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On the Calculation of Deformations
and Stresses During Axially
Symmetric Solidification

In this paper finite element modeling of the deformation and stress development in
solidifying bodies is presented. Emphasis is given to axially symmetric problems and
especially to the accurate implementation of thermal and mechanical phenomena
occurring at the freezing front. More specifically, the interface velocity and location
are treated as primary variables of the heat transfer analysis, and the isostatic stress
condition at the front is utilized as an initial condition in the stress analysis. A
hypoelastic-viscoplastic constitutive model and a rate form of the principle of virtual
work are involved to model the stresses and deformation. The mechanical and
thermal properties are allowed to vary with temperature and strain rate in a realistic
manner. Several examples of calculated residual stresses are shown for pure alu-
minum under axially symmetric geometries and realistic boundary conditions. The
effects on the evolving deformations and stresses of the melt pressure, geometry,
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and cooling conditions are examined and reported.

Introduction

Study of the thermal stress and strain development in so-
lidifying bodies can be an important tool for understanding
the formation of cracks in the solid shell as well as geometrical
distortions during solidification. It is the objective of this work
to present a numerical methodology for the estimation of such
stresses and strains for the solidification of pure aluminum in
an ingot or continuous casting mold with axially symmetric
geometry. Heat generated from inelastic deformation will be
neglected so that the solution can be obtained in an uncoupled
fashion, first involving the temperature field, and then the
corresponding deformation and stresses.

Heat conduction boundary value problems with phase change
have been examined extensively. The most important element
of the heat transfer analysis is the proper modeling of the
solid/liquid freezing front where an appropriate energy balance
has to be met. Numerical techniques have been developed
which track the front motion by using either transformed co-
ordinates, a moving grid or the enthalpy transformation in a
fixed domain (Crank, 1984).

The deformation part of the problem is more complicated
than the heat transfer part. It requires a proper modeling of
the mechanical conditions at the freezing front, integration of
stiff constitutive models prescribing the inelastic deformation,
temperature-dependent material properties, and coupling with
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the heat transfer part of the problem. A few references ad-
dressing one or more of these issues include Richmond and
Tien (1971), Kristiansson (1982), Richmond (1982), Thomas
et al. (1987), Smelser and Richmond (1988), and Zabaras et
al. (1990).

The deformation of a solidifying material is very different
from that of a standard fixed body. A solidifying body develops
residual (initial) stresses immediately after solidification and
is never in a state of zero stresses (stress-free state). It should
be emphasized that this freezing interface condition is an initial
rather than a boundary condition at the time of the solidifi-
cation of a material point. It was first discussed by Richmond
(1982) and implemented in one-dimensional solidification
problems by Tien and Richmond (1982), Heinlein et al. (1986),
and in two-dimensional plane stress applications by the authors
(Zabaras et al., 1990).

This paper begins with a brief review of a front tracking
analysis for the heat transfer part of the problem. A rate form
of the principle of virtual work is then given, which together
with a proper hypoelastic-viscoplastic constitutive model and
a finite element implementation are used to calculate the de-
formation and stresses in an axially symmetric body. An ac-
curate consideration of the freezing interface conditions is
presented. Several cases of calculation of residual stresses are

‘shown for plane strain and axially symmetric casting condi-

tions. The effect of different cooling and melt pressure rates
on the development of residual stresses are reported.

Thermal Analysis

Governing Equations. Consider liquid metal in an axially
symmetric container (mold) at a uniform temperature 7%,(r,
z) equal to or above the melting temperature T,,. Solidification

DECEMBER 1991, Vol. 58 / 865
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Fig. 1 Model section for the solidification problem

is assumed to start at time ¢ = 0 when part of the boundary
of the body is cooled down in an axially symmetric way to a
temperature equal to or below T7,,. Figure 1 shows, on the
r-z plane, at time ¢, the two-dimensional model section Q, with
boundary dQ,. Let dQ,(¢) be the isothermal freezing interface
at time ¢, and Q,(¢) and 9, (¢) the regions occupied by the
solid and liquid phases, respectively. In the absence of heat
sources, the governing heat conduction equation for an axially
symmetric solidification problem is given by Carslaw and Jae-
ger (1959) as

. aT(rzt) 19 Kr AT (r,2,1)
P at Tror ar

_@_ oT(r,z,t)
az<K—_az > (r,2)eQ, (1)

where p, ¢, and K are the density, specific heat, and conduc-
tivity, respectively, of the solid or liquid phase depending on
(r, 7) € Qs(#) or (r, z) € Q. () where the subscripts S and L
are used to show quantities referred to the solid and liquid
phases, respectively. Let also T,(r, z, t) be the prescribed
temperature history on boundary 82, and q,(r, z, t) the pre-
scribed normal heat flux on boundary 9Q,, with 0Q, U 0Q,,
= 0Q,. Finally, the Stefan condition takes the form

T 5(r,2,t) 0T (r,2,1)
K - =
§ an K. on

where n is a unit normal to the interface 3Q,(¢) at a point (r,
z) € 99,(¢) pointing away from the solid region, V is the
interface velocity vector at the same point, and L denotes the
latent heat of fusion.

pLVen (rz)edQ;(t) (2)

Finite Element Modeling. Consider that the solid and lig-
uid regions are discretized into a number of finite elements in
such a way that no element crosses the solid/liquid interface.
One way to account for the freezing front motion is to allow
the element nodes to continuously move with time and update
their positions according to the front motion. In this case, the
temperature interpolation will take the form

T(r,z,t)=T?(t)‘I>f-"(r,z,t) i:1)2; e :Me (3)
where summation on i is implied over the number of nodes in
anelement M ¢, T¢(¢t) denote the nodal temperatures, and $(r,

z, t) the element shape functions. Moving finite element for-
mulations based on such an interpolation have been proposed

866 / Vol. 58, DECEMBER 1991

earlier by Lynch (1982) and Zabaras and Ruan (1989, 1990),
Each mesh point (r, z), at time ¢, is moving with nodal velocity
Vir,z, t) = (V,, V;) with V, and V, denoting the components
of the velocity vector. This velocity can be easily calculated
by using the isoparametric interpolation functions and assum-
ing that the nodal velocities (Rf, Z{) are known. Usually these
nodal velocities are calculated based on the velocities of the
nodes at the freezing front and a rearrangement of the position
of the internal nodes which preserves a uniform mesh (Zabaras
and Ruan, (1990)). Applying a Galerkin type of weak for-
mulation to Eq. (1), the following assembled system of equa-
tions is obtained

dT
Cyy d—tj+ (By+KinT,=F;

LJ=12,... , M(sumonJ) (4

where C, K, and F are the familiar heat capacity matrix, stiff-
ness matrix, and load vector, respectively, and the matrix B
is resulting from the motion of the finite element nodal points
and is given as

E

E
BIJZZ ij: — Z S qu),g(r,Zat)
e=1

e=1 “Qp

¢ (r,z,t 08 (r,z,t
o | 9%i{r:2:0) V(rat) + HER))
or 0z

where I and J denote the global nodal number corresponding
to element nodes i and j, respectively, ({,j = 1,2, ..., M°.

Denoting the nodal temperature vector at time ¢t = ¢,_; +
Atwith T", n = 1, 2, ..., where At is a time step, a stable
integration scheme can be derived as

Vz(r,z,t)} agq  (5)

Co )
(”%+7(Bn~l+y+Kn—l+y)>Tl

C - 7 —
=Fn-1+7+(—"2%41—v)(Bn_1+7+Kn_1+y)>T L ©

where the subscript (n — 1 + v) indicates the reference time
fwhere f = (I — y)t,_; + 7y, for the calculation of the
temperatures and material properties as well as of the freezing
interface position and velocity.

To compute the front nodal velocities, Zabaras and Ruan
(1990) have proposed a Galerkin type of weak formulation of
the interface energy equation (2). In their approach, the ve-
locity at the solid/liquid interface is approximated as

Vv=¥Viirzn i=12,...,M} %)

for each segment b of the interface where ¥2(r, z, ¢) and 144
= (rj, z;) are shape functions and interface nodal velocities
at segment b, respectively, M? are number of nodes in the
segment b, and I is a number of boundary segments at the
solid/liquid interface. The Galerkin type of weak formulation
of Eq. (2) takes the form

£,

S , oLN ¥ dT -V
=1 Y07

)
= S , [KsV Ts— K,V T;]+N°¥2aT
b=1 Y07

ih=12,...,M? (sumonh) (8)

where E; and M; are the number of boundary segments and
boundary nodes at the solid/liquid interface, respectively,

is the unit normal to the boundary segment b at the solid/
liquid interface and points away from the solid region. In order
to obtain a system of equations for the components of the
nodal velocities, the tangential nodal interface velocities are
taken as zero. This constraint, together with Eq. (8), provide
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a system of algebraic equations for the components of the
interface velocities in terms of the interface flux jump. The
term on the right-hand side of Eq. (8) includes the normal flux
jump at the solid/liquid interface 8Q; and can be found directly
using Eq. (6), after the temperature distribution is obtained.
Indeed, these terms are the elements of the vector Fuisy
corresponding to the freezing front nodal points.

Here cases with T;,(r, z) = T,, are considered for which one
must analyze only the solid phase since the temperature in the
liquid phase remains at all times at the melting point. For this
work, only the solid elements connected to the solid/liquid
interface are continuously moving, while the rest of the ele-
ments in the solid phase remain fixed. In other words, the
solid region is partitioned into a fixed region and a moving
region. The number of elements is changing with time since
more elements are generated when the sizes of the deforming
elements in the moving region become larger than prescribed
values. Even though the most of the nodes are fixed, due to
the motion of the front nodal points, the matrix B in equation
(5) will not vanish. This special treatment of the finite element
mesh is generally less expensive than the method of a fixed
number of elements (Zabaras and Ruan, 1990), and it is also
convenient for stress analysis.

To start the algorithm, a small initial finite solid region must
be assumed. The initial interface velocities are arbitrary in
general. In summary, by assuming initial front nodal velocities,
one solves the system of Egs. (6) to obtain the temperature
distribution. Then the updated nodal velocities can be found
by solving Eq. (8). Generally, an iterative procedure is required.

Thermomechanical Analysis

Governing Equations. A quasi-static thermal stress theory
as discussed by Boley and Weiner (1960) is employed, and
attention is given only to the solid phase. Body forces and
inertia forces are neglected, and the equilibrium equations in
terms of the Cauchy stress ¢ have to be satisfied at any time
¢ in a region which continuously changes (grows) with respect
to time. As will be explained in the next section, the growth
of the domain will be accounted for in the solution algorithm
via a proper form of the constitutive equations. The shrinkage
associated with the solid/liquid phase transformation, which
can be substantial in metals like aluminum, is neglected.

It is assumed that the total strain-rate tensor € = [e,, €,
&,, €g5]” is additively decomposed into an elastic, £, a thermal,

¢7, and an inelastic, ¢, part, respectively, i.e.,
e=efreT+ e )
where e can be expressed in terms of the rate of displacement

field [1,, u,]”. Dilatational thermal strains are assumed as
T

a(v)dv, eL(T)=0
TR

eS(T)=eZz(T)=e%<T>=S (10)

where a(T) is the temperature-dependent coefficient of ther-
mal expansion and Ty is a reference temperature at which the
thermal strains are zero, i.e., T = T,. In addition to the
above, one should specify proper traction 7 on dQ,(¢f) and/or
displacement i on dQ,(¢) where 9Q,(#) U 02,(f) = 09Q,(¢).

Material Modeling. As already discussed in the Introduc-
tion, the static deformation problem in a solidifying body can
be treated as an initial boundary value problem, since a solid-
ifying body is never in a stress-free state. More specifically,
the stress state of a material particle before solidification is
exactly the same as that of the particle just after solidification,
i.e., the stress state at the solid/liquid interface must always
be purely isostatic, i.e.,

o =05 =0g=—p(z)=—pg(h—2z(f)) (11)
where p(z) is the melt pressure at location z and % is the height

%=0

Journal of Applied Mechanics

Table 1 Thermal properties ot aluminum (after Heinlein et al., 1986)
Heat conductivity in solid Ky 0.0548 keal/m-s-°C
Heat conductivity in liguid K| 0.0548 keal/mrs°C
Heat capacity in solid Cg 0.2526 kcal/kg-°C
Heat capacity in liquid c 0.2526 keal/kg:°C
Latent heat L 94.44 keal/kg
Density - p 2650 kg/m®
Initial temperature Ty, 660 °C
Melting temperature T 660 °C

Table 2 Mechanical properties of aluminum (after Heinlein et al., 1986)

a. Coefficients of constitutive law [equation (15)].

