker, Leipholz, and 
Inman and Olsen. Our objective, however, is to obtain an 
equivalent self-adjoint system for the nonconservative prob­
lem. Existence of the symmetrized systems confirms that cer­
tain conservative systems of the second kind indeed behave as 
a true conservative system. It also allows study of stability of 
the nonconservative problem to be carried out on the sym­
metrized system. In general, it is easier to study a self-adjoint 
problem than a nonself-adjoint problem. For example, it was 
shown that the buckling load of a guided-guided bar under a 
uniform tangential follower force can be obtained as the critical 
weight of a pinned-pinned column under its own weight, and 
that the stability of a pin-ended bar in compression and under 
an axial torque or a tangential torque becomes the free vibra­
tion of a string. The self-adjoint problems are simpler than 
the nonself-adjoint problems. In the case of a bar in torsion 
in a viscoelastic medium, study of the symmetrized system 
enables us to obtain a sharper stability boundary. 
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BRIEF NOTES 

On the Inverse Vibration Problem With Rigid-Body 
Modes 

Ladislav Starek and Daniel J. Inman 

Introduction 
This Note considers an alternative solution to the inverse 

problem for a linear lumped-parameter system with singular 
velocity and displacement coefficient matrices. Inverse prob­
lems for vibrating lumped-parameter nonconservative systems 
are concerned with constructing coefficient matrices corre­
sponding to mass, damping, and stiffness parameters from 
knowledge of a systems eigenvalues and eigenvectors (referred 
to as spectral data). In general, knowledge of spectral data of 
a given system does not uniquely determine the desired coef­
ficient matrices. However, several theories have been devel­
oped to solve the inverse problem for lumped parameter 
systems. Most notable is the work of Lancaster and Maroulas 
(1987) and that of Danek (1982, 1985). The text by Gladwell 
(1986) contains a general presentation of the inverse problem 
for undamped vibrating systems. 

Lancaster and Maroulas (1987) use a matrix polynomial 
approach and arrive at a solution of the inverse problem which 
is applicable to the nonsingular case. The formulation of Lan­
caster and Maroulas requires complete spectral data and ap­
plies to the singular case addressed here. Danek (1987) addresses 
the inverse problem for nonsingular coefficient matrices using 
a state space approach. Danek (1982) introduces the more 
practical inverse problem for incomplete spectral data. This is 
sometimes called the tuning problem in Eastern Europe and 
is referred to as the model correction problem in the West 
(Minas and Inman, 1990) and has important implications in 
the modal testing and finite element industry. 

The solution presented here uses a state space approach 
similar to Danek's to derive results equivalent to Lancaster's 
for the singular coefficient case and results in a formulation 
for using incomplete spectral data. Note that the use of the 
word complete in testing refers to whether or not all the spectral 
data is available for use in the reconstruction of the coefficient 
matrices. In Lancaster (1987), and as well as most theoretical 
treatments, the word complete refers to mathematical structure 
of the Jordan pair associated with a matrix polynomial. 

Inverse Vibration Problem Formulation 
This section introduces the class of inverse vibration prob­

lems considered. The equations of vibration are of the form 
of the second-order vector differential equation 

AMt)+A2q(t)+A3q(t)=f(t) (1) 
where q(t) is a. nxl vector of generalized coordinates, q(t) 
is the generalized velocity vector, q(t) is the generalized ac­
celeration, and f (r) represents an n x 1 vector of applied forces. 
The n xn real matrices Ax, A2, and A3 represent mass, damp­
ing, and stiffness properties of the system as well as gyroscopic, 
follower, and constraint damping forces (see, for instance, 
Huseyin, 1978, or Inman, 1989). In the problem considered 
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On the other hand, when L = ± lit, 

k(\ 3 \ 
P* = j{1 + 7). (25) 

Therefore k > 0 does increase the stability boundary, directly 
confirming Walker's conjecture about an increase in the upper 
bound on L2 + 4p. 

The case of a pure axial torque (ft = 1) is considered next. 
Let (11) be integrated with respect to x twice to obtain 

(r2 + cr + k) \ G{x,y)z(y)dy 

+ z" +pz-iLz' =al + a2x. (26) 

The constants of integration ax and a2 are found to be equal 
to zero, in view of the boundary conditions z = 0 and z" — 
iLz' = 0. Therefore, (26) becomes 

(r2 + cr+k) \ G(x,y)z(y)dy + z" +pz-iLz' = 0. (27) 

The dependent variable needs to satisfy only the boundary 
conditions z(0) = z(l) = 0. Since (27) is the same as (16), the 
symmetrized system in (18) and the stability boundary in (22) 
also hold true for the Greenhill shaft under an axial torque. 
Therefore, the shaft under an axial torque and that under a 
tangential torque behave in a very similar manner and both 
have the same equivalent symmetrized system. 

4 Conclusions 
Some of the conservative systems of the second kind we 

considered here had been studied by Walker, Leipholz, and 
Inman and Olsen. Our objective, however, is to obtain an 
equivalent self-adjoint system for the nonconservative prob­
lem. Existence of the symmetrized systems confirms that cer­
tain conservative systems of the second kind indeed behave as 
a true conservative system. It also allows study of stability of 
the nonconservative problem to be carried out on the sym­
metrized system. In general, it is easier to study a self-adjoint 
problem than a nonself-adjoint problem. For example, it was 
shown that the buckling load of a guided-guided bar under a 
uniform tangential follower force can be obtained as the critical 
weight of a pinned-pinned column under its own weight, and 
that the stability of a pin-ended bar in compression and under 
an axial torque or a tangential torque becomes the free vibra­
tion of a string. The self-adjoint problems are simpler than 
the nonself-adjoint problems. In the case of a bar in torsion 
in a viscoelastic medium, study of the symmetrized system 
enables us to obtain a sharper stability boundary. 
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BRIEF NOTES 

On the Inverse Vibration Problem With Rigid-Body 
Modes 

Ladislav Starek and Daniel J. Inman 

Introduction 
This Note considers an alternative solution to the inverse 

problem for a linear lumped-parameter system with singular 
velocity and displacement coefficient matrices. Inverse prob­
lems for vibrating lumped-parameter nonconservative systems 
are concerned with constructing coefficient matrices corre­
sponding to mass, damping, and stiffness parameters from 
knowledge of a systems eigenvalues and eigenvectors (referred 
to as spectral data). In general, knowledge of spectral data of 
a given system does not uniquely determine the desired coef­
ficient matrices. However, several theories have been devel­
oped to solve the inverse problem for lumped parameter 
systems. Most notable is the work of Lancaster and Maroulas 
(1987) and that of Danek (1982, 1985). The text by Gladwell 
(1986) contains a general presentation of the inverse problem 
for undamped vibrating systems. 

Lancaster and Maroulas (1987) use a matrix polynomial 
approach and arrive at a solution of the inverse problem which 
is applicable to the nonsingular case. The formulation of Lan­
caster and Maroulas requires complete spectral data and ap­
plies to the singular case addressed here. Danek (1987) addresses 
the inverse problem for nonsingular coefficient matrices using 
a state space approach. Danek (1982) introduces the more 
practical inverse problem for incomplete spectral data. This is 
sometimes called the tuning problem in Eastern Europe and 
is referred to as the model correction problem in the West 
(Minas and Inman, 1990) and has important implications in 
the modal testing and finite element industry. 

The solution presented here uses a state space approach 
similar to Danek's to derive results equivalent to Lancaster's 
for the singular coefficient case and results in a formulation 
for using incomplete spectral data. Note that the use of the 
word complete in testing refers to whether or not all the spectral 
data is available for use in the reconstruction of the coefficient 
matrices. In Lancaster (1987), and as well as most theoretical 
treatments, the word complete refers to mathematical structure 
of the Jordan pair associated with a matrix polynomial. 

Inverse Vibration Problem Formulation 
This section introduces the class of inverse vibration prob­

lems considered. The equations of vibration are of the form 
of the second-order vector differential equation 

AMt)+A2q(t)+A3q(t)=f(t) (1) 
where q(t) is a. nxl vector of generalized coordinates, q(t) 
is the generalized velocity vector, q(t) is the generalized ac­
celeration, and f (r) represents an n x 1 vector of applied forces. 
The n xn real matrices Ax, A2, and A3 represent mass, damp­
ing, and stiffness properties of the system as well as gyroscopic, 
follower, and constraint damping forces (see, for instance, 
Huseyin, 1978, or Inman, 1989). In the problem considered 

l6Faculty of Mechanical Engineering, Slovak Technical University at Bratis­
lava, 81231 Bratislava, Czechoslovakia. 