Coefficients | A B (o] n

Values I 0.382x1012 sec™! 0.037 1/MPa 18849 °K 3.84
b. Thermal expansion coefficient am?,

Temperaure°C | 25 300 400 660

a(T) m/m°C ‘ 23.19x10°% 27.86x10°®  30.23x10°® 38.355x107°

c. Poisson's ratio v=0.37.

d. Young's modulus E(T)=F-GT, where F=6.93x10% MPa and G=43.7152 MPa/°C

§ The variation of a(T) is assumed to be piecewise lincar within the temperature

intervals 25 — 300 °C, 300 — 400 °C and 400 - 660 °C.

of the melt. Note that to accurately account for such an in-
terface behavior, one should interpret Eq. (11) as an initial
rather than a boundary condition on 39Q;(¢). Apparently, a
rate formulation of the involved equilibrium, kinematic, and
constitutive equations must be involved. The evolution of
stresses is prescribed with the following hypoelastic model:

o=De” 12)

where 6 = [0, 0, 0,7 gl T D are the temperature-dependent
elastic constants, and where the superimposed dot denotes a
time derivative. The ‘‘initial” residual stresses can now be
treated as an integration constant arising when Eq. (12) is
integrated in time.

The material used in this work is pure aluminum with thermal
properties given in Table 1 and temperature-dependent me-
chanical properties reported by Heinlein et al. (1986) and given
in Table 2. Finally, a viscoplastic constitutive model is needed
to prescribe the inelastic deformation. Important effects such
as rate sensitivity, strain hardening, and recovery should be
included in a rather wide range of temperatures ranging from
room temperature up to the melting point of the solidifying
pure metal, The following unified form is usually assumed for
such rate-dependent models

eV =f(c,q5,7) 13)

where qK denote properly defined state variables, if any, for
which evolution equations of the following form are given

a*=g(0,d". 7). (14)

Several viscoplastic constitutive models fall in the above
category (for example, Anand, 1982). In the simulations re-
ported in this paper, a hyperbolic-sine constitutive law (Tien
and Richmond, 1982; Heinlein et al., 1986) is used to prescribe
the inelastic deformation. This constitutive law has the fol-
lowing form

c_ ..
- T [smh—BE]" . (15)

+ N
¢ =

Ae

N w

g
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where A, B, C, and n are material constants given in Table 2
for pure aluminum, o is the effective stress defined as 7 =

f3 .
3 ses, and s denotes deviatoric stresses. The temperature T

is in degrees Celsius and C in degrees Kelvin, The above con-
stitutive model has been successfully used by Heinlein et al.
(1986) for unidirectional solidification problems and by the
authors (Zabaras et al., (1990)) for unidirectional and two-
dimensional plane-stress calculations of deformation and re-
sidual stresses in solidifying bodies. Note that constitutive
models with state variables can also be used here, but this is
considered unnecessary for the high temperatures treated here
since microstructural changes should be insignificant.

In summary, the major goal of this deformation analysis is
to solve for the displacement field an initial-boundary value
problem which is defined by the equilibrium equations, the
kinematic strain-rate/displacement-rate relations, the mechan-
ical boundary conditions on 4Q,(¢), the assumption (9), the
initial conditions (11), and the constitutive Egs. (12) and (15).

Finite Element Model. The finite element analysis of the
stress problem is performed with the same discretization of
the solid region as that used for the heat conduction analysis
but the element type is different. In the stress analysis, eight-
noded elements are used in order to improve accuracy. Let
it denote the vector of the nodal displacement rates in the solid
phase. Then the field of displacement rate d can be approx-
imated as d = Nu, where N is the matrix of shape functions
and the corresponding strain and stress rates are ¢ = Bu and
o = DB, respectively, where B is the standard matrix defined
by differentiation of the shape functions in N.

Assuming that time stepping is performed, one can write a
weak statement of the equilibrium equation at time ¢, as

S BTa,,dQ=S N77,dT 16)
Qg(ty) 30(1,,)

where @, the stress tensor (a vector form) at time ¢,, the body
forces have been neglected and 7 = 7 on 3Q,(?).

Let us assume that the stress state, ¢,_y, at ¢,_; is known,
then the stress state, o,, at current time #, can be obtained
using Euler’s backward integration scheme as

an

where ¢, denotes the stress rate at time £, and A¢* is the time
step related to the arrival time of the freezing front at the
material point under consideration. Note that the time inte-
gration of stresses is performed at material points and if the
material point is solid at time ¢ = ¢,_,, At* is equal to At =
t, — t,_1, while if it is liquid at time ¢t = ¢,_;, Af* is defined
as At* = t, — ty_y, where t;_, denotes the arrival time of the
freezing front at the corresponding material point. Therefore,
if the front arrival time at a point is later than #,_,, the stress
g, is equal to the melt hydrostatic stress state at arrival time
and if the arrival time is earlier than ¢,_,, it is the stress cal-
culated at £ = £, ;.

Finally, using Egs. (9), (12), (16), and (17), the following
rate form of the principle of virtual work is obtained

0,= 0,AF + 0,

BTU,,.. ldQ

N77,dT — S
Qs(t,)

S B'DBA*dQu = S
Qg(ty) 5(1,)

+ S B'D(e"+ eMArtdQ. (18)

Qs(p)
After the nodal displacement rates are found from Eq. (18),
they are used to calculate stress rates at element Gauss points.

For the nonmoving region, the stress rates are integrated at
the Gauss points. For the moving region, in order to perform

868 / Vol. 58, DECEMBER 1991

stress integration at Gauss points using Eq. (17), the stresses
at the Gauss points at time ¢,_;, 0,_,, are transferred to the
Gauss points at time £, using a second-order polynomial ap-
proximation, i.e., .

O=Cyp+ CiF + CoZ + C3rZT+ gt + 052

19

where ¢; are coefficients calculated through a least squares
method, using the stresses at the old Gauss points and the
hydrostatic stresses at the front nodal points.

The difference between the integrations of stress rates, o,
and the time derivatives of temperature, T,, should be em-
phasized. In the stress problem, the primary unknowns are
nodal displacement rates and the integration of stress rates is
performed at material points. In the temperature problem,
however, where the primary unknowns are nodal temperatures,
the integration of the time derivative of temperature is per-
formed at nodal points rather than at material points due to
the time-dependent shape functions.

The solution procedure for the deformation part of the prob-
lemis as follows: (a) calculate the temperature field and front
position as discussed in the section on thermal analysis and
obtain the temperature distribution at Gauss integration points
and (b) solve Eq. (18) iteratively to obtain displacement rates.
Stresses can then be obtained using Eq. (17).

Numerical Results

The accuracy of the above algorithm was tested with a uni-
directional plane-strain solidification example (Zabaras and
Richmond, 1990). The calculated lateral stress history near the
boundary where the shell is cooled was found to be two percent
different from an approximate semi-analytical solution given
by the senior author and co-workers (Heinlein et al., 1986).

In the examples reported here, solidification of a cylinder
initially filled with liquid aluminum at melting temperature
will be considered. The thermal and mechanical properties of
aluminum are listed in Tables 1 and 2, respectively. Part of
the boundary of the cylinder will be assumed to be cooled
down as follows:

To(t) =T+ (Tu—T)e & (20)

where T, is its final steady-state temperature, 7,, is the melting
temperature, and Q is a cooling rate parameter. In the fol-
lowing examples, T, = 500 °C, Q = 0.1 sec™' and T,, = 660
°C. Four-noded elements were used for the temperature anal-
ysis, while eight-noded quadrilateral elements were employed
in the deformation part of the problem. The integration pa-
rameter v in Eq. (6) is 0.85.

In the first example, it is assumed that the cylindrical body
is insulated at the top and bottom and that the rest of its
surface (+ = R) is cooled with the temperature history depicted
in Eq. (20). Plane-strain conditions with a traction-free outer
surface were assumed. The geometrical parameters are as-
sumed as # = 0.04 m and R = 0.018 m.

The front position and the temperature history at various
locations are shown in Figs. 2 and 3, respectively. These results
were compared with a one-dimensional deforming finite ele-
ment implementation of the problem (Zabaras and Ruan, 1989),
and they were found to coincide to within plotting accuracy.
Figure 4 shows the residual stress distribution with the plane-
strain assumption on the plane z = 0.002113 m, at the end of

solidification, # = 8.32 secs. The stress history at location r

= 0.017714 m and z = 0.002113 m (near the bottom and the
surface r = R) is also shown in Fig. 5. As seen from these
figures, the hoop stress at the outer surface r = R is com-
pressive, while near the center of the cylinder all the stresses
are tensile. Generally, the residual stress in the axial direction
is tensile, but it becomes slightly compressive in the region
close to the surface r = R near the end of solidification. In
this example, as expected, the stresses were found not to sig-
nificantly vary in the axial direction.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.02

0.01 1

Radial Front Position (m)

0.00

10
Time (sec)

Fig. 2 Front position for solidification of a cylindrical body uniformly
cooled at the surface r = R
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Fig. 3 Temperature history at various locations for solidification of a
cylindrical body uniformly cooled at the surface r = R
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Fig. 4 Residual stress distribution in the radial direction at time 8.32
sec using a plane-strain assumption
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In the second example, the geometry and the temperature
boundary conditions are the same as those employed in the
first example. It is assumed that the bottom is fixed in the axial
direction, and traction-free conditions are applied to the top
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Fig. 5 Thermal stress history with a plane-strain assumption
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Fig.6 Residual stress variation in the axial direction at time ¢ = 8.3202
sec with a traction-free top surface

surface and to the outer surface, r = R. It was observed
(Zabaras and Richmond, 1990) that the traction conditions at
the top surface affect primarily the axial stress while leaving
the radial and hoop stress almost the same for both free-top
and plane-strain conditions. Large tensile residual axial stresses
appear in the region close to the center of the cylinder. Figure
6 shows the residual stress variation in the axial direction at
time f = 8.3202 sec and the stress history at location r =
0.0177145 m and z = 0.0010566 m (close to the bottom and
r = R) is given in Fig. 7. The hoop and axial stress histories
are almost the same, an assumption used before by Heinlein
et al. (1986) to simplify a three-dimensional solidification prob-
lem to a unidirectional one.

To demonstrate the effect of melt pressure, a longer cylinder
is considered with # = 0.4 m and other conditions are kept
the same as those in the first example. In this case, the pressure
at the bottom of the cylinder is about 0.0101 MPa. The dis-
placements of three points at » = R are given in Fig. 8, where
it is shown that the surface r = R near the bottom of the
cylinder first expands before it starts contracting. Generally,
the residual stress distribution is very close to that discussed
in the first example; but at early time, the differences of the
displacements at # = R and the stress distribution between this
and the first example are observable. Also, the hoop stress was
found to have higher values at early time (Zabaras and Rich-
mond, 1990). Therefore, as it is expected, one can conclude
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Fig.8 Radial and axial displacements at the surface r = Rwith a plane-
strain assumption and large melt pressure

that the melt pressure has a significant effect on the stresses
at early time and it can play an important role in the location
and time of formation of air-gaps in the solid shell/mold in-
terface.

For cases with larger Q (high cooling rate), it was observed
that the solidification process proceeds faster and that the
calculated residual stresses obtained at the end of solidification
are larger than those in the first example (Zabaras and Rich-
mond, 1990).

In the final example, a cylinder with R = A = 0.018 m was
cooled with the condition of Eq. (20) at both bottom surface
and the surface r = R. The pattern of solidification is shown
in Fig. 1. It is assumed that the outer surface, r = R, and the
top surface are traction-free, while the bottom is fixed in the
axial direction. The front position at various times is plotted
in Fig. 9. Principle residual stresses in the r-z plane near the
end of solidification are plotted in Fig. 10. Large tensile re-
sidual stresses appeared at the top around the center region,
the stresses were small in the area close to the surface r = R,
and the residual stresses were compressive at the bottom close
to the center region. Further details on this example are also
given by Zabaras and Richmond (1990).

Concluding Remarks

A general methodology has been presented for the calcu-
lation of realistic residual stresses and deformations in axially
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Fig. 10 Principle stresses in the r-z plane at time 7.3294 sec for the
solidification problem shown in Fig. 1

symmetric solidifying cylinders. For a cylinder cooled on its
outer surface and insulated on the ends, the residual hoop
stresses were compressive close to the outer surface, while
tensile close to the axis of the cylinder. The radial stresses
appear always tensile with their highest values close to the axis.
Stress-free top conditions were found to affect primarily the
axial residual stress. It was shown that for plane strain the
axial stress is mostly tensile, while for stress-free top conditions
the axial stress is tensile near the axis of the cylinder and
compressive elsewhere. More involved residual stress patterns
were obtained for more complex cooling conditions.

The liquid pressure was shown to significantly alter the stress
pattern at early times of solidification, while it kept almost
the same later stress pattern. This point emphasizes the im-
portance of the melt pressure to the air-gap formation in the
solid shell/mold interface. Finally, as expected, the residual
stresses are very sensitive to the applied cooling rates.

The results presented here should be useful in the design of
casting processes so that cracking and other defects induced
by thermal stresses are avoided. This work is considered as the

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



first step in studying more complex and challenging casting
problems including the formation of air-gaps and their effect
on heat transfer and use of mixture theories to analyze the
thermomechanical behavior of mushy regions.
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Steady Penetration of a Rigid Cone
With a Rough Wall Into a Power-
Law Viscous Solid

Singular strain rate and stress fields are examined at the tip of a rigid conical indentor
penetrating an incompressible viscous solid. Attention is focused on friction effects
induced by wall roughness. The problem is formulated within the usual framework
of eigenvalue analysis of locally singular fields. Some special cases are investigated
Surther with emphasis on a boundary layer expansion for the rigid/perfectly plastic
solid sliding along the perfectly rough wall. It has been found that the level of
singularity increases as the cone becomes sharper and the wall friction decreases.
Numerical results, presented for a variety of cases, suggest a boundary layer build
up for sharp cones with rough walls.