"Mechanical and Aerospace Engineering, State University of New York at 
Buffalo, Buffalo, NY 14260. Fellow ASME. 

Contributed by the Applied Mechanics Division of the American Society of 
Mechanical Engineers. Manuscript received by the ASME Applied Mechanics 
Division, Dec. 21, 1988; final revision, Jan. 18, 1991. 

Journal of Applied Mechanics DECEMBER 1991, Vol. 58 /1101 

Copyright © 1991 by ASME
Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

here, the inertia matrix A\ is assumed to be nonsingular so 
that Eq. (1) may be written equivalently as 

Iq(t)+H2q(t)+H,q(t)=¥(t) (2) 

whe.rzH2=A{lA2,H3 = AilA3,¥(t)=A^li(t) and/denotes 
the n x n identity matrix. The matrices H2 and H3 are asym­
metric and possibly singular to allow for rigid body motion 
and the possibility of semi-definite damping. 

The eigenvalue problem associated with Eq. (2) determines 
the solution to the forward problem of calculating both the 
free and forced response of the system. The associated eigen­
value problem is 

L(\)x= (\2 + XH2 + H3)\ = 0 (3) 
for nonzero vectors x. The complex scalar X is called an ei­
genvalue and x a right eigenvector (possibly complex) of Eq. 
(3). The right eigenvectors have the physical notion of mode 
shapes, while the eigenvalues X contain the natural frequencies 
and damping ratios of the system. The matrix L(\) = 
\2 + \H2 + H3 is called a matrix polynomial of order 2. Since 
the coefficient matrices are n x n, the solution of (3) yields In 
values of X and x, denoted (X,-, x,). The forward problem con­
sists of calculating X, and xf given H2 and / /3 , while the inverse 
problem addressed here consists of calculating the matrices H2 

and H3 given the spectral data (X,-, x,), assuming the structure 
assigned by Eq. (3). 

Also of use in the inverse problem are the left eigenvectors 
denoted y, which satisfy 

y/L(X,)=0. (4) 

The vectors y, and x, satisfy certain orthogonality conditions. 
The eigenvalue problem of Eq. (3) can also be represented in 
state space form by defining the 2n x 2« state matrix 

0 I 
-H2 

(5) 

The eigenvalue problem for the matrix A becomes 

(,4-X,/)q, = 0 (6) 

where the constant nonzero vector q; is related to the right 
eigenvector x,- by 

q,= (7) 

The eigenvalues of A and L(X) are identical. Equation (6) is 
the statement of the matrix eigenvalue problem. Inverse cal­
culations based on the state space eigenvalue problem of Eq. 
(6) involve inversion of either a coefficient matrix or of the 
Jordan form, both of which may be singular in the case con­
sidered here. 

An alternative form of the state matrix suggested by Danek 
(1982) can be employed to avoid the inversion of either a 
coefficient matrix or the Jordan form. This equivalent form 
is 

(P-XA)u,- = 0 (8) 

where X,- have the same values as in (6) and A = N~ 1P. Equation 
(8) is also known as the generalized eigenvalue problem and 
the In x In partitioned matrices N and P are given by 

N= 
H2 

I 0 ,P = I (9) 

respectively. Note that Nis nonsingular even if H2 is singular. 
The Jordan form of the state matrix A is given by the 2« x In 

block diagonal matrix J which satisfies 

QTXAQ = J. (10) 

The blocks of J are upper triangular with the eigenvalues of 
A along the diagonal. The super diagonals are ones or zeros 
depending on the nature of the root X,- (i.e., 1 if defective and 
0 otherwise). The nonsingular matrix Q consists of the Jordan 

chain vectors. The vectors of the Jordan chain are generalized 
eigenvectors (see Ortega, 1987, for instance). For the special 
structure of the state matrix of Eq. (5), the matrix Q can be 
written as 

X 
XJ (11) 

where X is the Jordan chain matrix associated with matrix 
polynomial of Eq. (3). In the case that A has all simple 
eigenvalues, the right eigenvectors can be used to form the 
matrix X. 

The equivalent "Jordan" form for the eigenvalue problem 
of Eq. (8) is 

NQJ= PQ or VTPQ = / (12) 

where 

VTNQ = (13) 

Here, / i s as before and F is defined by the matrix Yto be 

VT=[YT JYT] (14) 

where Y is the matrix of elements of left eigenvectors of (3). 
The matrix VT can be related to the matrix Q from the state 
space model by multiplying Eq. (13) from the right to get 

Q~l=VTN. (15) 

This last expression provides a means of treating inverse cal­
culations without explicitly calculating the inverse of Q or J. 

Danek solved the problem of determining the matrices P 
and N given the data J and Q for the case that H2 and H3 are 
nonsingular. The problem addressed below is to determine H2 

and / /3 from X, Y, and J for the case when H2 and H3 are 
singular as well as the case when only part of X, Y, and J are 
known. 

Solution to the Inverse Problem 
In order to consider rigid-body modes it is necessary to 

calculate the state matrix A = QJQ~[ without inverting the 
matrix Q, and hence / which is singular. Substitution of Eq. 
(15) into the expression for A yields 

A = 
0 

-H3 

I 
-H2 

= QJVTN. (16) 

Comparing and equating the four partitions of the matrix 
identity of Eq. (16) yields four matrix equations in the two 
unknown matrices H2 and H3. One of these equations (cor­
responding to the 1-1 block) yields an identity and the other 
three blocks yield 

/ / , = -XJ2YT 

H3=(XJ2YT)2-XJ3YT 

(17) 

(18) 

I=XJYT. (19) 

This last expression is a normalization condition. These mat­
rices can now be further partitioned to solve the tuning problem 
and provide a direct extension of Danek (1985) to the singular 
coefficient case. 

Consider then repartitioning X, J, and Y as 

X=\Xi X2],J=[Jl J2) and Y=[YX Y2}. (20) 

Here, 7, is nxm and J2 is (2n-m)x(2n-m). With these 
partitions, Eqs. (17), (18), and (19) become 

(21) H2=-(XlJ
2
lY{+X2J

2
2Yl) 

H,= (X,J\Y[ +X2JlYiY- (XiJiYt +X2J$YI) (22) 

I=X,J,YT,+X2J2Yl (23) 

Note that these matrices must be partitioned such that / i and 
J2 are whole Jordan blocks. 

Let the original (known) system matrices be denoted by /0 . 
X0, Y0, H20, and //30. Quantities of the new or tuned system 
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are denoted by J, X, Y, H2, and H}. The corrections to the 
original system are denoted by A/, AX, AY, AH2, and A//3. 
Thus, the spectral properties of the new system are 

J=J0 + AJ,X=X0 + AXandY=Y0 + A Y. (24) 

Equation (24) provides a solution to the tuning problem when 
substituted into Eq. (17) and (18). That is if J0, X0, and Y0 

are computed from known values of H2 and Hit say from a 
finite element model, then this model can be updated, or tuned, 
by assigning values of AJ, AX, and AY to yield a new, or 
modified, set of coefficient matrices H2 and Hj,. 

e= 

0.2679 + 0.0941/ 
-0.3305-0.3538/ 

0.0626 + 0.2597/ 
-0.5197 + 0.2716/ 

1. 
-0.4803-0.2716/ 

the three degree-of-freedom system with semi-definite damping 
and stiffness given by Eq. (2) with 

H2 

1 - 1 0 
-1 2 - 1 
0 - 1 1 

and H-, = 

The spectral solution of the system reveals that the matrices / 
and Q are defined by 

"o f 
7io = diag(- 1.41 ±1.0592/, - . 5 9 ± 1.028/), J2o = 

0 0 
and 

0.1732 + 0.6241/ 1 0 
0.2462 + 0.1073/ 1 0 

-0.4195 + 0.7315/ 1 0 
-0.7443 + 0.1900/ 0 1 
-0.2557 + 0.1900/ 0 1 

1 0 1 

0.2679 + 0:0941/ 
-0.3305-0.3538/ 

0.0626 + 0.2597/ 
-0.5197 + 0.2716/ 

1. 
-0.4803-0.2716/ 

0.1732 + 0.6241/ 
0.2462 + 0.1073/ 

-0.4195 + 0.7315/ 
-0.7443 + 0.1900/ 
-0.2557 + 0.1900/ 

1. 

Partial Spectral Data 
The problem of more practical interest is that if modifying 

H2 and H3 by changing only part of the spectral data (see 
Minas and Inman, 1990 and the references therein). In this 
case assume that the matrices of incomplete spectral infor­
mation J10, Xl0, Yl0 are known for the first m eigenvalues and 
associated eigenvectors. The remainder of the spectral prop­
erties J2o, X2o, and Y20 are not being changed and are unknown. 
The original system, according to Eqs. (21) and (22), can be 
written as 

H2i (Xl0J 10 Yio + X20J20 Y2o) 

Hv (XloJi0Yio + X2oJ2oY20) - (X[QJ IO 5̂ io + X2nJ 20^20^20) 

with the condition that 

(X10J10Y10 + X20J20Y20) : 

(26) 

(27) 

Following Eq. (24), the new spectral matrices become 
Ji = J10 + A710, Xx = Xm + AXl0 and Y{ = Yl0 + A Yw, so that the 
system matrices become 

(28) 

(29) 

H2— — {X\J {Y\ +X2%J2§Y2Q) 

(X\J\Y\ +X20J'20^20) " Hi- (X\J\Y\ +^20^20^20) — (X\J{Y\ +^20^20^20 

with the condition that 

X^Yf+X^JioY^L (30) 
By subtracting equations (25) and (26) from (28) and (29), the 
expressions for H2 and H3 become 

H2 = H20 + AH20 (31) 

Hi=Hw + AHM (32) 

where the reconstruction associated with the changes AJl0, 
AA^o, and AY10 is given by 

A//2o= - (XrfYl-XuJtoYlo) (33) 

AH30 = H2
2-H

2
2Q~ (XrfYl-XuJloYfo). (34) 

These formulas specify the changes in original systems due to 
a new partial set of spectral data. This provides a solution to 
the tuning problem using only a part of the spectral data for 
the case that the coefficient matrices are potentially singular: 

Example 
For the sake of illustration, the above inverse formulas are 

applied to a simple example. For simplicity of presentation, 
the matrix A {is taken to be the identity matrix so that H2 = A2 

and H}=A3. The example illustrates both the use of Eq. (21) 
and (22) as well as providing an example of the correctness of 
the results for a system with singular coefficients. Consider 

Here, 1 = v — 1 - Let the new spectral matrix be 
7i = diag[-1.4228 + 2.6541/, -0.5772 + 1.521/, -1.4228 
- 2.6541/, -0.5772 - 1.521/] and the new matrix Qx is given 
by (11) where the matrix X is obtained from X = [I 0]Q. By 
using the inverse formula (21) and (22), the matrices H2 and 
H3 become 

H2 

(25) and 

H, 

0.7378 
-0.8236 
0.0858 

3.8263 
-4.2819 
0.4556 

-0.8257 
2.0869 

-1.2612 

-3.9324 
6.4914 

-2.5590 

0.0879 
-1.2632 
1.1753 

0.1061 
-2.2095 
2.1034 

To see that the method works, note that equation (3) with 
these values of H2 and H3 yield the Jordan matrix given by 
the matrix Jt. 

Summary 

Lancaster et al. have formulated a solution of the inverse 
eigenvalue problem in an abstract form resulting in formulas 
for calculating velocity and position coefficients from spectral 
data by examining second-order matrix polynomials. Danek 
solved a similar inverse problem by examining the generalized 
eigenvalue problem. The work presented here uses a combi­
nation of state space Jordan form and the equivalent Jordan 
form for a generalized eigenvalue problem to develop a method 
of calculating the matrix coefficients of velocity and displace­
ment without calculating the inverse of the Jordan form. This 
yields a solution of the inverse problem for systems with rigid-
body modes. An illustration of how to apply this solution to 
the model correction problem is also given. 

The results presented here have direct application to the 
model correction problem for finite element models of large 
space structures which exhibit both asymmetric coefficient 
matrices and rigid-body modes. 
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An Exact Solution of Oscillatory Couette Flow in a 
Rotating System 

B. S. Mazumder18 

An exact solution of oscillatory Ekman boundary layer flow 
bounded by two horizontal flat plates, one of which is oscil­
lating in its own plane and other at rest, is obtained. The effect 
of coriolis force on the resultant velocities and shear stresses 
for steady and unsteady flow has been studied. 

Introduction 
When a vast expanse of viscous fluid bounded by an infinite 

flat plate is rotating about an axis normal to the plate, a layer, 
known as Ekman Layer, is formed near the plate where the 
viscous and coriolis forces are of the same order of magnitude 
(Batchelor, 1967). The effect of uniform transverse magnetic 
field with or without suction was investigated by Gupta 
(1972a,b), Soundalgekar and Pop (1973), Mazumder et al. 
(1976), and others. Mazumder (1975) studied the effect of free-
stream oscillations of flow of an electrically conducting fluid 
past an infinite plate in a rotating system. Solution was ob­
tained for small amplitude of oscillation in the free stream 
using the Lighthill's technique (1954). Several investigations 
have been carried out on various types of flow in a rotating 
system such as "Poiseuille flow" by Vidyanidhu and Nigam 
(1967) and "plane Couette flow" by Jana and Datta (1977). 

The main objective of this article is to present an exact 
solution to study the oscillatory flow between two parallel 
plates with an externally imposed pressure gradient in presence 
of coriolis force. In the rotating system, the top boundary wall 
oscillates in its own plane about a mean velocity. The study 
of hydrodynamic flow confined between two horizontal walls 
responds to oscillations in one boundary wall in a rotating 
system has remained untreated. The hydrodynamic and hy-
dromagnetic flow between two parallel plates, one of which 
is at rest, the other oscillating in its own plane is recently studied 
by Vajravelu (1988) which is a particular case of the present 
paper. 

Mathematical Formulations and Solution 
Consider the flow of a viscous incompressible fluid between 

two parallel flat plates separated by a distance d, the lower 
one is at rest, the other oscillating in its own plane with a 
velocity U(t) about a constant mean velocity U0 in the x-
direction where x is taken on the lower rest plate. The z-axis 
is normal to the plates and the j'-axis is perpendicular to the 
xz-plane. Since the plate z = 0 is infinite in extent all the 
physical variables, except pressure, depend on z and time / 
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only. The equation of continuity V »u = 0 gives w = 0, where 
u = (w, v, w). Under the assumptions of which the Navier-
Stokes equations are written in a rotating frame of reference 
as 

(1) 
du 

dt~ 

dv 

dt' 

1 dp* dlu „ 
---z-+v-T2 + 2Qv 
p ox dzr 

1 dp* dlv 
-+v—2-2Qu 

p by ozr 
(2) 

0 = (3) 
1 dp* 

p dy 

where (w, v, 0) are the velocity components along x, y, and z-
directions, respectively, v is kinematic viscosity, Q is the con­
stant angular velocity about z-axis normal to the plate, and 
p* is the modified pressure. The boundary conditions for the 
velocity field are 

H = t> = 0 a t z = 0 

u=U(t), v = 0 at z = d. (4) 

Under the usual boundary layer approximations, eliminating 
the modified pressure gradients from Eqs. (l)-(4), the Navier-
stokes Eqs. (1) and (2) can be rewritten as: 

du dU d2u „„ 
— = — + v —r + 2UV 
dt dt dz2 

dv d2v 

aT"a?-2fi(M- U). 

(5) 

(6) 

The oscillating velocity U(t) of the plate about the mean U0 

is considered in the form of: 

U(t) = U0[\ + \/2eeio"} (7) 
where w is the frequency of oscillation; U0 and e are constants. 
Here, of course, only the real part contributes to the physical 
meaning. 

Equations (5) and (6) can be written, in complex form, as 

dq d2q dU 

* = "a?+a-2iD(«-I / ) (8) 

and the boundary conditions (4) are 

q = 0 at z = 0 

q=U(t)atz = d (9) 

where q = u + iv. 
In order to solve Eq. (8) subject to the boundary conditions 

(9), we look for a solution of the form 

q(t,n)=U0[q0(r,) + l/2eq, (ij)e/w'] (10) 

in which 77 = z/d, q0 = u0 + iv0, q\ = U\ + iv,. 
Substituting Eqs. (7) and (10) in (8) and (9), and equating 

steady and periodic terms separately, we get 

d2q0 

dt\ 

d2qx 

d-q2 ' 

f-2iKq0=-2iK 

i(\ + 2K)ql=-i(\ + 2K) 

Qo = 0, <?i = 0 at 17 = 0 

q0=\, <7i = 1 a t i ? = l 

(11) 

(12) 

where K = Q,d2/v is the rotation parameter and X = wd2/v 
is the frequency parameter. 