N. A. Fleck

University Engineering Department,
Cambridge University,
Cambridge, CB2 1PZ, U.K.

D. Durban

Faculty of Aerospace Engingering,
Technion-Israel Institute of Technology,
Haifa, 32000, Israel

1 Introduction

It is expected that steady penetration of sharp rigid indentors
into viscoplastic media will give rise to singular stress fields
near the tip of the indentor. For certain types of constitutive
response (e.g., the family of power-law relations) it is possible
to examine local singular fields using the method of eigen-
function analysis introduced by Hutchinson (1968) and Rice
and Rosengren (1968) for nonlinear plane crack problems.

The present study has to do with a rigid cone, with a rough
wall, that steadily penetrates an incompressible power-law vis-
cous solid. The singular near-tip field is investigated with the
aid of the corresponding local eigensolutions for stresses and
strain rates. The emphasis here is on friction effects induced
by the wall roughness. A simple friction factor m is assumed
to be imposed along the wall within the bounds of m = 0 for
a frictionless wall, and m = 1 for a perfectly rough wall (when
the shear stress attains its highest possible value).

The framework of the analysis follows closely a recent paper
by Fleck and Durban (1989)—henceforth referred to as (FD)—
on asymptotic fields at tip of conical inhomogeneities embed-
ded in power-law plastic solids. Accordingly, we begin, in the
next section, with a recapitulation of the governing mathe-
matical system derived in (FD).

Some special cases are considered next in Section 3. We
show that, with the exception of a perfectly plastic solid, the
creeping material sticks to the cone when the wall is perfectly
rough. The perfectly plastic solid will slide along smoother
walls of the indentor but an extra logarithmic singularity of
the stress field is then needed to maintain equilibrium, In the
extreme case where the indentor is perfectly rough and the
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medium is perfectly plastic, there is an intensive shear boundary
layer near the wall. This is examined with the aid of a boundary
layer expansion which is matched with the outer numerical
solution. It is shown that the shear strain rate becomes un-
bounded as the wall is approached, and that the perfectly
plastic solid does slide along the perfectly rough wall. Section
3 concludes with a simple analytical solution for possible non-
singular strain-rate fields in a Newtonian fluid.

Sample numerical results are presented in the last section.
The governing equations are solved with an available numerical
procedure, and the dependence of the singularity level upon
wall friction, cone angle, and strain-rate hardening parameter
are examined in detail. The main finding is that the strain-rate
singularity decreases with increasing friction and increasing
cone angle. Characteristic contours of the effective strain rate
are plotted along with a representative mapping of the stress
profiles. A near-wall boundary layer build-up is observed as
the cone becomes sharper as well as for increasing wall friction.

re” - T3 Ceff

Fig. 1 Notation for steady penetration by a rigid cone. Wall friction is
described by the friction factor m. A spherical-polar system (r, 6, ¢) is
attached to the apex (meridional angle ¢ is not shown).
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Fig.2 Level of singularity s for different friction factors and for several
values of the strain-rate hardening exponent. Also shown are the anal-
ogous crack singularities, s = 3 — nal{n + 1), for a power-law plastic

solid.

Our analysis aims at the investigation of slow steady pen- 0.8 CASE n=m0
etration where it is certainly permissible to neglect inertia ef- o ne0.999. |
fects. Indentation creep experiments (Atkins et al., 1966; o6l meos
Matthews, 1980) have shown that creep properties measure- : m=0
ments are beset by the influence of friction between the conical
indentor and the material. The first step in analyzing inden- 0.4+
tation creep of materials is outlined in this paper; we determine
the asymptotic field at the tip of an indenting cone as a function O-ZL
of cone angle, creep exponent of material, and wall friction. Ch _Z ol
/N3 T o
o
]

2 Governing Equations

Consider an incompressible isotropic power-law viscous solid
undergoing steady-state penetration by a rigid cone with rough
walls. Attention is focused here on the singular stress field
which is expected to develop near the tip of the conical indentor
(Fig. 1).

Material behavior of the penetrated creeping medium is gov-
erned by the constitutive law

3 n
D=_(M _S- )
2\ o, Oeff
where D is the Eulerian strain rate t?;lzsor, S is the Cauchy

stress deviator tensor, e = 2 S--8 is the effective stress,

and (o,, n) are material constants. The Newtonian fluid is
described by equation (1) with n = 1, while the rigid/perfectly

1 1 i
50° 120° 150° 180°
B

Fig. 3 Level of logarithmic singularity D of hydrostatic stress ¢, for n
= @

and ¢(6) is a function of 4. Inserting (3) in relations (2), we
get the velocities in the form

U,=r"2X vy=-sr""% @)
with
X=¢' +¢cotd 5)
where the prime denotes differentiation with respect to 6.
The components of the Eulerian strain rate tensor D, as-
sociated with (4), depend on the radial coordinate like D; ~

r°*73; of particular interest here is the shear strain rate given
by

plastic Mises solid is‘recovered at the limit of n = co. ) D,=r"3Y () 6)
Adopting an Eulerian frame of reference, with the origin of

a spherical polar system (r, 6§, ¢) attached to the apex (Fig. 1), where

we find by symmetry that the velocity components, v, g, 1 _,

depend only on (r, #), while the circumferential component, Y =5[X +5(3-5)9]. 7

vy, vanishes identically. The incompressibility constraint im-
plied by equation (1) is satisfied if the velocities are derived
from a stream function ¥(r, ) by

)

rsing

Y

rsing’

Vg= —

r

Since the field equations are identical to those derived in
(FD)—except the exchange of small strain displacements with
finite velocities—we shall proceed with just a brief outline of
the basic equations; the stream function is assumed to admit
a separation of variables form, namely

¥=r*(sin6)(6) : ©)

where the eigenvalue s determines the stress singularity level

Journal of Applied Mechanics

2.

Similarly, the effective strain rate can be expressed as

et = —§-D~-D=—r“3l‘(0) @®)

\/_
with the corresponding polar profile
M= (5" =35+ 3)X 2= (X — dcotf)gcotd + Y2, )

The stress deviator components behave like S; ~ 7" as
exemplified by the shear stress component

2
3

(10)

=55
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for 8 = 135 deg. The creeping solid sticks to the wall for any finite n
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Likewise, the effective stress here takes the form
Oeff = G, (E ff)"=0' — "t (11)
€ o\:¢ [ \/5
Turning to the equilibrium requirements, we have just two
equations for the four active stress components (g,,, 0gg, Tggs G
g,9). Substituting the stresses from (1) in the equilibrium equa-
tions results in the two ordinary differential equations
n—1 I s—3
Y — (———> Y —+ Ycot0+(s—2)<3+—>X
n T n
Il-“ -5
s—3 — ——
+ T Z+Dr " r* =0 (12a)
, , , 1-n T
Z'+(1—s)X’ +5s¢’cotl +T[Z+ (1 —s)X +s¢ocotd] T
s—3 —— m=0
+s¢(cot29—1)—sXcotz9+ <—+3> Y=0 (12b) ———m m=|
n Fig. 7 Streamlines within the singular near-tip field; 8 = 135 deg
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where Z(6) is a function of 8 (to be determined later) and D
is a constant. As they stand, equations (12) present a restricted
version of a more general form given in (FD equations (4.8))
which, however, will not be required in this study. The as-
sociated expression for the hydrostatic stress reads

o 2 lpesd on r
=—2-—=|"[r"T." Z+Dln—
” ﬁ(ﬁ) ( ’ >
where r, is a scaling factor. Constant D vanishes identically
unless n = oo (the Mises solid) or s = 3 (r-independent strain
rates and deviatoric stresses). For these cases, constant D forms
an eigenvalue of the problem.

To sum up, we have four coupled nonlinear differential
equations (5), (7), and (12a)-(12b) with four unknown func-
tions ¢, X, Y, Z. That system is supplemented by two boundary
conditions along the wall; we assume v = 0 and 0,9 = —

13)

m . .
— o at # = B or, in terms of the dependent variables

A3

?(B)=0 (14a)
Y(B)= —mI'(8) (14b)

The friction factor m serves as a measure of surface roughness
ranging from m = 0 (for a smooth wall) to m = 1 for a
perfectly rough wall. These bounds on the friction factor follow
from the definition of the effective stress

O=m=1.

o; =%[(0’r— o) + (09— 0n)’ + (05— o)) + 30%.  (14c)

Additional ‘‘boundary’’ data can be extracted from sym-
metry requirements along the axis # = 0. Thus, with the same
reasoning as in (FD) we obtain, for n # o and s # 3, the

following expansions near the pole
— () =0+ a6 + 0(8°) (15a)

~XO)=2+ <4a2—§> 6 + 00" (15b)

1.0 Ce e

~ n=l ~ n=3 o

Sij m=l Gij| m=1 G'e/
¢,

oslk 8 r8

1 i 1 L

O 20 40 60 80

Fig. 8(a)
= 135deg,n = 1,3
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1 s5B-s)
[4(12 3 + 5

2n
—Z(6)= I_s

+(5~2) <3 +S—;—3>}9+0(02), (15d)

where a, is an unknown constant. Relations (15) are identical
with (FD (4.13)) except for the minus sign on the left-hand
side of (15), which is the appropriate form in the penetration
problem since v, is negative along 6 = 0. Note that expansions
(15) have been arbitrarily scaled by putting the & coefficient
in (154) as unity.

By now we have four unknown boundary parameters: a,
and s at # = 0 and X(3), Z(B) at the wall. The resuliing two-
point boundary value problem consists, therefore, of four dif-
ferential equations along with the four unknown parameters.
That system has been solved numerically by integration of the
differential equations using the Runge-Kutta-Merson method.
Results for the eigenvalue s are shown in Fig, 2.
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3 On Some Special Cases

I Casem = 1,n < o, The wall is now perfectly rough
and conditions (14a)-(14b) imply that

X(B)=0. (16)

It follows, via the first of (4), that v,(68 = B8) = 0 and the
viscous solid sticks to the rigid cone. The solution of this
particular case is identical to the “‘rigid cone’’ solution in (FD)
with zero displacements at the wall. Curves for the eigenvalue
s are included here in Fig. 2, but for a complete discussion the
reader is referred to (FD).

II‘ Casem < 1,n = co. The material is perfectly plastic
and the equilibrium equations (12) take the reduced form

Y - YI‘F+ Yeotb +3(s—2)X + DI =0 (17a)

I‘\I

Z'+(1-s)X" +s(pcotd)’ —[Z+(1 —S)X+sd>cot0]~f;
—s(X—-2¢coth)cotd+3Y=0. (17b)

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A further simplification of (17b), with the aid of (5) and (7),
results in

Z' —s(s—2%-Q2s—5Y-[Z

T
+(1 —s)X+s¢cot0]—F—=0. (18)
The governing system of equations consists now of (5), (7),
(17a) and (18). Near the pole, expansions (15a)-(15¢) remain
valid but (15d) is now replaced by

—Z(8)=b6*+. . . {19

where b is a constant. Expansion (19), which follows directly
from equation (18), shows that both Zand Z’ vanish identically
at & = 0. Inserting expansions (15a)-(15¢) and (19) in equation
(17a) we find a relation between constants D and @, namely

s(3—5) +2<4a2—§> +6(s—2)=/3(s—2)D=0. (20)

So again, we have a two-point boundary value problem with
four unknown parameters: s, @, X(8), and Z(8). This may
be solved using the same numerical routine as for the case with
finite n. Results for the eigenvalue s are shown in Fig. 2. The
level of singularity D of the hydrostatic stress (13) depends on
both B and m as displayed in Fig. 3.

HI Casem = 1, n = o, The extreme case where the
wall is perfectly rough and the medium is perfectly plastic
requires special attention. In this limit we enforce a state of
pure plastic shear, at § = (3, such that g5 = —oo/\/§ where
0, is now identified with the uniaxial tension yield stress. A
solution is obtained by assuming that the radial velocity v,(8)
at the wall is finite. That assumption is supported by near-
wall boundary layer expansions along the following lines:

Introducing the local coordinate § = 8 — 6 we seek a solution
for small £, in the vicinity of the wall, such that

¢~AL'+BE 2D
where 4, B, and ¢ remain to be found. Combining (21) with
(5) and (7), we obtain
X~ —-B—Att"" "+ B(cotB)E+. . . (22)
2Y~At(t— 1§ ~Beotf+. . . . 23)
Since v, is to remain finite at the wall (¢ — 0), while vy vanishes,
we find from (4) and (21)-(22) that # > 1. On the other hand,
the pure plastic shear field at the wall together with the coax-
iality of tensors S and D dictate an infinite shear strain rate
at the wall. Thus, from (6) Y — o as ¢ — 0 leading, via (23),
to the restriction f < 2.
A useful asymptotic expansion is now extracted from (9),
with the aid of (21) and (22), in the form
T2 Y2~ (P =35+ )(B2+24Btt' 1+, . ). (24)

It remains to consider the equilibrium equations (17). The
radial equation (17a) can be rewritten as

i[%’ sin(B—f)} = [D+3(s-—2) %(] sin(@ — &) (25

743
observing, however, from (22)-(24) that near the wall
X 28 ,,
——— +..0., 26) .
T At(t-1) ; 26

we can write the integral of (25) for small values of £ as
Y
T sinf3~ C+ DEsinB @27

where C is an integration constant. At the wall (¢ = 0) we
have Y = —T; hence, C = —sinf and (27) is reduced to

Y~ -T(1-D§). 28)
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n=l n=3
m=0 m=0
Q% ¢ e
m=0.5 m=0.5
e
m=1 m=|

m=i . m=l

f— —=

Fig. 9 Contours of constant ¢, for different values of mand n; 8 =
165 deg

Combining this with (23) gives

2
1‘2—Y2~2D[—A;—t(t—l)il [ (29)

This should agree at the limit of small £ with (24). Thus,

=% (30a)

and
9 2 2
3; DA = (s*—3s5+3)B>

Proceeding in a similar way, we obtain from equation (17b)
the following expansion for Z(£)

(305)

! _ 1
Z~Kt 2+(1-s5)B+ <21 12S>A£2+. .. 31

8
where K is an integration constant.