Solving Eq. (11) with the conditions (12), we get 

sinh[VA-( 1 + 0(1-1?)] 

sinh[Vtf(l + /)] K ' 

sinh[V(A:+X/2)(l+ 0(1-1?)] 

sinh[VCfiT+X/2)(l + 0] ' 

0o=l -

qx = \ 
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An Exact Solution of Oscillatory Couette Flow in a 
Rotating System 

B. S. Mazumder18 

An exact solution of oscillatory Ekman boundary layer flow 
bounded by two horizontal flat plates, one of which is oscil­
lating in its own plane and other at rest, is obtained. The effect 
of coriolis force on the resultant velocities and shear stresses 
for steady and unsteady flow has been studied. 

Introduction 
When a vast expanse of viscous fluid bounded by an infinite 

flat plate is rotating about an axis normal to the plate, a layer, 
known as Ekman Layer, is formed near the plate where the 
viscous and coriolis forces are of the same order of magnitude 
(Batchelor, 1967). The effect of uniform transverse magnetic 
field with or without suction was investigated by Gupta 
(1972a,b), Soundalgekar and Pop (1973), Mazumder et al. 
(1976), and others. Mazumder (1975) studied the effect of free-
stream oscillations of flow of an electrically conducting fluid 
past an infinite plate in a rotating system. Solution was ob­
tained for small amplitude of oscillation in the free stream 
using the Lighthill's technique (1954). Several investigations 
have been carried out on various types of flow in a rotating 
system such as "Poiseuille flow" by Vidyanidhu and Nigam 
(1967) and "plane Couette flow" by Jana and Datta (1977). 

The main objective of this article is to present an exact 
solution to study the oscillatory flow between two parallel 
plates with an externally imposed pressure gradient in presence 
of coriolis force. In the rotating system, the top boundary wall 
oscillates in its own plane about a mean velocity. The study 
of hydrodynamic flow confined between two horizontal walls 
responds to oscillations in one boundary wall in a rotating 
system has remained untreated. The hydrodynamic and hy-
dromagnetic flow between two parallel plates, one of which 
is at rest, the other oscillating in its own plane is recently studied 
by Vajravelu (1988) which is a particular case of the present 
paper. 

Mathematical Formulations and Solution 
Consider the flow of a viscous incompressible fluid between 

two parallel flat plates separated by a distance d, the lower 
one is at rest, the other oscillating in its own plane with a 
velocity U(t) about a constant mean velocity U0 in the x-
direction where x is taken on the lower rest plate. The z-axis 
is normal to the plates and the j'-axis is perpendicular to the 
xz-plane. Since the plate z = 0 is infinite in extent all the 
physical variables, except pressure, depend on z and time / 
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only. The equation of continuity V »u = 0 gives w = 0, where 
u = (w, v, w). Under the assumptions of which the Navier-
Stokes equations are written in a rotating frame of reference 
as 

(1) 
du 

dt~ 

dv 

dt' 

1 dp* dlu „ 
---z-+v-T2 + 2Qv 
p ox dzr 

1 dp* dlv 
-+v—2-2Qu 

p by ozr 
(2) 

0 = (3) 
1 dp* 

p dy 

where (w, v, 0) are the velocity components along x, y, and z-
directions, respectively, v is kinematic viscosity, Q is the con­
stant angular velocity about z-axis normal to the plate, and 
p* is the modified pressure. The boundary conditions for the 
velocity field are 

H = t> = 0 a t z = 0 

u=U(t), v = 0 at z = d. (4) 

Under the usual boundary layer approximations, eliminating 
the modified pressure gradients from Eqs. (l)-(4), the Navier-
stokes Eqs. (1) and (2) can be rewritten as: 

du dU d2u „„ 
— = — + v —r + 2UV 
dt dt dz2 

dv d2v 

aT"a?-2fi(M- U). 

(5) 

(6) 

The oscillating velocity U(t) of the plate about the mean U0 

is considered in the form of: 

U(t) = U0[\ + \/2eeio"} (7) 
where w is the frequency of oscillation; U0 and e are constants. 
Here, of course, only the real part contributes to the physical 
meaning. 

Equations (5) and (6) can be written, in complex form, as 

dq d2q dU 

* = "a?+a-2iD(«-I / ) (8) 

and the boundary conditions (4) are 

q = 0 at z = 0 

q=U(t)atz = d (9) 

where q = u + iv. 
In order to solve Eq. (8) subject to the boundary conditions 

(9), we look for a solution of the form 

q(t,n)=U0[q0(r,) + l/2eq, (ij)e/w'] (10) 

in which 77 = z/d, q0 = u0 + iv0, q\ = U\ + iv,. 
Substituting Eqs. (7) and (10) in (8) and (9), and equating 

steady and periodic terms separately, we get 

d2q0 

dt\ 

d2qx 

d-q2 ' 

f-2iKq0=-2iK 

i(\ + 2K)ql=-i(\ + 2K) 

Qo = 0, <?i = 0 at 17 = 0 

q0=\, <7i = 1 a t i ? = l 

(11) 

(12) 

where K = Q,d2/v is the rotation parameter and X = wd2/v 
is the frequency parameter. 

Solving Eq. (11) with the conditions (12), we get 

sinh[VA-( 1 + 0(1-1?)] 

sinh[Vtf(l + /)] K ' 

sinh[V(A:+X/2)(l+ 0(1-1?)] 

sinh[VCfiT+X/2)(l + 0] ' 

0o=l -

qx = \ 
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Fig. 1(a, b) Resultant velocity R0 and phase angle 0o due to u„ and v0 
for steady flow 

The solution (13) corresponds to the steady part which gives 
the primary u0 and secondary v0 velocity components; and the 
solution (14) gives the fluctuating part of the flows «i and v\. 
Equation (10) can be rewritten as 

q= U0[(u0+iv0) + l/Zeiin + mtf*]. (15) 

The amplitudes and phase differences due to the primary 
and secondary velocities for the steady flow are given by 

Table 1 Values of r0r and 00r for various K 

Ro = 'J(u2
0+v2

0), (16) 0O = tan (v0/u0), 

and for unsteady flow 

Ri = yf{u2i + v{), di=taa-\vi/ui). (17) 

The amplitude and phase differences of shear stresses at ij = 
0 due to the primary and secondary flow are given for steady 
flow by: 

Tor = J(T2ox + T2r,y), 60T = tan" ' (TO/TO*) , (18) 

and for unsteady flow 

r i r = V ( r L + r ^ ) , ^ t a i r V i j A , , ) . (19) 

The steady part of the velocity field and resultant shear stress 
at the plate ij = 0 due to rotation has already been discussed 
by Jana and Datta (1976) neglecting the pressure gradients. 

Discussion of Results 

The resultant velocity R0 and the phase angle 80 due to the 
primary and secondary flow for the steady part are plotted 
against r\ for various values of K in Fig. \{a, b). It is found 
that the resultant velocity R0 increases with increase in K and 
it becomes approximately one for large rotation in the upper 
half of the channel width. For large values of K, we get u0 

and v0 from Eq. (13) as: 

w0 = 1 - exp { - V/b7 ] cosVki) (20) 

v0 — exp { - V&?7) sinVrbj (21) 

which represents a spiral distribution of velocity. These equa­
tions show the existence of a thin boundary layer of order 
0(\/*jK) in the vicinity of the walls and is known as Ekman 
layer which decreases with increase in rotation. The phase angle 
60 due to the primary and secondary flows increases with small 
rotation whereas it decreases with large rotation and is ap­
proximately zero in the upper half of the channel. The resultant 
shear stress at i/ = 0 and the phase angle due to shear stresses 
are given in Table 1. It is found that the resultant shear stress 
r0r increases with increase in rotation parameter K, but the 
phase angle 60T first increases then decreases with rotation K. 

K 

0.5 
1.0 
2.0 
5.0 

25.0 
50.0 

Tor 

1.074350 
1.265549 
1.787115 
3.145135 
7.070535 
9.999997 

0Or 

0.313421 
0.539750 
0.748869 
0.807587 
0.785447 
0.785397 

The distributions of primary and secondary velocity com­
ponents of fluctuating part are shown in Fig. 2(a, b) for several 
values of frequency parameter X and the rotation parameter 
K. From the figure, we notice that the primary velocity Wj 
increases for both frequency and rotation parameters; and it 
becomes nearly one in the upper half of the channel for large 
X and K. The secondary velocity v\ increases with small K, 
whereas for large K, it decreases in the upper half and increases 
in the lower half of the channel. It is also seen that for large 
values of K there is an incipient flow reversal near the moving 
plate and the secondary velocity approximately becomes zero 
in the upper half of the channel. The resultant velocity R\ and 
the phase angle di, due to the primary and secondary velocities, 
are plotted in Fig. 3(o, b). For large values of frequency X and 
rotation K, the expressions of U\ and V\ from the Eq. (14) can 
be written as: 

w, = 1 - exp { - V(tf + X/2)TJ ) cos(tf+ X/2)1/2ij (22) 

Vi ̂  exp | - V(A"+ X/2)TJ ) sia(K+ X/2)1/2r/ (23) 

which show the existence of thin Ekman boundary layer of 
order 0(l/(K + X/2)1/2) in the vicinity of the walls and also 
represent a spiral distribution. The appearance of boundary 
layer to the lower stationary plate is due to the imposed external 
pressure gradient exactly in phase with the motion of the top 
wall, whereas boundary layer occurs next to the moving wall 
when no external pressure gradient is applied to the flow. It 
is interesting to note that the oscillatory Ekman boundary layer 
decreases rapidly due to the combined effect of rotation and 
frequency. 

The shear stresses rix and riy due to primary and secondary 
flow at the plate r\ = 0 are shown in Fig. 4(a, b). For various 
values of K, the resultant shear stress rir is also shown in Fig. 
4(a). It is seen from the figure that the shear stresses increase 
with increase in X and K, but for large rotation, both T)X and 
T\y are almost linear in X. The phase angle 0 l r due to the shear 
stresses first increases, then decreases, with X for small coriolis 
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Fig. 4(a, b) Shear stresses at the plate ij = 0 for unsteady flow 
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Table 2 Values of phase angle 9U for various A and K 
\/K 

0.0 
1.0 
2.0 
3.0 
5.0 
10.0 
16.0 

.5 
.313421 
.539749 
.674830 
.748869 
.805256 
.803758 
.787964 

1.0 

.539749 

.674830 

.748869 

.787152 

.812190 

.800047 

.786783 

2.0 

.748869 

.787152 

.805256 

.812190 

.811024 

.793824 

.785250 

5.0 
.807587 
.803758 
.800047 
.796702 
.791431 
.785250 
.784216 

25.0 

.785447 

.785449 

.785450 

.785449 

.785447 

.785433 

.785415 

force, whereas it is almost .independent of X for large coriolis 
force and the values are given in Table 2. 
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Complete Crack-Tip Shielding of the Mode III Crack 
in a Work-Hardening Solid 

J. Weertman 

The crack-tip shielding stress intensity factor I, for the mode 
III crack in a work-hardening solid is equal to L = -K, where 
K is the applied stress intensity factor. That is, the crack tip 
is perfectly shielded. This result is shown two ways: from the 
dislocation shielding and from the dislocation crack extension 
force. 

1 Introduction 
The tip of the Griffith crack in an elastic solid is not shielded 

because no plastic zone containing nonredundant dislocations 
surrounds the crack tip. The dislocations in the plastic zone 
around the tip of a mode III crack in an elastic perfectly plastic 
solid have been shown to shield perfectly (Weertman, 1986, 
1989a). An argument can be made that the tip of a crack in 
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Fig. 1 Dislocation and stress trajectories and constant stress magni­
tude contour (from Weertman, 1989b) 

a work-hardening solid is only partially shielded because, by 
varying the exponent n of the power-law work-hardening equa­
tion from 1 to 0, it is possible to change continuously from 
the elastic solid to the elastic perfectly plastic solid situation. 
Intuitively, it might be reasonable to expect that the shielding 
various continuously rather than changing abruptly when n is 
changed from a value very close to the value 1 to the elastic 
solid value of 1. In this Note the shielding factor for the 
stationary mode III crack in the work-hardening solid is found 
in two ways. It is shown, contrary to intuition, that the crack-
tip shielding always is perfect for 0 < n < 1. 

Figure 1 shows the dislocation trajectories and the circular 
constant stress and strain magnitude contours in the plastic 
zone of the stationary mode III crack in a work-hardening 
solid. The stress magnitude a and the strain magnitude e are 
related by a = ao(.e/e0)" where <J0 and e0 = <r/2G are the yield 
stress and strain and G is the shear modulus. The exponent n 
is in the range 0 < n < 1. The elastic solid has n = 1 and the 
elastic perfectly plastic solid has n = 0. The circular contours 
are centered a distance c ahead of the crack where c = [(1 - «)/ 
(1 +«)]/• (Rice, 1967; Weertman, 1986, 1989b). The stress vec­
tor solution in the shifting center cylindrical coordinate system 
is a = 0yzix + axziy = o(r)[cos(8/2\ix + sm(6/2)iy]. The function 
o(r) is equal to a(r) = a0(r0/r) ( ' where the radius of the 
plastic zone is r0 = K2/2wa0

2. In the plastic zone the nonre­
dundant (screw) dislocation density (B(r, 6), expressed as net 
Burgers vector per unit area, is (Weertman, 1986, 1989b) 

£2. 
rG 

1-n cos-. (1) 
( l + H ) + ( l - f l ) C O S 0 

Here, r and d are expressed in the shifting center coordinate 
system. The nonredundant dislocations given by this equation 
shield the crack tip. 

2 Dislocation Crack-Tip Shielding 
A shielding screw dislocation of Burgers vector b situated 

at a distance rt and azimuthal angle 0, from the crack tip reduces 
the stress intensity factor of the crack tip by the amount L = 
- G&(l/2nri)l/2cos(fl,/2) (Rice and Thompson, 1974; Weert­
man, 1984). Thus, the total shielding produced by the Eq. (1) 
density is 

G 

2ir 

»7T » r 0 j 

^ 

(! + «) + (l-n)cosfl 
l + « 

cos - rdrdO 
2 

= —Hn)K, (2) 
•K 

where I(n) is given by 

/ ( -Kj — cos - cos -7 dO. 
2 2 
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Table 2 Values of phase angle 9U for various A and K 
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force, whereas it is almost .independent of X for large coriolis 
force and the values are given in Table 2. 
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Complete Crack-Tip Shielding of the Mode III Crack 
in a Work-Hardening Solid 

J. Weertman 

The crack-tip shielding stress intensity factor I, for the mode 
III crack in a work-hardening solid is equal to L = -K, where 
K is the applied stress intensity factor. That is, the crack tip 
is perfectly shielded. This result is shown two ways: from the 
dislocation shielding and from the dislocation crack extension 
force. 

1 Introduction 
The tip of the Griffith crack in an elastic solid is not shielded 

because no plastic zone containing nonredundant dislocations 
surrounds the crack tip. The dislocations in the plastic zone 
around the tip of a mode III crack in an elastic perfectly plastic 
solid have been shown to shield perfectly (Weertman, 1986, 
1989a). An argument can be made that the tip of a crack in 
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Fig. 1 Dislocation and stress trajectories and constant stress magni­
tude contour (from Weertman, 1989b) 

a work-hardening solid is only partially shielded because, by 
varying the exponent n of the power-law work-hardening equa­
tion from 1 to 0, it is possible to change continuously from 
the elastic solid to the elastic perfectly plastic solid situation. 
Intuitively, it might be reasonable to expect that the shielding 
various continuously rather than changing abruptly when n is 
changed from a value very close to the value 1 to the elastic 
solid value of 1. In this Note the shielding factor for the 
stationary mode III crack in the work-hardening solid is found 
in two ways. It is shown, contrary to intuition, that the crack-
tip shielding always is perfect for 0 < n < 1. 