All dependent variables have now been expanded in the
vicinity of the wall. Both Y and I' exhibit singular behavior
of order £~%/% as ¢ — 0. This implies, by (6), an unbounded
shear strain rate due to the ‘‘shear shock’’ at the wall. A similar
solution cannot exist for # < o as unbounded stresses at ¢
= B would give rise to an infinite force on the conical indentor.
The present analysis also settles the question that was left open
in (FD) in regard to the ‘“‘rigid cone’’ withm = 1, n = o,

The numerical solution scheme is here straightforward with
the unknown parameters s, a,, B, Z(£,) where &, is a fixed
small value. Constant D is related to (@, s) by (20), and
constant B is determined by (305). Results for the eigenvalue
s are included in Fig. 2, and the level of the logarithmic sin-
gularity of oy, is shown in Fig. 3. The limit of integration was
chosen to be £, = 1 deg for 8 = 160 deg; for 8 > 160 deg
convergence problems were lessened by choosing &, = 5 deg.

IV Casen = 1,5 = 3. A simple analytical solution exists
for a Newtonian fluid when the deviatoric stresses depend only
on 6. This is a rather trivial case, but it serves, nevertheless,
as further support to the numerical findings. The expression
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Fig. 10(a) Stress components g, (f) within the singular near-tip field; 8

= 165,n = 1,3

for ¢ is identical with the corresponding linear elastic solution
(FD), namely

6
¢ = Cisin28 + Cytan > (32)
Inserting (32) in (5), (7), (9), and substituting in the boundary
conditions (14) gives

m ﬂ sin28
,ll_mz—— 2 Jcos2fB—cosp’

This relation determines the locus of pairs (m, ) for which s
= 3. For a smooth wall (m = 0) we have 8 = 90 deg, while
for a perfectly rough wall (m = 1), 8 = 120 deg. Numerical
results (Fig. 2) are in complete agreement with (33). It is worth
mentioning that while deviatoric stresses are r-independent,
the hydrostatic stress admits a logarithmic singularity (13) given

by
0 r
o= —2C0,( 2ln{cos =] +In —
2 ry

for all (m, B) of (33).

(33)

(34

878 / Vol. 58, DECEMBER 1991

Equations (5), (7), and (12a)-(12b) remain well behaved for
s = 3 with any value of n.

4 Numerical Results

The strain rates Dy are of order =3 for small r near the tip
of the cone. For all m and n, the near-tip field is singular (s
< 3) for sufficiently large 8. It is clear from Fig. 2 that the
level of singularity inverses (i.e., s decreases) with increasing
B and decreasing m. This is in agreement with common ex-
perience that sharper and smoother cones penetrate more eas-
ily. For sufficiently sharp cones (8 > 125 deg), the strain rates
become more singular with increasing #.

Consider the perfectly plastic case n = oo. The level of
logarithmic singularity in hydrostatic stress, D, increases with
increasing 8 (Fig. 3). The variation of parameter D with friction
factor m is complex; for 8 > 130, D increases with increasing
m, whereas for smaller values of 8, the dependence of D upon
m is not monotonous.

It is worth mentioning that earlier studies (Lockett, 1963;
Shield, 1955; Spencer, 1984) on conical flow of rigid/perfectly
plastic solids used the Tresca model. The associated equations
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Fig. 10(b) Continued, n = 12, o;forn = o, r =1,

are then hyperbolic while here, by contrast, the governing
system remains elliptic for all n. It follows that the nature of
the asymptotic fields obtained in the present work is uninflu-
enced by the remote field.

Typical results for 8 = 135 deg are shown in Figs. 4 and 5.
For 0 = m = 1, s decreases as n increases from » lton
= oo, (see Figs. 4(a)-4(b)). The ratio of radial velocity v, at
6 = B and at # = 0 is plotted in Fig. 5 against m. For n #
o, as m is increased to unity the radial velocity falls to zero
at the wall and the power-law viscous material sticks to the
stationary cone. For the rigid/perfectly plastic case n o,
the deforming solid continues to slide past the cone along 6

= f in the limit m = 1. This illustrates the special nature of .

the solution for n = oo, m = 1.

Representative contours of constant e (normalized with
respect to the magnitude at § = @) are shown in Fig. 6 for 3
= 135 deg. Samples of the associated streamline patterns are
displayed in Fig. 7, and illustrative eigensolutions for the cor-
responding asymptotic stress fields are depicted in Figs. 8(a)-
8(). Results are shown for both smooth (m = 0) and perfectly
rough (m = 1) indentors, and also for an intermediate value
of m = 0.5,

Journal of Applied Mechanics

For all m and n, the contour of constant e hugs the wall
of the cone (Fig. 6). That contour projects ahead of the cone
into the solid. Deepest penetration of the e contour occurs
for m = 1. This is reflected in the shape of the streamlines,
Fig. 7. Ahead of the cone tip the curvature of the streamlines
increases with increasing m. There is also an obvious build-up
of a boundary layer as both m and » increase (Fig. 6).

The stress profile @ 4(0) in Figs. 8(a)-8(b) have been nor-
malized with respect to §,(8). These figures include also the
hydrostatic component &;; for the case n = oo (Fig. 8(b)) we
have chosen to show the distribution of g, over the circle r =
r, so that the logarithmic term in (13) vanishes. A common
feature, which may be concluded from these figures, is that
the hoop strain rate Dy, (which has the same sign as g45 —
oy) is always positive except when it vanishes at the perfectly
rough wall for n < oo. ]

Similarly, the polar strain-rate Dgy (which has the same sign
as the deviatoric ogy — 03) is always positive along the tearing
line & = 0, but becomes negative beyond a certain value of 6.

Analogous conclusions apply for the case of sharper cones
with 8 = 165 deg. The contours of effective strain rate bear
much resemblance to a boundary layer phenomenon (Fig. 9),
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with relatively higher stress gradients near the wall (Figs. 10(a)-
10(d)).
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An Invariant-Bdsed Flow Rule
for Anisotropic Plasticity Applied
to Composite Materials

In this paper we discuss some fundamental problems associated with incremental
anisotropic plasticity theories when applied to unidirectional composite materials.
In particular, we question the validity of an effective stress-strain relation for highly
anisotropic materials of this nature. An effective stress-strain relation is conven-
tionally used to determine a flow rule for plastic strain increments. It is our view
that such a relation generally does not exist for many high-performance unidirectional
composites. To alleviate the problem associated with defining an effective stress-
strain curve we develop an anisotropic plasticity theory in which the flow rule does
not requires such a relation. The proposed theory relies on developing an accurate
expression for a scalar hardening parameter g(a). The general form of g(e) is
substantially reduced by invoking invariance requirements based on material sym-
metry. The general invariant-based theory developed herein is specialized to case of
transverse isotropy and applied to the analysis of a nonlinear elastic-plastic unidi-
rectional composite material. The invariant-based theory is shown to produce su-
perior results over the traditional approach for a series of uniaxial and biaxial load

cases predicted using finite element micromechanics.

Introduction

The mathematical theory of plasticity is based on the exist-
ence of a plastic potential or yield function which demarcates
the material behavior from elastic to plastic. The yield function
is, in general, dependent on the stress state, and perhaps on
an internal state vector which characterizes the plastic state of
the material. The stress state must lie on the yield surface in
order for plastic deformation to occur. Furthermore, one can
show, using the energy arguments, that the increment in plastic
strain must be normal to the yield surface. Therefore, a general
form of an isotropic constitutive law for plastic strain incre-
ments assumes the form

60,»,-’

where ® is the yield function. The scalar d\ is normally de-
termined by assuming there exists a unique effective stress-
strain curve for the material such that the plastic work may
be written as

def;=d\

dWP =5de". )
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One can show the value of d\ is a function of the tangent
modulus of the effective stress-strain relation. The form of the
effective stress-strain curve is determined experimentally using
a specific load path and is then assumed to be valid for any
multiaxial loading. This assumption is the foundation of iso-
tropic plasticity and has generally been observed to be true for
a wide variety of metals.

The constitutive law given by equation (1) has been extended
to anisotropic materials by several investigators. Perhaps the
most well known of these is attributable to Hill (1950) who
developed an orthotropic plasticity theory for cold-rolled steels.
The theory has its roots in the isotropic formulation and uses
an effective stress-strain relation to determine the specific value
of d\. This approach has been specialized to the case of trans-
versely isotropic materials to investigate the behavior of uni-
directional composite materials (Griffin et al., 1981).

The theory developed by Hill (1950) is fundamentally sound
and represents a major contribution to the theory of aniso-

_tropic plasticity. However, application of this theory to high-

performance unidirectional composites must be questioned. In
particular, we do not accept the concept of an effective stress-
strain relation for highly anisotropic materials of this nature.
The problem lies in the fact that the tangent modulus of the
effective stress-strain relation is generally load-path dependent
for this type of material. For instance, the behavior of many
high-performance composites may be either linear elastic to
failure or highly inelastic depending on the type of loading.
The difference in behavior may be attributed to a variety of
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deformation mechanisms occurring on the microscale which
are load-path dependent. Hence, the question arises as to what
load path should be used to determine the tangent modulus,
and hence d\, when the material is under multiaxial loads.

The lack of a unique effective stress-strain relation for an-
isotropic materials has been noted by several previous inves-
tigators. Kenaga et al. (1987) developed a two-dimensional
orthotropic plasticity theory to predict the plane stress behavior
of unidirectional boron/aluminum composites. An optimum
effective stress-strain relation was determined for the material
using a trial and error analysis of off-axis tension test data.
Sun and Chen (1988) extended the work of Kenaga et al. (1987)
by reducing the number of coefficients needed for the effective
stress-strain relation from three to one. A drawback to these
works is that the parameters used to trial and error fit the
effective stress-strain relation also directly influence the yield
function. This is theoretically overly restrictive in the sense
that the yield function should not be influenced by the effective
stress-strain relation. Furthermore, the procedure for extend-
ing the theory to fully three-dimensional stress states is unclear.

Gotoh (1977) assumed a yield function that is fourth order
in stress in his investigation of cold-rolled steels. While not
directly applicable, he makes an important observation noting
the tangent modulus of the ‘‘effective stress-strain’’ curve is
in fact dependent on the type of loading, even though the
curves should be intrinsically unique for a given material.

To alleviate problems associated with a flow rule for aniso-
tropic plasticity we develop a plasticity theory in which the
flow rule does not require an effective stress-strain relation.
The constitutive law is cast in a form which sheds considerably
more light on the specific nature of the flow rule. In particular,
we reduce the problem to developing an accurate expression
for a scalar-hardening parameter g (o). One significant aspect
of this theory is that the explicit value of the scalar g (o) varies
depending on the specific location of the stress state on the
yield surface. This approach is in sharp contrast with the tra-
ditional approach of Hill in which g(¢) is a constant everywhere
on the yield surface. This is an implicit result of assuming the
existence of an effective stress-strain curve.

The general form of g(o) can be substantially simplified by
invoking invariance requirements on the material based on
material symmetry. This is accomplished through the use of
representation theorems for tensor functions. These theorems
place valuable restrictions on the possible functional forms of
tensor functions and are particularly useful when modeling
anisotropic materials.

Two examples of the use of representation theorems for
modeling anisotropic plasticity may be found in the work of
Boehler (1987) and Spencer (1987). Boehler has developed an
anisotropic-hardening theory for rolled sheet-steel whose mac-
roscopic behavior is orthotropic. The constitutive law devel-
oped assumes the form

T=FD, P, M) 3)

where T, D, and P are the stress, kinematic, and prestrain
tensors, respectively. M is a structural tensor which charac-
terizes the initial orthotropy of the material. Invariant-based
yield criterion and hardening rules are then formulated based
on an irreducible representation of equation (3) using repre-
sentation theorems for tensor functions.

Spencer (1987) has also developed a plasticity theory for
anisotropic materials based on representation theorems. In this
work, plastic strain increments are defined in a manner anal-
ogous to equation (1). However, the current state of hardening
is assumed to depend on the history of the strain rather than
the current stress as proposed in this work. Hence, scalar
invariants of the strain tensor are defined and general theories
of “proportional hardening’’ and kinematic hardening are de-
veloped.