Figure 1 shows the dislocation trajectories and the circular 
constant stress and strain magnitude contours in the plastic 
zone of the stationary mode III crack in a work-hardening 
solid. The stress magnitude a and the strain magnitude e are 
related by a = ao(.e/e0)" where <J0 and e0 = <r/2G are the yield 
stress and strain and G is the shear modulus. The exponent n 
is in the range 0 < n < 1. The elastic solid has n = 1 and the 
elastic perfectly plastic solid has n = 0. The circular contours 
are centered a distance c ahead of the crack where c = [(1 - «)/ 
(1 +«)]/• (Rice, 1967; Weertman, 1986, 1989b). The stress vec­
tor solution in the shifting center cylindrical coordinate system 
is a = 0yzix + axziy = o(r)[cos(8/2\ix + sm(6/2)iy]. The function 
o(r) is equal to a(r) = a0(r0/r) ( ' where the radius of the 
plastic zone is r0 = K2/2wa0

2. In the plastic zone the nonre­
dundant (screw) dislocation density (B(r, 6), expressed as net 
Burgers vector per unit area, is (Weertman, 1986, 1989b) 

£2. 
rG 

1-n cos-. (1) 
( l + H ) + ( l - f l ) C O S 0 

Here, r and d are expressed in the shifting center coordinate 
system. The nonredundant dislocations given by this equation 
shield the crack tip. 

2 Dislocation Crack-Tip Shielding 
A shielding screw dislocation of Burgers vector b situated 

at a distance rt and azimuthal angle 0, from the crack tip reduces 
the stress intensity factor of the crack tip by the amount L = 
- G&(l/2nri)l/2cos(fl,/2) (Rice and Thompson, 1974; Weert­
man, 1984). Thus, the total shielding produced by the Eq. (1) 
density is 

G 

2ir 

»7T » r 0 j 
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(! + «) + (l-n)cosfl 
l + « 

cos - rdrdO 
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= —Hn)K, (2) 
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where I(n) is given by 

/ ( -Kj — cos - cos -7 dO. 
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Note that r, = [2r/(l + n)] {cos2(0/2) + n2sin2(0/2))1/2 and 
cos2(0,/2) = (1/2) (1 + cosfl,) = (1/2) {1 + ([cos2(0/2) -
nsin2(0/2)]/[cos2(0/2) + «2sin2(0/2)]1/2)l. The numerical in­
tegration of the integral I(n) reveals that this integral has the 
remarkable property that, regardless of the value of n (in the 
range 0 < n < 1), I(n) = ir. Thus, L = —K and the crack 
tip is perfectly shielded. 

(A reviewer questioned whether (2) is valid because L for a 
single dislocation is found in a linear elastic solid whereas the 
plastic stress-strain curve of the plastic zone is nonlinear. In 
(2) the smeared dislocations could be clumped into numerous 
discrete dislocations (a thousand "points of light") each sur­
rounded by a linear elastic matrix. Equation (2) would give 
virtually the same result. This equation indeed is valid. Dis­
location motion itself produces the nonlinear stress strain curve. 
If the solid were a nonlinear elastic one, (2) would not be 
valid.) 

3 Dislocation Crack Extension Force 

The integrated "force" (that is, the integrated product of 
Burgers vector and resolved stress component) directed parallel 
to the crack plane on all the nonredundant screw dislocations 
that exist on one side of the crack must equal the Eshelby-
Rice /-integral-type expression K2/2G of the mode III crack. 
The force on a screw dislocation of Burgers vector b in this 
direction is given by the Peach-Koehler expression anb. Divide 
the nonredundant dislocations into two groups. One group is 
the "external" (to the crack plane) nonredundant dislocations 
that exist within the plastic zone. The other group is the "in­
ternal" (between the crack plane surfaces) nonredundant dis­
locations that exist on the crack plane. The integrated force 
Fe exerted on the external dislocations is resisted by the crystal 
lattice of the solid. This force, therefore, cannot produce ex­
tension of the crack tip. The net force F,- exerted on the internal 
dislocations is resisted by the interatomic stresses across the 
crack plane which resist growth of the crack. Thus, the force 
F, does act to cause crack extension. The effective crack-tip 
stress intensity factor K, is given by K2,/2G = F, = K2/2G -
Fe. In the limit of a continuum solid the interatomic forces 
must be considered to be able to rise to an infinite value. A 
free surface is produced at an infinitely small separation of 
the crack faces. The product of infinite interatomic stress and 
the critical, infinitely small separation is finite and equal to 
twice the surface energy. Hence, the total Burgers vector of 
the mternal dislocations just ahead of the crack is infinitely 
small but the net Peach-Koehler force on them can be finite 
(for the Griffith crack in an elastic solid) or zero. This force 
is Fj because the Peach-Koehler force on the internal dislo­
cations that sit on the crack plane between the crack center 
and a crack tip is zero. Note that the surface traction an is 
zero across the crack faces. (A more extended discussion on 
the dislocation crack extension force is given in Weertman 
(1991).) 

The net force Fe exerted on the external dislocations, which 
is found from an easy integration over the plastic zone of the 
product of the dislocation density (B and the shear stress com­
ponent ayz = ao(r0/r)"/([+n) cos(0/2), is 

i
T P r° (r \ — 8 K2 

J <B i j ) (1 + ">cos - rdrdd = irr04 = — (3) 
Therefore, the effective stress intensity factor K, at the crack 
tip is A', = 0 and the effective shielding stress intensity factor 
is L = -K. Both methods of solution, therefore, give the 
same answer. 

4 Discussion 

The two calculations above for the mode III crack in a work-
hardening solid show explicitly that the crack-tip shielding is 

perfect. This result does not mean that no stress singularity is 
present at the crack tip. The HRR stress singularity does exist 
at the tip. This stress singularity is weaker than an inverse 
square root of radial distance singularity. The perfect shielding 
implies that no crack extension force exists to start crack 
growth. 
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Introduction 
Cardiac tissue is probably best characterized as a solid-fluid 

mixture exhibiting nonlinearly anisotropic, regionally heter­
ogeneous, and perhaps incompressible behavior. Moreover, 
the heart has an irregular geometry and is subject to complex 
boundary conditions. Thus, it is difficult to rigorously study 
the mechanics of the heart analytically or computationally, 
and one must often rely on experimental methods. Unfortu­
nately, most measurements are global in nature; as for ex­
ample, measurements of intra-ventricular cavity pressure and 
volume. There is a need, therefore, for a reliable measurement 
technique for supplying regional information on cardiac me­
chanics. 

Recent experimental data suggest that indentation tests on 
cardiac tissue may be useful for identifying regional differences 
in material behavior and estimating regional stresses in the 
heart (Halperin et al., 1987). Briefly, isolated, perfused cardiac 
tissue was subjected to in-plane biaxial stretching, with small 
indentations superimposed in the out-of-plane direction using 
a flat-ended circular punch. The data revealed that: (a) the 
indentation force was linearly related to the punch penetration 
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that exist within the plastic zone. The other group is the "in­
ternal" (between the crack plane surfaces) nonredundant dis­
locations that exist on the crack plane. The integrated force 
Fe exerted on the external dislocations is resisted by the crystal 
lattice of the solid. This force, therefore, cannot produce ex­
tension of the crack tip. The net force F,- exerted on the internal 
dislocations is resisted by the interatomic stresses across the 
crack plane which resist growth of the crack. Thus, the force 
F, does act to cause crack extension. The effective crack-tip 
stress intensity factor K, is given by K2,/2G = F, = K2/2G -
Fe. In the limit of a continuum solid the interatomic forces 
must be considered to be able to rise to an infinite value. A 
free surface is produced at an infinitely small separation of 
the crack faces. The product of infinite interatomic stress and 
the critical, infinitely small separation is finite and equal to 
twice the surface energy. Hence, the total Burgers vector of 
the mternal dislocations just ahead of the crack is infinitely 
small but the net Peach-Koehler force on them can be finite 
(for the Griffith crack in an elastic solid) or zero. This force 
is Fj because the Peach-Koehler force on the internal dislo­
cations that sit on the crack plane between the crack center 
and a crack tip is zero. Note that the surface traction an is 
zero across the crack faces. (A more extended discussion on 
the dislocation crack extension force is given in Weertman 
(1991).) 

The net force Fe exerted on the external dislocations, which 
is found from an easy integration over the plastic zone of the 
product of the dislocation density (B and the shear stress com­
ponent ayz = ao(r0/r)"/([+n) cos(0/2), is 
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J <B i j ) (1 + ">cos - rdrdd = irr04 = — (3) 
Therefore, the effective stress intensity factor K, at the crack 
tip is A', = 0 and the effective shielding stress intensity factor 
is L = -K. Both methods of solution, therefore, give the 
same answer. 