882/ Vol. 58, DECEMBER 1991

Problems Associated with Anisotropic Incremental
Theories

Here we discuss some problems associated with incremental
anisotropic theories when applied to unidirectional composite
materials. We assume the composite may be modeled as a
transversely isotropic material. In doing so, we specialize the
orthotropic theory proposed by Hill (1950) to discuss these
problems. However, these same problems associated with the
Hill theory are present in many of the modified theories in
which the yield surfac¢e is altered in some manner.

Hill proposed that the simplest yield criterion for an aniso-
tropic material is one that reduces to the von Mises yield cri-
terion when the anisotropy is vanishingly small. In the spirit
of Hill, a quadratic form of the six components of stress is
chosen for a transversely isotropic yield function as

P=0¢-¢, C)]
where
d=F(0p—033)"+ G (033 011)+ G (01~ o)
+ (G+2F) (05 + 0%) + M(oh3 + a1 + 012+ 03)),  (5)

where the x;-axis represents the axis of rotational symmetry.
The value ¢ represents the largest recorded value of ¢. For
initial yield, ¢ is taken to be unity. This approach represents
an isotropic hardening theory.

In the foregoing equations, F, G, and M are parameters
characterizing the degree of anisotropy. These parameters re-
main unchanged during deformation, consistent with an iso-
tropic hardening theory.

As is customary the yield function, ®, defines the following
material behavior:

® <0 - elastic behavior,

® = 0 — the stress state lies on the yield surface, and
® > 0 — inaccessible state.

Let o}; represent the initial yield stresses referenced to the or-
thogonal material coordinates. The parameters F, G, and M
in equation (5) can be solved as
2 1
2F=————=3,
(00 ()
1
(et
__1
(o1p)* (6)
The yield stresses of; must be known from experimental data
or estimated analytically, e.g., using finite element microme-
chanics.
In order for plastic deformation to occur, the state of stress
must lie on the yield surface, i.e., $=0. Following Martin
(1975), the increment in plastic strain may be written as

2G

2M

od 0P
def, = — -, 7
€1 g(") (aars dors) ao'ij ( )
when
Ll
—do,s>0 and $(6)=0. 8)
a0

Comparing equations (1) and (7) we see that the scalar d\ of
equation (1) is given by

dx=g<a><“’ do,s>. ©)

80

The significance of the latter term in the above becomes ap-
parent by noting that d®/do, is a vector normal to the yield
surface in stress hyperspace. Hence, (0®/30,,)do,, is a measure
of the component of the incremental stress normal to the yield
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surface. The sign of this term determines the loading condition
for the material as follows:

(0®/30,)do,s>0 loading;

(09/d0,5)do;=0 neutral loading;
(09/0d0,5)do,s<0 unloading.

From equation (8), we see that plastic strain increments can
only occur during loading.

To complete the theory one must develop a functional form
for the scalar-hardening coefficient g(¢). The simplest form
of g(o) is to assume it has the same value at any point on a
given yield surface. This is the approach taken in isotropic
plasticity. For instance, for a von Mises yield surface we can
write

2 -
=§(J2—Jz), (10
where J, represents the second invariant of the deviatoric stress
and J, represents the highest recorded value of J, beyond initial
yield. A common form assumed for the scalar hardening pa-
rameter is given by

g(a)=g(N). (11)

The fact that g is only a function of the isotropic stress in-
variants is consistent with the representation theorems for a
scalar function of a second-order tensor.

An experimental test for some particular load path is used
to determine the specific functional form of g (J;). The normal
convention is to determine g(J,) from a uniaxial tension test.
For this case we arrive at a final form for g(J,) given by

21 ( 1 1
16 L\ET(J,) E

where E and E” are the elastic modulus and tangent modulus
from the uniaxial stress strain curve. The assumption that the
form of g(J,) as determined from a uniaxial test is valid for
arbitrary load paths is central to the success of plasticity theory
for isotropic materials. This in fact has been shown to be true
for many materials; see, for example, Ivey’s (1961) work on
silicon-aluminum alloys. Furthermore, it is precisely this same
assumption which leads to difficulties in modeling anisotropic
material behavior.

Development of a functional form for the scalar-hardening
coefficient in anisotropic plasticity follows the isotropic ap-
proach. For instance, the simplest approach is to assume g (o)
is a function of the current yield surface ¢. This is in fact the
approach taken by Hill (1950). To demonstrate this we follow
the work of Hill and write

g()= (12)

0P
defj= d)\g(;; (13)
The increment in plastic work is then given by
FeLi
AW? = o;def;= 0;;dN— a4

da;;

Noting equations (4) and (5) and carrying out the required
differentiation gives

dW?P =2d\o. (15)

To determine the constant d\ we introduce the concept of an
effective stress for the material which satisfies

dW? =0de®. (16)
Following the work of Hill (1950), the specific choice taken

for 7 is
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_\_/: F(on—033)>+ G(oy3—011)* + G (01— 0n)’
\/—

F+2G
2(G + 2F) 0% + 2Ma%s+ 2Ma?,\
* F+2G an
Comparing equations (5) and (17) it follows that
5 3 ¢
=t 18
7 T2F+2G 18

The plastic wori<, as defined by equation (16), may be rewritten
as

=P
dW"—a‘Z—Gda ada (19)
where
1 der
_=—, 20
H a5 20)

Differentiating equation (18) and substituting into equation
(19} it follows that

3 1 6(/)
WP = e d 21
AW = F+2G) H 30,0 @1
Comparing equation (21) with equatlon (15), we obtain
3 1 o
¢ —doy. (22)

8¢> (F+2G) H’ b0,
Finally, noting equation (9) we obtain a form for the scalar-
lt:ardening coefficient as a function of the yield surface given
y
3 1
8¢ (F+2G) H”
The function (1/H") is determined by considering a specific

load path. For instance, consider a uniaxial tension test in the
X, direction. For this case the effective stress is

_ 3G 172
7=\F+26) "

The effective strain is defined such that the increment in plastic
work is energetically consistent with equation (14). Hence,

g(¢)= (23)

@4

172
_ (F+2G
de= < 3G > deqy. 25
Noting equation (20), the function (1/H") is
1 1 F+ ZG
= , 26
H’ <E11 E11> 3G ( )

where F;, and E7, denote the modulus and the tangent modulus
of the uniaxial stress-strain curve. Substituting equation (26)
into equation (23), the scalar-hardening coefficient becomes

1 1
g(9)= 8¢G<E %) Eu)

Again, the fundamental assumption behind this approach is
that the form for g(¢), determined from the uniaxial tension
test, is valid for any multiaxial stress state. Herein lies a prob-
lem with the use of such a theory when applied to unidirectional

@7

_composite materials in that the scalar-hardening coefficient is

dependent on the specific location of the stress state on the
yield surface. Hence, the assumption that the value of g(¢)
is a constant for any given yield surface is overly restrictive.
The specific behavior of the scalar-hardening coefficient for
unidirectional composite materials will be examined using a
finite element micromechanics analysis.

Finite element micromechanics has been extensively used to
characterize the material behavior of unidirectional composites
(Miller and Adams, 1977; Adams and Crane, 1984). This rep-
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Fig. 1 Finite element mesh used for the fiber-matrix micromechanics
model
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Fig. 2 Uniaxial tension stress-strain plot of a ductile matrix material

resents a viable alternative to extensive experimental charac-
terization of materials, particularly for multiaxial behavior.
For instance, parametric studies involving different fiber vol-
umes and constituent properties are readily carried out, thereby
allowing one to characterize a wide variety of materials under
various loading conditions.

The finite element micromechanics analysis used in this in-
vestigation is a generalized plane-strain analysis of a quarter
fiber and surrounding matrix, representative of a continuous
fiber unidirectional composite material, as shown in Fig. 1.
The fiber direction is taken to be x,. A square packing array
is assumed for the fibers.

For example purposes, we choose to model the fiber as a
stiff transversely isotropic material which is linear elastic to
failure. The matrix material is softer than the fiber and is
assumed to behave elastic plastically. The uniaxial stress-strain
curve for the matrix constituent is taken to be bilinear as shown
in Fig. 2. The specific elastic coefficients for the fiber are:

E, =417.0 GPa, Ey, = E3,=208.5 GPa,

Glz=Gl3=G23=83.4 GPa, V11=V13=0‘2, V23=0.25.

The constituent behavior described above is not intended to
model any specific material. Rather, the intent is to demon-
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Fig. 3 Micromechanics generated stress-strain curves for longitudinal
tension, transverse tension, and longitudinal shear loadings
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Fig. 4 Scalar-hardening coefficient plotted as a function of the yield
surface for transverse tension and longitudinal shear load paths

strate the fundamental problems associated with modeling
highly anisotropic materials of this nature. However, it should
be noted that the ratios of the elastic moduli are typical of
those found in many high performance composites such as
boron/aluminum and silicon-carbide/titanium.

Figure 3 represents the behavior of the composite material
as predicted by a micromechanics finite element analysis. The
figure shows longitudinal tension (o1;), transverse tension (o,,),
and longitudinal shear (o},) loadings. Note in Fig. 3 the lon-
gitudinal tension curve is not shown in its entirety since it is
elastic to failure. The data clearly indicate the value for the
scalar-hardening coefficient is strongly dependent on which
loading is used to define g(¢). For instance, the longitudinal
tension stress-strain curve is essentially linear elastic to failure
resulting in no plastic strain. Hence, a value of g(¢) =0 is
indicated. In contrast, the behavior of the same composite
material subjected to shear loads is highly nonlinear, indicating
a value g(¢) >0. Furthermore, the value of g(¢) is different
for various loadings which exhibit plastic deformation. For
instance, consider the longitudinal shear and transverse tension
curves. Noting equation (23) the value of g(¢) may be deter-
mined for each load case as:

012: 8($) =(1/Gl, = 1/G13)/ (8 6 M) (28)
022t () =(I/Ep~ 1/Ep)/ (4 (F+G)) (29)

where Gy, denotes the shear modulus and E,, represents the
elastic modulus in the x,-direction.
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Figure 4 shows a plot of g(¢) for the transverse tension and
longitudinal shear loadings as determined by equations (28)
and (29). The figure clearly indicates a difference in the be-
havior of the scalar-hardening coefficient. This is also evi-
denced in Fig. 3 where it is seen that the longitudinal shear
behavior is much more nonlinear than the transverse tension
data. The question then arises as to what relation to use for
g(¢) under multiaxial load cases.

An Invariant-Based Flow Rule

In this section we develop an advanced anisotropic plasticity
theory in which the scalar-hardening coefficient is allowed to
be load-path dependent. For comparison purposes, we assume
a yield function identical to the one specified in equations (4)
and (5). Furthermore, the plastic strain increments are assumed
to be governed by equations (7) and (8), repeated for conven-

ience as
oP L
dé% =& ( 0) <E dors> gij’ (30)
when
P
—do,>0 and $(0)=0. (31)
Aoy

At this point we turn our attention to the scalar-hardening
coefficient g (¢). We note that g is a scalar function of a second-
order tensor. The functional form of g(¢) may be restricted
by considering invariance properties of the material. For ex-
ample, in modeling a unidirectional composite material, the
usual approach is to assume the material is transversely iso-
tropic. Under this assumption the functional form of g (¢) must
remain unchanged for arbitrary rotations about the axis of
symmetry. Denoting this axis as x;, the five transversely iso-
tropic stress invariants for such coordinate rotations are given
by Spencer (1971) as:

ay=ayy, @y=0y+03, 3=0%+ 0%+ 203

as= 0%+ dhs, as= 0207, + 033073+ 2012013003, (32)

A mathematically correct representation of g(¢) must be of
the form
g(o)=g(ay, a, a3, as, as). (33)
In order to further reduce equation (33), we must make some
additional assumptions about the material behavior. First, we
require the value of g{(¢) to remain unchanged when the signs
of o;; are reversed. This implies that we must deal with quad-
ratic forms for a;, a,, and as as these invariants are odd func-
tions of stress. We reject the fifth invariant for simplicity in
that g% is sixth order in stress. A further simplification is
achieved by rejecting the second invariant ,. In doing so, we
are restricting the nonlinear behavior of the model in the sense
that the behavior of g (o) will be identical for both transverse
tension and transverse shear load paths. The micromechanics
analysis used in this paper was unable to verify this as a square
packing geometry is not truly transversely isotropic. However,
it should be noted that the invariant formulation is capable of
modeling differences in these load paths simply by incorpo-
rating the second invariant in the function form of g. There-
fore, a reduced form for g(e) is
glo)=g(ay, a3, a4). (34)
Finally, one may be tempted to eliminate the first invariant a,
as the material is linear elastic to failure under uniaxial tension
in the fiber direction. However, longitudinal tensile stresses
do influence the nonlinear behavior of the material under mul-
tiaxial loads. This can only be accounted for by retaining a,.
To complete the theory a specific functional form for g(a,,
as, a;) must be developed using experimental and/or micro-
mechanics data. The specific form will be material dependent.
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Fig. 5 Scalar-hardening coefficient plotted as a function of the stress
invariants a; and a, for transverse tension and longitudinal shear load
paths, respectively

To begin, we consider specific load paths in which the invar-
iants a3 and a4 may be isolated. To study the effects of a, alone
we consider a longitudinal shear test in which 6,70 and all
other g;;= 0. Rewriting equation (28) as a function of the fourth
invariant gives

012} 84(as) =(1/Gh—1/Gp)/ (16 a, M?). (ER))

The third invariant may be isolated by considering a transverse
tension test in the x,-direction. For this we can rewrite equation
(29) to obtain

a2 g(a3)=(1/E2TZ—1/E22)/(4a3 (F+G)2). (36)
The behavior of the scalar-hardening coefficient as a function
of the third and fourth invariants is shown in Fig. 5. A linear
regression analysis of the data yielded the following forms for
g and g

g=1.2(10"% a;—1.2 (10" MPa 37

2,=3.0 107°) a,—0.5 MPa. (38)

At this point one must assume a functional relationship for
the scalar-hardening coefficient under multiaxial loads. The
form chosen must reduce to the specific forms defined by
equations (37) and (38) for the corresponding loading condi-
tions. Furthermore, the influence of longitudinal stress on the
nonlinear behavior must be incorporated. A negligible coupling
effect between ¢1; and oy, was observed in biaxial microme-
chanics analyses. However, there was significant coupling be-
tween g, and o}, in biaxial runs, Therefore, the final form for
the scalar-hardening coefficient was taken as

g(ay, a3, @) =2 g3 (a3) + 2 (gy(ag) +ai (@) (39)
as ay

where a¥ and a% are values of the stress invariants at the current
yield surface as determined from a uniaxial transverse tension
and a longitudinal shear load case, respectively. The influence
of the first invariant was determined from a single biaxial

. micromechanics test in which oy, =100,. The specific func-

tional form taken for g, (a;) is
g1(a)=6.5 (107% a2 —0.5 (1074 at. (40)

It should be noted that the coefficients of equation (40) are
several orders of magnitude smaller than those of equation
(38). This is consistent with the notion that longitudinal tension
stresses do not have a major influence on the yielding of the
material. However, the work performed here indicates that
these stresses cannot be totally neglected.
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Fig. 8 Comparison of numerical micromechanics predictions with the
invariant-based formulation and Hill’s theory for a longitudinal shear
loading, oy,
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Fig. 7 Comparison of numerical micromechanics predictions with the
invariant-based formulation and Hill’s theory for a transverse tension
loading, oy,

The form of the scalar-hardening coefficients shown in equa-
tion (39) is now assumed to be valid for general three-dimen-
sional loadings. While the approach used to determine a form
for the scalar-hardening coefficient is not general, it does in-
dicate the salient feature of the invariant based theory in that
g(o) is allowed to vary on the yield surface. This may be
contrasted with the classical theory in which g () is a constant
everywhere on the yield surface.

Results

In this section we compare the invariant-based theory and
the classical theory based on the work of Hill (1950) for a
transversely isotropic material using a series of uniaxial and
biaxial load cases predicted by finite element micromechanics.
It should be noted that all shear stress-strain data is presented
graphically using the engineering definition of strain as is cus-
tomary. However, the equations developed in the previous
section are based on the tensorial definition of shear strain to
take full advantage of indicial notation.

To begin, one must choose a specific load path to determine
the scalar-hardening coefficient g(¢) to be used in the Hill
formulation. For example purposes, we shall determine g(¢)
using the longitudinal shear data shown in Fig. 3. This is a
reasonable approach in that o, is the stress for which the most
pronounced nonlinearity is observed. To choose the longitu-
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Fig. 8 Comparison of ¢,1-¢;4 stress-strain predictions for a combined
longitudinal tension and longitudinal shear loading where o4y =10 ¢y,

dinal tension curve, as is traditional for isotropic plasticity
theory, would indicate g(¢) as zero. This would suppress all
plastic strains for any applied load path. This fact alone should
cause one to question the validity of an effective stress-strain
curve for anisotropic materials of this type. Finally, because
the longitudinal tension behavior of the material is linear elastic
to failure, the yield stress is defined as the ultimate stress for
this loading.

One could argue that an optimum effective stress-strain curve
could be chosen based on averaging all available data in order
to minimize the error. This was the approach taken by Kenaga
et al. (1987) for a biaxial test program. However, for fully
multiaxial stress states such a procedure is unclear. Further-
more, as will be demonstrated, one can not totally eliminate
the errors in this manner as the error is not consistent.

Figures 6 and 7 compare the longitudinal shear (oy5) and
uniaxial transverse tension (o) numerical micromechanics
predictions with the invariant-based theory and the classical
formulation put forth by Hill. As expected, the two theories
fall extremely close to the micromechanics prediction for lon-
gitudinal shear loading as shown in Fig. 6. However, the results
are markedly different for transverse tension loading depicted
in Fig. 7. For this case, the invariant-based theory tracks the
micromechanics predictions while the Hill formulation predicts
a much softer response. The discrepancy in the value predicted
by the Hill formulation may be attributed to g(¢) being a
constant for the entire yield surface.

A series of biaxial as opposed to uniaxial loadings were also
modeled using finite element micromechanics to further com-
pare the two plasticity theories. In each case the loading was
assumed to be proportional and monotonically increasing. Fig-
ure 8 presents a oy —€;, stress-strain curve for a combined
longitudinal tension (o};) and longitudinal shear (g,,) loading
where o= 100y,. The numerically predicted behavior of the
material is near linear elastic. Both the invariant-based and
Hill formulations agree quite well with the numerical results.
The theory developed by Hill works well in predicting this
behavior because the anisotropic yield parameter G is very
small, tending to suppress incremental plastic strain values for
this loading mode. Figure 9 shows the g, — <> response for
the same biaxial loading (o,, = 100};) case. Here, the invariant
formulation performs slightly better than the Hill formulation
although both theories are close to the micromechanics re-
sponse. However, it is worth noting that the Hill formulation
is conservative for this case, which is in sharp contrast to other
biaxial cases. This is especially interesting in that g(¢) was
determined from shear data showing the greatest degree of
nonlinearity.
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Fig. 10 Comparison of ¢y;-¢1¢ Stress-strain predictions for a combined
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Figures 10 and 11 compare the plasticity theories for a biaxial
loading combining longitudinal tension (oy;) and transverse
tension (o) where o,; =S0y;. The longitudinal tension data
shown in Fig. 10 again reflect a linear response for all three
curves. However, the transverse tension stress-strain response,
Fig. 11, shows the invariant formulation is superior to the
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Fig. 13 Comparison of o,¢;, Stress-strain predictions for a combined
transverse tension and longitudinal shear loading where g, = 20y,
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Fig.14 Comparison of o,.-¢,, Stress-strain predictions for a biaxial load-
ing given by o, =03

classical theory in following the numerical micromechanics
results.

Similar results were found for biaxial analyses involving
transverse tension (o,;) and longitudinal shear (o};) as shown
in Figs. 12 and 13. The load path was taken to be o, =20;.
For the longitudinal shear results plotted in Fig. 12, the in-
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variant-based formulation tracks the micromechanics analysis
while the Hill formulation is significantly softer. The transverse
tension results plotted in Fig. 13 are interesting in that both
theories show a softer response than that predicted by micro-
mechanics. However, the invariant based theory represents a
substantial improvement when compared to the Hill formu-
lation. : .

Finally, Fig. 14 shows a comparison of the two theories with
micromechanics for a biaxial plot where g5, = 033. In this case
both theories perform extremely well.

In summary, the correlation of the invariant-based for-
mulation with the predicted micromechanics results is excel-
lent. In contrast, the Hill formulation worked well for some
load paths while breaking down for others. The improved
results of the invariant based theory may be attributed to
allowing the value of the scalar-hardening coefficient to vary
over the yield surface. The results are particularly pleasing in
that a relatively simple form of the scalar-hardening function
was assumed.

Discussion

In this paper we have developed a generalized anisotropic
plasticity theory using an invariant-based flow rule. In partic-
ular, we allow the value of the scalar-hardening coefficient to
vary depending on the specific location of the stress state on
the yield surface. The functional form of the scalar-hardening
function is developed in terms of the stress invariants and
without the assumption of an effective stress-strain relation.
The specific form of g(e¢) may be significantly reduced by
invoking invariance requirements on g based on material sym-
metry. This formulation permits more accurate modeling of
uniaxial and multiaxial load cases without imposing the overly
restrictive requirement of an effective stress-strain relation.

Development of an invariant-based flow rule has been slowed
in the past by the specific requirement for an effective stress-
strain relation. As has been demonstrated, such a relation
generally does not exist for high performance, unidirectional
composite materials. The assumed existence of an effective
stress-strain relation implies the scalar-hardening coefficient is
constant everywhere on the yield surface. Mathematically, this
is an overly restrictive assumption in that g(¢) is in general a
function of the stress state. However, this fact is not imme-

888 / Vol. 58, DECEMBER 1991

diately observable unless one casts the constitutive law in the
form shown by equation (7).

Finally, we note that the invariant based theory developed
here is based on an isotropic hardening model. For structures
subjected to cyclic loading or significantly varying load paths
it may be necessary to develop a kinematic hardening model.
We refer to the excellent experimental work on metal matrix
composites conducted by Dvorak et al. (1988) as an example.
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Acoustic Emission From Single-
Plate Martensitic Transformation

Martensitic transformation occurs in a diffusionless manner at high velocity, with
acoustic emission (AE) being generated during the process. The AE signal contains
information about the dynamic process of martensitic transformation. In this anal-
ysis, a model is developed for the AE signal, or dynamic displacement, from the
transformation strains and the growth process of martensitic transformation in an
elastic half-space using Green’s functions. The AE signal amplitude is found to be
inversely proportional to the distance between the martensite source and the sensor,
and to the duration of transformation. It also depends on the orientation of the
martensite plate. The spectral bandwidth increases as the duration of plate formation
decreases. In addition, raising the carbon content increases the fraction of plate

martensite, and consequently the signal amplitude.

Introduction

Acoustic emission (AE) is defined as the high-frequency
elastic waves from the rapid generation of strains (or stresses)
in processes such as martensitic transformation, crack for-
mation, and plastic deformation. Martensite may form during
the welding of some alloy and high-carbon steels, and since it
is a potential cold-crack former, it is desirable to monitor its
formation. Some amount of work has been done in this regard.

Rice (1980) considered AE from damage processes such as
slip microcracking. He gave general representation of the dis-
placement field of an AE event in terms of the double-couple
response to a distribution of ‘‘moment density tensor’’ in the
source region. Simmons and Wadley (1984) developed an in-
tegral equation for the acoustic emission displacement field
due to the formation of inhomogeneous inclusions during phase
transformation. Their solution is elegant and general, but the
growth process of martensitic transformation is not explicitly
considered, and the result cannot be interpreted in detail. Kan-
natey-Asibu and Dong (1986) subsequently developed a sim-
plified model for martensitic transformation using Gibbs free
energy change, where a relationship between the RMS (root-
mean-square) voltage of the AE signal, the transformation
temperature, the cooling rate, and the transformed volume
was obtained. Liu and Kannatey-Asibu (1990) extended this
model for athermal martensitic transformation and verified it
experimentally using AISI 4340, 1045, 1060, and 1075 steels.
The intensity of the AE signal generated during transformation
was found to be proportional to the cooling rate and the volume
of specimen. The AE signal was also found to be related to
the carbon content of the steel and the fraction of martensite.
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In this study, the stress-free transformation strains for mar-
tensitic transformation and Green’s functions are used to ob-
tain the dynamic displacement at the epicenter. Solutions for
the AE signal in the time and frequency domains for a double
cone-shaped martensite plate are obtained.

Analysis

Let us define the martensite source as a region V inside an
elastic isotropic and homogeneous medium D (Fig. 1); this
region undergoes a spontaneous, uniform, nonelastic defor-
mation strain or stress-free transformation strain ek, (x’,¢’) at
position x” and time ¢’, while constrained by the surrounding

AE Sensor

Coordinates

Local
Coordinates

v

Fig. 1 A martensite plate inside an elastic homogeneous half-space
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material. If the boundary L of D is traction-free, then the
resulting total displacement field at time ¢ in the global co-
ordinate system x is given (Willis, 1965; Mura, 1983) as

+ o
S Citmn€mn(X",)Gy (XXt —t")dt'dv (1)
VY-

ui(x,t)= — S

where . .
u;(x,t)=displacement in the x;-direction at position x and
time #;
Cjimn = elastic constant, with j,l,m,n=1,2,3;
era(x’,t')=stress-free transformation strain or eigenstrain
at position x’ and time ¢’, with m,n=1,2,3;
Gy(x,x’',t—1t")=Green’s function or displacement com-
ponent in the x-direction at sensor location x and time ¢ due
to a unit impulse force in the x;-direction at x’ and time ¢';
and
G,-j,,(x,x' g t’) = BGU(x,x’ = t')/c')x,.
The stress-free transformation strain or eigenstrain is the non-
elastic strain such as thermal expansion, phase transformation,
plastic, or misfit strain (Mura, 1983).
Considering the effect of martensite growth, we can write
the stress-free transformation strain as

emn(X "5t ) = enn H(t" — th) )

where

eyn=magnitude of e}, (x’,t');

H(t' — t)) =the Heaviside unit step function; and

t)r=the martensite front propagation time, 0<ty<7.