4 Discussion 

The two calculations above for the mode III crack in a work-
hardening solid show explicitly that the crack-tip shielding is 

perfect. This result does not mean that no stress singularity is 
present at the crack tip. The HRR stress singularity does exist 
at the tip. This stress singularity is weaker than an inverse 
square root of radial distance singularity. The perfect shielding 
implies that no crack extension force exists to start crack 
growth. 
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Introduction 
Cardiac tissue is probably best characterized as a solid-fluid 

mixture exhibiting nonlinearly anisotropic, regionally heter­
ogeneous, and perhaps incompressible behavior. Moreover, 
the heart has an irregular geometry and is subject to complex 
boundary conditions. Thus, it is difficult to rigorously study 
the mechanics of the heart analytically or computationally, 
and one must often rely on experimental methods. Unfortu­
nately, most measurements are global in nature; as for ex­
ample, measurements of intra-ventricular cavity pressure and 
volume. There is a need, therefore, for a reliable measurement 
technique for supplying regional information on cardiac me­
chanics. 

Recent experimental data suggest that indentation tests on 
cardiac tissue may be useful for identifying regional differences 
in material behavior and estimating regional stresses in the 
heart (Halperin et al., 1987). Briefly, isolated, perfused cardiac 
tissue was subjected to in-plane biaxial stretching, with small 
indentations superimposed in the out-of-plane direction using 
a flat-ended circular punch. The data revealed that: (a) the 
indentation force was linearly related to the punch penetration 
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depth; (b) the slope, a, of this indentation force-depth rela­
tionship increased with increasing in-plane stretch; (c) a linear 
relationship existed between a and an index of the in-plane 
normal stresses; and (d) at comparable in-plane stresses, a 
differed significantly for noncontracting and contracting tis­
sue. Calling a a measure of "transverse stiffness," it was 
concluded that indentation tests may allow one to " . . .de­
termine whether regional (cardiac) dysfunction is due to ab­
normal muscle that is not generating stress or to muscle capable 
of generating stress but which is abnormally loaded." 

To gain additional insight into the basic mechanics of in­
dentation experiments on cardiac tissue, we studied a related 
analytical problem. In this Note, we present graphical predic­
tions for Mooney-Rivlin and exponential materials subjected 
to finite in-plane equibiaxial extensions and small superim­
posed indentations by a rigid punch. Our findings are quali­
tatively similar to the experimental data on cardiac tissue, and 
we discuss potential implications to cardiac mechanics. 

Background 

Small indentations superimposed on finite deformations of 
homogeneous and isotropic elastic half-spaces have been stud­
ied in detail (Green and Zerna, 1960; Beatty andUsmani, 1975). 
We employ these general results here, but restrict our attention 
to rigid flat-ended circular punches and hyperelastic incom­
pressible materials. Moreover, we are interested solely in re­
lationships between experimentally measurable quantities: the 
in-plane stresses and stretches, indentation force, and punch 
penetration depth. For completeness, we now summarize some 
of the relevant results from the literature. 

For an initial equibiaxial finite deformation, the physical 
components of the deformation gradient are, F = diag {it, n, 
X) where /x and X are stretch ratios, and X = l//x2 due to 
incompressibility. The associated in-plane components of the 
Cauchy stress are: 

•\2)(W1 + v2W2). (1) fn = '22 = 20*' 

W-, are derivatives of the stored-energy function, W(Iit I2), 
with respect to the invariants, I-„ of the Cauchy-Green defor­
mation tensors; finally, t^ = 0. 

For a superimposed indentation by a rigid flat-ended circular 
punch, the indentation force, P, is related to the punch pen­
etration depth, e, viz., 

P = ue where, a = 4r0(/c/?j), 

r0 is the outer radius of the punch, and 

K= [(Kib + a)^Ki]/ll +Ki] -[(K2b + a)^K2]/[l +K2] 

I, = [ ^ 1 / ( I + ^ , ) ] - [ A - 2 / ( I + J S : 2 ) ] . 

Ky and K2 are roots of the following equation for K, 

bK2+(a+b-c-d)K+a = Q 

with, 

(2) 

(3) 

(4) 

(5) 

(6a) 

(6b) 

(6c) 

lx
2)(Wn + 2W22ii

4 + ZWl2ix
2)] 

m 
Wjj (i, j = 1, 2) are second derivatives of Wwith respect to 
/, or Ij. 

Results 
First, consider a Mooney-Rivlin material defined by, 

W = C , ( / , - 3 ) + C2( / 2 -3) (7) 

where C\ and C2 are material parameters. This form of W(I\, 

a = 2\2(Wi + /ji
2W2) 

b = 2ii
2(Wl + lx

2W2) 

c = An2[(Wi + ,x2W2) + (n2 -\2)(Wn+W22ti
2(\2 + f) 

+ W12(X
2 + 2/x2)] 

d=4\2[(Wl + ix2W2)+(\2-
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Fig. 1 (a) Equibiaxial stress-stretch behavior of a Mooney-Rivlin ma­
terial described by Eq. (7) with C, = 29.5 kPa and C2 = 5.0 kPa. These 
values of the constants were chosen simply to yield stresses which are 
comparable to those in cardiac tissue at stretches less than 20 percent; 
(b) families of indentation force versus punch penetration depth rela­
tionships. Each line corresponds to differing in-plane equibiaxial 
stretches, n, from 1.0 to 1.2 in increments of 0.022. The slope increases 
with increasing stretch. Finally, the punch radius r0 = 0.0035 m. 

I2) is often employed in studies of rubber elasticity, and has 
been assumed to describe contracting heart muscle (Hamid et 
al., 1986). Figure 1(a) illustrates the associated nearly linear 
stress-stretch behavior at small-to-moderate stretches (1.0 < 
/x < 1.2). We restrict our attention to this range of stretch, 
which is reasonable for cardiac tissues (Humphrey and Yin, 
1987). 

From Eqs. (2)-(7) the transverse stiffness, a, for the Moo­
ney-Rivlin material is 

%r0(n
9 + ix6 + 3^-l)(C1 + C2n

2) 

foV+i)] 
(8) 

which, in the limit as t* — 1, becomes (8/3)£r0. The Young's 
modulus, E, equals 6(Ci + C2), and Poisson's ratio, v, is 0.5 
due to incompressibility. Figure 1(b) shows the relationship 
between P and e for ten different in-plane equibiaxial stretches. 

Next, consider an exponential material defined by, 

W=dl(e
d^~i)-\) (9) 

where d\ and d2 are material parameters. This form of W(IX, 
I2) has been used to describe various biomaterials (Demiray, 
1976; Beatty, 1987), and the associated nonlinear stress-stretch 
behavior is illustrated in Fig. 2(a) . Unlike the Mooney-Rivlin 
material, the transverse stiffness, a, for an exponential material 
is not easily derived explicitly. It can, however, be determined 
numerically. The indentation force-depth relationship is in Fig. 
2(b) for the same values of in-plane stretches as in Fig. 1(b). 
For equal increments in /x, the transverse stiffness of the ex­
ponential material increases markedly at higher in-plane 
stretches; this is in contrast to the results for the Mooney-
Rivlin material wherein a increases uniformly with increasing 

Figure 3 shows the transverse stiffness versus the in-plane 
stresses and stretches for both materials. For in-plane stretches 
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Fig. 2 (a) Equibiaxiai stress-stretch behavior of the exponential ma­
terial described by Eq. (9) with d, = 0.115 kPa and d2 = 9.665. These 
constants are reasonable for potassium-arrested (noncontracting) car­
diac tissue (Humphrey and Yin, 1987); (b) families of indentation force 
versus punch penetration depth relationships. The nomenclature is the 
same as in Fig. 1 and r„ = 0.0035 m. 

less than 1.15, the transverse stiffness of the Mooney-Rivlin 
material is nearly linearly related to both in-plane stress and 
stretch. For /x > 1.15, a is nonlinearly related to both in-plane 
stress and stretch. Findings for the exponential material are 
very different. First, except at extremely small stresses, ct is 
nearly linearly related to the in-plane stress; second, the a 
versus n relationship is highly nonlinear over the entire range 
of stretch. 

Discussion 
Indentation Force—Depth Relationships. As shown by 

Beatty and Usmani, a linear relationship exists between the 
indentation force and punch penetration depth for all ho­
mogeneous, isotropic, incompressible, hyperelastic materials 
indented with a rigid, flat-ended circular punch. In contrast, 
Green and Zerna showed that indenting the same class of 
materials with a rigid spherical-ended punch yields a nonlinear 
indentation force-depth behavior. 