The transformation front is considered to be at position x’
at time fy,. Thus, the stress-free transformation strain can be
written as a function of f), instead of x’ in equation (2).

Since the stress-free transformation strain from the marten-
sitic transformation is usually defined in the local coordinate
system X (which is parallel to the crystallographic directions
of the austenite matrix in this analysis) and the local coordi-
nates X, X5, X; of the martensite plate do not necessarily
coincide with the global coordinates x;, X3, X3, a transformation
matrix a has to be applied to the stress-free transformation
strain (Boresi and Chong, 1987):

an ap a3
A= 14z Gy ax
31 a3 Q33
where a;= cos(¢;;) denotes the cosine of the angle between the
x;-axis and Xj-axis.

The strain in the global coordinate system x is thus rewritten

as

Emn(X"31") = QomttgnecagH(t" — tp) 3

where €%z is the strain magnitude in the coordinate system X,
and o,8=1,2,3. Substituting for e},(x’,z') in equation (1) gives

SHO H(t’

VY —o

~ )Gy (XXt —1")dt'dV.  (4)

Further expressing equation (4) in terms of Green’s function
for a step force input (Johnson, 1973), we have

u(x,t)= - lemnaamaﬁnE;BS

+ oo
u(x,t)=— jlmnaamaﬁnezﬁg S (@H(’
v

-0

— )/ 0t)GE(xx" t—t")dt’dV  (5)

where G%, is the spatial derivative of Green’s function for a
step force input.
Since dH(t' —ty)/9t’ =56(t’' — ty), we now have

S+m o’

VY-

— )G X t—t)dt'dV ()

g

ui(x,t) == lemnaamaﬁnez,ﬂ S
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Fig. 2 Schematic of martensite growth

8.0

7.0

6.0
Vp = 2vg

5.0

H
3,1

4.0

4npd®G

3.0

2.0

|I|||(ll]lllll]llllllllllIllllllllliltl

oy vty e g e e g

0.0 i1y
0.0 1.0 2.0 3.0 4.0
t/t1

Fig. 3 Green’s function 4mpd *Gl| = 4xud 2Gl,

8.0

7.0
6.0 Vp= 2vg

5.0

4.0

~4npd®GlY,

3.0 0548 {t—ty)

k—

2.0

1.0

1\|I—|IIIIIIllllIlllillk\llllllllllltlll

NI ST SN AN AR Tl W R N A AT N AN NI T OO R

(4K} I
0.0 1.0 2.0 3.0 4.0
t/n

Fig. 4 Green’s function —4wxpd 2Gi

which further reduces to
ui(xat) == C‘jlmnaamaﬁrte;BS Gé{/(x’x ! 91‘ tM)dV (7)
14

Now consider a double cone-shaped martensite plate trans-
forming at a radial velocity of v, and simultaneously thickening
at velocity v, (Fig. 2). The midrib area at time £,/ is

A(ty) = mvithy

and the amount of martensite transformed during the interval
dt M is
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Fig. 5 Regions 1 and 2 for a twinned martensite plate (Porter and East-
erling, 1981)

dV = 2A(L)Vadtry = 2m0i0st 3ydt . (8)
Equation (7) can then be rewritten as

T

GHI(X,X 't tag)t 34dins

0

)

where 7 is the duration of transformation of a martensite plate.

Applying the Taylor expansion to G% ;(x,x’ ¢ — t,,) about the
centroid of the martensite source x§, we have

GHi(x,X" 1 — ty) = GF(X,X4 ,t — tag) + GELi(X, X, — A AXL + ...

where A x}=xj;—x¢. Considering a point source approxima-
tion, we can then neglect the higher-order terms:

2
ui(x,)=— ZTUIUZCjImnaamaﬂne;BS

T

G{j{l(xsxol = tM)tﬁydtM.

0
(10)

The approximation is valid if the size of the source (mar-
tensite) is much smaller than the distance d between the source
and the sensor and the signal frequency information considered
is not too high. (The errors introduced by the point source
approximation are discussed by Simmons and Clough, 1981.)
The displacement along direction x3 (perpendicular to the sen-
sor mounting plane) at sensor location (0, 0, 0) can thus be
approximated as

2
ui(x,8) = = 20T, Ciirnlampnens S

T

Gifi(t—titidty (11

u(t) = — ZWU%UZlemnaamaﬂne;ﬁS
0
where G, /(0,x4,¢ — ty) is simplified as G%5; (¢t — ty).
For a sensor located at the f})icenter in an elastic half-space,
all GS’,;, =(), except G’fl,l =G, (see Fig. 3) and GQIw (Fig. 4)
(Sinclair, 1979). As a result, equation (11) becomes

T

t) = ~ 20 Ctantintls | G~ tdthedty.  (12)

0
For isotropic materials, the nonzero Cj, are given by
Cin=Cun=Cuu=N+2p
Ciiz= Cuss= Ca33=Cpy1 = Cyaj1 = Can ="
Conz= Cappp = C3131=Cp313=Cpa12= Corz1 = pu.
For Cjjmn, the only nonzero terms are Cj,, where
J.m=1,2,3. Therefore, the displacement can be written as

T

us(t) = — 27030,  immBam@pme g S GY ;= tthdty.  (13)
0

Figure 5 illustrates the twinned regions of a martensite plate.
If the crystal lattice rearrangement is from f.c.c. to 'b.c.t. (as
occurs in steels), then the stress-free transformation strains in
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Fig. 6 Surface displacement for different durations of transtormation
T

the local coordinate system X are given in regions 1 and 2,
respectively, by the tensors (Mura, 1983)

7m0 0
07 0
0 0m

()=

and

7, 0 0
09 O
0 0m

Q)=

—ag

c
Note that 9, = % and M= , where ¢ and ¢ are

V2a-a

ag Qo
lattice parameters of the body-centered tetragonal structure,
and ay is the lattice parameter of the face-centered cubic struc-
ture.

The overall strain for the plate is then given by
e*=r, e*()+ 1 -r)e*(2)

where r,, is the volume ratio between regions 1 and 2 in a twinned
martensite plate.

The necessary conditions for the overall strain to be an
invariant plane strain is that one of its diagonal elements must

2 (Khacha-
71— M
turyan, 1983). Substituting for r, in the preceding equation
yields

vanish, i.e., r,n + (1 —r)n, =0, giving r,= —

0o 0 0
e*=10mn+n 0 14
0 0 mn

From equation (14), %3 =0, if o 8. Equation (13) can then
be written as

Gt — ta)t sedtar.
0

)= ~ 20030 Cp e | as)
To compare signals from different martensite plates, we will
use the same-sized reference. The total volume of the marten-
site plate is given by
T
2
V= S dV= S 21w%v2t§4dtM=§ nvivgd, 16)
v 0
The signals amplitude per unit volume of martensite thus
becomes
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Fig. 7 Frequency response for different durations of transformation r

us(t 3 !
D Cumatinta| GGty (1)
Figure 6 shows the displacement for different durations of the
transformation 7. The displacement signals increase from zero
at the longitudinal wave arrival time f=¢, to 2 maximum at
t =, + 7, with another peak occurring at the shear wave arrival
time t=2t,. The first peak amplitude depends on the trans-
formation period 7, increasing as the period decreases, while
the second peak is nearly independent of the period. Both
peaks, however, are delayed for longer transformations. The
corresponding frequency responses obtained by the fast Four-
ier transform for different 7 are illustrated in Fig. 7. Note that
the frequency response contains periodic oscillations that result

from truncation of the waveform.
As we can see from Figs. 3 and 4, there is an impulse at the
longltudmal wave arrival time f=¢; for 633 3, but not for
Ggm and G32,2 The impulse has a dominant effect on the

displacement u;(¢) if tl << 1. This can be shown as follows:
1

| @Bt
0
S G st3dt
0

S 0.54,8(¢ — 1, — b))t 24dtas
0
>

S [0.568(t— 11— h) + 721t 3ty
0

(t—1)

(t— 1) + 4.87 <tl>
1

where 0.58(f— t, — 1) is the impulse of the Green’s function
—Adapd 2G§I3,3 and 7.2 is its maximum amplitude. The above
ratio is almost equal to unity, except when ¢ is very close to
f; (u3(t1)=0 when t=¢,). Thus, the impulse has a dominant
effect on wu;(¢). Similarly, we can show that the effects of
G%, 1 and G%,, are also negligible. This is evident in Fig. 8 by
comparing u3(t)s and u3(¢), where the u;(¢); curve is shifted by
0.004 ms on the abscissa for clarity.

Wezthus rewrite equation (17) with G 33, 3(t—tM)5=

vy . .
27r 6(t 11—ty (Sinclair, 1979), and the signal ampli-

tude per un1t volume of martensite then becomes
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e —2—;;)0‘—3(1 Casmmamemg 8t~ ety
=—i)§—3 Coamm@emelalt— 1), h<t=ti+1 (18)
2mpvprd
or
2
s s Coomntlale (19)
where

t, = d/v,, =the longitudinal wave arrival time;

d = the distance between the sensor and martensite source;
and

u = the shear modulus.

Since the frequency response of the AE signal provides ad-
ditional insight into the characteristics of the source, we also
consider the analysis in the frequency domain. Taking the
Fourier transform of equation (18), we get

us(@)s _ S+m U3(8)s el
Vi cw VM

3U Hh+r .

— 33mma§zmeaaS (t - tl)ze—lwldt
21ry.‘r d f
K ; i
=——— e~ D Qur +iw?r? + 2i(e™ - 1)) (20)
wr’d
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302
where K=—"—"3 Cy3pmlamt’a> and
2mpv,

|u3(w)5| _ K
Vi  w'rd

\[(2(.07' — 2sin{wr))? + (w7 — 2 + 2cos(wr))’.

1)

The corresponding response is shown in Fig. 9. For very small
wt, equation (21) can be further simplified by considering that
€Y7 — 1 = iwr — (wr)*/2 — iw’7°/6. Thus,

Uy(w); ~ Ee—iw(tl+'r)

22
Vum 3d @2)

and
lus(w)s! K

. 2
Vi 3d @3)

Discussion

To obtain the AE signals detected by an AE transducer, we
must consider the response of the transducer and the instru-
mentation in the analysis. Assuming we have a transducer
monitoring the process at position x= (0, 0, 0), we specify the
response of the transducer and the instrumentation as T3(f —t').
From equation (17), the voltage at time ¢ due to martensite
formation is then given by

V(£ g 3 o
.71\/[—-: "_7__5 ijmmaimE;a A T3(t
— )Gt — it adtydt’  (24)
or
V w — 3 - T
(V—A):E='7—_§E ijmmafvme;cxT3(w)G§§,j(w)e oty )(2“)7
+iw it +2ie™ - 1))  (25)
in the frequency domain.
For 7/t << 1, equation (18) becomes
V(e 30 2 S’l“
— =7 Coammlam€ia Tyt
Vi 27r/.w,3,7'3d 33mm = eon 4
— ')t - 1)2dt’ (26)
or
14 302 .
(;’)"E=2W§’ja 5 Crnn@ineiaTsw)e ™17 Qur
M §2) .
+iwr?+ 2™ 1))  (27)

in the frequency domain.

For an AE sensor sensitive only to displacement, the detected
AE signal from martensitic transformation is a function of the
resulting surface displacement. From equation (24), it is evident
that the AE signal will depend on material properties such as
Cjjmm or N, p. Thus, for a given set of conditions, different
materials will result in different signal amplitudes. However,
for a given material, say steel, these properties do not change
very much; as a result, the AE signal will not be significantly
affected. The results of the analysis further indicate that the
amplitude of the AE displacement for a unit volume of material
is inversely proportional to the distance between the source

and sensor as well as the total time it takes to form a plate of’

martensite, as is evident from equation (19).

In carbon steels, there are two types of martensite mor-
phology, i.e., lath martensite and plate martensite. Even though
our analysis is based on a plate martensite we can make a
qualitative comparison by first estimating the signals from both
lath and plate martensites. Plate martensite in high-carbon
steels transforms in about 107% to 10~7 s at a transformation
velocity of about 1000 m/s (Bunshah and Mehl, 1953), while

Journal of Applied Mechanics

lath martensite has a much smaller velocity, the duration of
formation being about 10™* s (Liu, 1981). From Figs. 6 and
7, it is evident that the AE signal amplitude decreases as the
duration of transformation increases. Thus, the intensity of
the AE signal from the lath martensite is expected to be much
smaller than that from plate martensite. As the carbon content
increases, the fraction of plate martensite increases. Therefore,
the AE signal is expected to increase in intensity. This explains
why higher carbon steels generate signals of greater amplitudes
(Speich and Fisher, 1972; Liu and Kannatey-Asibu, 1990).

Most commercial piezoelectric transducers have a frequency
range of 50 KHz to 1 MHz, which cuts off the low and high-
frequency information. Plots of the spectral characteristics of
AE signals from martensitic transformation in this frequency
range, in Figs. 7 and 9 show that the bandwidth of the AE
frequency response increases as the duration of formation 7
decreases. For the plate martensite in carbon steels, 7 is about
1078 to 1077 s, resulting in an almost constant frequency re-
sponse (Fig. 9). This means that the AE signal from plate
martensitic transformation can be detected over a wider fre-
quency range than that for lath martensite. If the process noise
exceeds a certain frequency range and amplitude, then a res-
onant sensor can be used to minimize noise problems.