The linear P-e relationship (Eq. (2)) depends upon the in­
dentation being small, however. Formally, this results from 
the requirement that the displacements and stresses induced 
by the punch tend to zero far away from the punch. Thus, to 
ensure a linear indentation force-depth behavior, one should 
observe certain experimental guidelines. First, the indentation 
should not affect the in-plane forces or deformations measured 
away from the punch; this is easy to check experimentally (see 
Fig. 6 in Halperin et al., 1987). Second, the material should 
be thick enough so that the punch "sees" only the deformation 
of the material. For example, Batra (1985) performed a finite 
element analysis of the indentation of slabs of rubber laying 
on a rigid surface, and showed that the indentation force was 
larger in thin layers due to the underlying rigid base. As a rule 
of thumb, the deformed thickness should probably be at least 
20 times the indentation depth. 

2.28 
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Fig. 3 (Left panels): transverse stiffness as a function of equibiaxiai 
in-plane stress and stretch for a Mooney-Rivlin material. (Right 
panels): transverse stiffness as a function of equibiaxiai in-plane stress 
and stretch for an exponential material. 
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Implications for Cardiac Tissue. Our findings are in close 
qualitative agreement with the available data on the heart. 
That is, both show that: (a) the indentation force is linearly 
related to the punch penetration depth; (b) the slope, a, of 
the indentation force versus depth relationship increases with 
increasing in-plane stretch; and (c) the transverse stiffness is 
nearly linearly related to the in-plane stress over certain ranges 
of stretch. New unpublished data reveal further that the trans­
verse stiffness versus in-plane stress relation is nearly linear 
for both contracting and noncontracting cardiac tissue, whereas 
the transverse stiffness versus in-plane stretch relations appear 
to be nearly linear for contracting tissue but nonlinear for 
noncontracting tissue. Since contracting tissue appears to ex­
hibit a nearly linear stress-stretch behavior over 1 < /x < 1.10 
whereas noncontracting tissue exhibits a nonlinear, perhaps 
exponential, behavior, these new data are also consistent with 
our findings for Mooney-Rivlin and exponential materials. 

The striking similarity between our predictions and the data 
on cardiac tissue must be kept in perspective, however. Al­
though we employed constitutive relations which have been 
used to describe contracting (Eq. (7)) and noncontracting (Eq. 
(9)) cardiac tissue, and focused on physiologic ranges of in-
plane stretch, the present results are based on assumptions of 
homogeneity, isotropy, and specific functional forms of W, 
none of which are strictly applicable to the heart. Thus, quan­
titative analysis of experiments on the heart using the present 
results must be approached cautiously. Nevertheless, the per­
haps counterintuitive, unexpected findings in the previous ex­
periments are qualitatively consistent with the present results. 

Finally, we submit that indentation tests may be useful for 
distinguishing certain types of material behavior since the 
transverse-stiffness versus in-plane stretch behavior is quali­

tatively similar to the in-plane stress-stretch behavior of the 
material (Figs. 1-3). This observation is potentially important 
since the material properties of cardiac tissue can change re­
gionally with disease, injury, and contractile state. Regional 
variations in material properties often affect the overall per­
formance of the heart, and it is desirable to correlate these 
variations with global cardiac function. In the intact heart one 
cannot measure the in-plane stresses but one can perform re­
gional indentation tests and measure in-plane strains. Thus, 
indentation tests may provide a tractable method to study 
certain aspects of regional cardiac mechanics. 
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Dynamic Stability of Suddenly Loaded Structures, by George 
J. Simitses. Springer-Verlag, New York, 1990. 290 pages. 

REVIEWED BY R. H. PLAUT1 

Until recently, there has been a dearth of books on the 
stability of structures subjected to suddenly applied loads. 
Happily, this situation is being remedied. Two recent books, 
Dynamic Pulse Buckling by H. E. Lindberg and A. L. Florence, 
and Structural Impact by N. Jones, concentrate on the elastic 
and plastic response of structures to intense loads of very short 
duration. They are complemented nicely by this new book 
written by Prof. G. J. Simitses. 

Simitses considers conservative elastic systems subjected to 
impulse loads, step loads (i.e., suddenly applied loads with 
constant magnitude and infinite duration), and rectangular 
pulse loads (i.e., suddenly applied loads with constant mag­
nitude and finite duration). Dynamic instability here means 
that the system exhibits a large-amplitude response. Through­
out the book, critical values of the dynamic loads are compared 
to those for the case of quasi-static loading. 

A "total potential energy approach" is applied, which has 
been developed by Simitses. (A similar method, used by C. S. 
Hsu and his collaborators, is also described in the book.) The 
energy imparted to the system by the dynamic load is compared 
to the potential energy of the system at all unstable equilibrium 
points. One can then determine lower and upper bounds on 
the critical loads. For one degree-of-freedom systems, these 
bounds are identical and exact critical loads are obtained. 

Following an introductory chapter, three simple rigid-bar 
models are treated in Chapters 2-4. Two of them have one 
degree-of-freedom, while the third is a snap-through model 
with two degrees-of-freedom. The effect of static preloading 
is analyzed, and some problems are given at the ends of these 
chapters. For the case of rectangular pulse loading, the influ­
ence of small viscous damping is discussed in an appendix. 

In Chapter 5, the application of the energy approach to 
continuous elastic systems is described. Impulse and step loads 
are considered. Simple two-bar frames are treated in Chapter 
6. A step load is applied and lower bounds are obtained for 
various boundary conditions, eccentricities, and slenderness 
ratios. 

Chapter 7 deals with shallow arches having a half-sine-wave 
initial shape. The first example is a pinned arch with the load 
distributed spatially in a half sine wave. Lower and upper 
bounds are computed for impulse, step, and rectangular pulse 
loads. In the second example, a clamped arch is subjected to 
a concentrated load at its apex, applied as an impulse or step 

'Charles E. Via, Jr., Department of Civil Engineering, Virginia Polytechnic 
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load. The response is represented approximately as a combi­
nation of two symmetric modes and one antisymmetric mode. 

Thin, shallow, clamped, spherical caps under uniform lateral 
pressure are treated in Chapter 8. Axiymmetric deformations 
are considered. Lower bounds for a two-term approximation 
are determined for the cases of impulse and step loading. In 
Chapter 9, thin cylindrical shells are analyzed. Laminated shells 
and stiffened shells are included, with geometric imperfections 
and various boundary conditions. An approximation proce­
dure is utilized, and lower bounds on critical conditions are 
computed for axial step loading. Finally, conditions based on 
a prescribed maximum response amplitude are discussed in 
Chapter 10, and parametric resonance and brachistochrone 
problems are described in the appendices. 

This book is a welcome addition in the field of structural 
stability. It presents an energy approach which can be used to 
obtain bounds on critical conditions for suddenly loaded elastic 
structures. The book is written clearly and covers the basic 
work carried out by Simitses in this area. It may be used as a 
textbook for part of a graduate course on dynamic stability 
of structures, and should be read by researchers in this field. 

Introduction to Optimization of Structures, by N. V. Bani-
chuk. Springer-Verlag, New York, 1990. 300 pages. Price: 
$89.00. 

REVIEWED BY BHSHAN L. KARIHALOO2 

Introduction to Optimization of Structures by Professor N. 
V. Banichuk is a translation of the original Russian book of 
the same name, published in 1986. The book is divided into 
two parts: Part 1 gives an introduction to the theory and 
techniques of optimization, whereas Part 2 demonstrates the 
application of theoretical concepts on several examples of 
beams, plates, shells, trusses, etc. 

Chapter 1 gives a general overview of the optimization prob­
lem under statical and dynamical conditions, introducing the 
necessary objective and constraint functionals. This chapter 
also introduces the reader to multipurpose and multicriteria 
design problems. Chapters 2 and 3 give the derivation of op­
timally conditions using classical variational calculus. Chap­
ters 4 and 5 are devoted to the solution of the optimization 
problems using several analytical and numerical approaches. 

Chapters 6-8, which form Part 2 of the book, apply the 
optimization concepts to beams, plates, shells, trusses, etc. 
with a view to designing these structures, such that they use 
the least amount of material in fulfilling their mechanical func­
tion. 
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