From the literature (Nishiyama, 1978) for tetragonal mar-
tensites in carbon steels, the lattice parameter
ay=3.546+0.0467 percent C, ¢=2.8625+0.1176 percent C,
and the axial ratio ¢/a=1.00+0.045 percent C. Thus, for 0.4
percent C carbon steel, , =0.134, 3,= —0.184, and the non-
zero terms in the overall strain matrix (equation (14)) become
€3 = —0.05 and €3;,=0.134, while for 0.8 percent C carbon
steel, 7, =0.126, n,= —0.175, €3,= —0.049, and ¢} =0.126.
The changes in €3, and €3; due to a 100 percent change in
carbon content of the steel are less than 6 percent; conse-
quently, the effect of variations in the stress-free transfor-
mation strain variation is not significant. A more pronounced
effect is attributed to the duration of formation of a martensite
plate. Thus, the increase in the AE signal amplitude with car-
bon content is due primarily to a larger fraction of plate mar-
tensite, which has a much higher transformation velocity, i.e.,
a much shorter duration of formation 7, than that of lath
martensite.

Conclusions

In this study, the dynamic displacement that is detected as
acoustic emission is obtained by considering the stress-free
transformation strains for martensitic transformation. The so-
lution is simplified by considering the martensite plate to be
a point source with the sensor at the epicenter. Further sim-
plification can be made by considering the impulse of the
spatial derivatives of Green’s function for a step-force input
G’j’3,3(t—tM),;. Because the duration of transformation of a
plate martensite is much shorter than that of a lath martensite
and the fraction of plate martensite increases as the carbon
content increases, the AE signal amplitude is found to increase
with rise in carbon content, The signal in the frequency domain
is found to increase in bandwidth as the duration of trans-
formation for a single plate of martensite decreases.
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Elastic-Plastic Deformation in
Surface-Cracked Plates:
Experiment and Numerical
Analysis
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Detailed three-dimensional nonlinear finite element (FE) analyses and experimental

W. R. LlOVd moire studies are performed on a plate containing a moderately deep part-through
surface crack to establish limits of HRR-dominance. The plate is subjected to pre-

W. G. Reuter dominantly far-field tensile loading. The material under investigation is ASTM A710
steel, which was constitutively modeled by large deformation J, flow theory of

plasticity. The FE mesh was carefully constructed to resolve both crack front fields

J. Epstein (such as J-integral and CTOD) and global fields (such as surface displacements,
Mem. ASME strains). By comparing the J-integral and CTOD results with an earlier HRR-

dominance study using (small strain) deformation theory of plasticity, we found
little effect of the different formulations on the crack front fields. The global
deformation fields from the numerical simulation are in good agreement with our
experimental results. The eventual loss of HRR-dominance is intimately related to

Fracture and Dynamic Behavior Group,
Idaho National Engineering Laboratory,
ldaho Falls, ID 83415

Introduction

One of the major tasks of fracture mechanics is to establish
similarity of crack-front fields between laboratory specimens
and a structural component. Under certain conditions, exist-
ence of crack-front similarity ensures existence of single pa-
rameter characterization. Among those single parameters which
make fracture mechanics practically feasible are the stress in-
tensity factor K of linear elastic fracture mechanics (LEFM)
and the J-integral of nonlinear (elastic) fracture mechanics
(NLEFM).

A J-based approach has been found useful in correlating
the initiation of ductile crack growth. Assuming that an elastic-
plastic material has a power-law stress-strain relation as fol-
lows:

€/eg=0/ay+ a(a/ap)", )

where oy is a reference stress (often chosen as the tensile yield
stress, o,), €o=0¢/E, where E is the Young’s modulus, and n
and « are material constants, with »> 1, this relation can be
simplified as
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the interaction of the global plastic flow fields with those of the crack front.

e/eg— o/ ag)”, 2

at any point near the crack tip by neglecting the elastic strain.
Based on an isotropic, tensorial generalization of equation (2),
Hutchinson (1968) and Rice and Rosengren (1968) defined the
asymptotic field of a mathematically sharp crack under sym-
metrical loading (HRR fields). As r (local cylindrical coordi-
nates centered at the crack tip are r, 8) approaches zero, the
HRR singularity fields have the following form:

1
aifr, 0)— 0o+ [J/ (aeoool,r) [n+1-5,(0, n) = iR, (3)

1
iy 0) = ateo* 11/ (ceo0olur) I+ 1840, n) = €%, (4)

The normalizing factor I,,(n) and the angular distribution of
the dimensionless constants &; and &; are functions of the
strain-hardening exponent n, and of the state of stress, plane
strain or plane stress. For certain material and loading con-
ditions (those under which the HRR fields dominate the com-
plete fields over regions large compared to fracture process
zone size), J is the single parameter characterizing the crack-
tip fields.

Under HRR-dominance, a unique relation exists between J
and §,, the crack-tip opening displacement (CTOD). Using the
+45 deg intercept definition of &, proposed by Rice (as dis-
cussed by Tracey, 1976), Shih (1981) obtained the explicit re-
lation

J
8=dy(ceq, n)-—. &)
0o
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Shih (1983) has provided extensive tabular values of d,,
0y, €, etc. for essentially a complete range of n and e, for
both plane strain and plane stress.

Two-dimensional study of HRR-dominance in plane strain
is a relatively well-developed field. The pioneering work of
McMeeking and Parks (1979) and Shih and German (1981)
and, more recently, Shih (1985) and Al-Ani and Hancock (1991)
are a few examples. However, understanding of crack-front
HRR-dominance in a realistic three-dimensional crack config-
uration—for instance, a structure with a part-through surface
crack—remains slight. The three-dimensional crack fields dif-
fer from those of either plane strain or plane stress in several
aspects. The constraint at the crack tip of a surface crack is
not only a function of loading and geometry, but is also varying
along the crack front. Identifying critical points along the crack
front and the stress and strain fields at these points is the basic,
yet necessary condition for evaluating the fracture toughness
of a surface-cracked plate. The line-spring model, first pro-
posed by Rice and Levy (1972) and further developed by Parks
(1981), Parks and White (1982), Shawki et al. (1989), and
others, has proven to be an effective means in accurately and
economically evaluating the J-integral of some surface-cracked
plates. It may also be used to certain extent in providing in-
dications of loss of HRR-dominance, as suggested by Parks
(1981), Shawki et al, (1989), and our present research (Wang,
1991). However, a three-dimensional full-field characterization
is necessary in resolving HRR-dominance at the present time.
It may also provide some insights in further developing a sim-
plified model, such as the line-spring model. Some three-di-
mensional finite element analyses have been performed with
certain assessments of HRR-dominance; for instance, Brocks
and Olschewski (1986), Delatte (1987), and Brocks and Noack
(1988). The most comprehensive HRR-dominance study of
plates with moderately deep surface cracks is by Parks and
Wang (1988).

To date, most HRR-dominance studies have been performed
by comparing detailed numerical solutions near the crack tip
with the HRR singularity fields. Very little is known about the
global deformation fields when a cracked structure loses HRR-
dominance. Using a combination of surface replicating tech-
nique and surface interferometry, Francis, Davidson, and For-
man (1972) studied a variety of semi-elliptical surface-cracked
plates with various aspect ratios and depths. At high load,
dimples were observed on the back surface and at crack tips
on the free surface. They also found that those features could
not be characterized by a local K; field, or by simple extensions

NN

of two-dimensional plane-strain models. The strong three-di-
mensional nature of the deformation fields requires full three-
dimensional analysis. Due to the complexity of the crack ge-
ometry and loading conditions, careful experimental verifi-
cation of the analysis is necessary. However, until very recently,
experimental techniques have not been able to resolve the very
small displacement gradient on the free surface of a surface-
cracked plate with sufficient precision (see, e.g., Rosakis et
al., eds., 1988). The current joint project, combining extensive
numerical analysis at M.I.T. and experimental study at
I.N.E.L., is intended to investigate the HRR-constraints in this
important class of engineering crack configurations, and hence,
to begin assessment of parametric limits of applicability of J-
based fracture mechanics approaches in predicting their struc-
tural integrity.

Back face topology would be a valuable source in evaluating
the useful life of a component with a surface crack if the
displacement fields could be related to the extent of crack
penetration and the local loading conditions. Unfortunately,
this relation is very difficult to establish for a general structure.
However, valuable insights into the three-dimensional nature
of plastic flow in a surface-cracked plate can be gained from
the back face topology. Out-of-plane and in-plane displace-
ments and their gradients are good indicators of the transition
of the constraints from elastic to fully plastic conditions. In
this study, using shadow moire and amplitude moire methods,
the displacement fields on the back face immediately behind
the crack front were continuously monitored as the specimen
was loaded. However, the global deformation fields alone can
not assess the degree of crack-front HRR constraint. Numerical
simulation has to be performed to relate the global fields back
to the crack front. The comparison of the crack-tip fields with
the HRR singularity fields then determines the degree of HRR
constraint. In addition to the global deformation fields, ex-
perimentally determined CTOD by metallurgical sectioning
and fracture surface topography provide some indication of
local fields. These values can be used to further verify the
numerical simulation. The experimental study and the nu-
merical simulation are mutually supportive, and the combined
effort is essential for the assesment of HRR-dominance.

Procedures

Material. The material under study is an ASTM A710
Grade A steel. At room temperature, the material has following
properties: Young’s modulus of E=206 GPa, tensile yield

17 mm

—3 t r—

A
origin (X,Y,Z=0) /4

A

Fig. 1

Schematic of one-fourth of a surface-cracked plate. Back-face

surface displacements are recorded in the cross-hatched region. The
inset at left shows the local cartesian coordinate system (x-y-z system)
with respect to global coordinate system (X-Y-Z system) and description
of crack-front location parameter ¢. NOTE: Drawing is not to scale.
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stress of ¢,=480 MPa, and ultimate tensile strength of 635
MPa. The experimental engineering stress-strain relation can
be well characterized by equation (1) with material constants
of 0y=480 MPa, a=1.0, and n=12.

Specimen Geometry and Finite Element Mesh. Figure 1 is
a schematic of one-fourth of a surface-cracked plate. The
experimental specimens were fabricated from as-rolled steel
plates. The detailed specimen geometry can be found in Epstein
et al. (1988). A triangular-crack starter notch was cut into the
plate using EDM. The starter notch was then grown by bending
fatigue cycling into the final configuration. The surface cracks
had an aspect ratio a/cranging from 0.20 to 0.24 and maximum
penetration a/¢ ranging from 0.60 to 0.67. The variation in
the aspect ratio and the penetration reflects natural variation
in the pre-cracking process.

Due to the symmetry conditions, only one quarter of the
specimen (as shown in Fig. 1) was modeled in the numerical
simulation. The geometric ratios were b/f=8 and A/f=16. In
the FE input data deck, the specimen thickness was taken as
unity. Subsequently, all the results were appropriately nor-
malized to the actual specimen thickness of =6.35 mm (0.25
in.). The aspect ratio a/c was taken as 0.24, and the maximum
penetration was a@/f=0.60. Due to the variation of the surface
crack geometry, data from those specimens with crack ge-
ometry closest to that of the finite element mesh was chosen
for comparison with numerical simulations whenever possible.
The finite element mesh was generated by an automatic mesh
generator (Wang, 1988). Each of the 12 segments along the
crack front consists of six focused rings of elements. Reduced
integration (2x2x2 Gaussian) 20-node isoparametric brick
elements are used. In the data post-processing, a local coor-
dinate system (x-y-z system), as shown in Fig. 1 was used, to
represent the local fields. Details of the mesh and the mesh
generator (Wang, 1988). Each of the 12 segments along the
crack front consisted of six focused rings of elements. Reduced
integration (2x2x2 Gaussian) 20-node isoparametric brick
elements were used. In the data post-processing, a local co-
ordinate system (x-y-z system), as shown in Fig. 1 was used,
to represent the local fields, Details of the mesh and the mesh
generation are referred to Wang (1988). Extra care was taken
to refine the mesh in the rectangular region on the back face
behind the crack as shown in Fig. 1 by the cross-hatched area.
ticity. Eight degenerated singular elements with independent
nodes at the same point along the crack front were wrapped
around each of the 12 crack-front segments. The final mesh
has 1026 elements and 15711 degrees-of-freedom. Later, in a
large geometry change (LGC) analysis, a new mesh was gen-
erated. The new mesh was essentially the same as that for the
SGC analysis, except that the nodes along the crack front were
not collapsed into a line, but kept in a small circular ring in
space, forming a keyhole-like tube around the crack front.
The radius of the keyhole was 0.006(¢ — a), or about 15 percent
of the radial length of the first ring elements throughout the
entire crack front. Subsequent analysis showed that the effect
of the initial keyhole radius on both local and global quantities
is slight.

Numerical Procedures. Insimulating the loading condition
in the experiment, uniform displacement, Uy, at the remote
boundary, Y= #, is applied. The symmetry conditions of Ux=0
on X=0 and Uy=0 on the ligament portion of plane Y=0
are also imposed. The model is considered under uniform
remote tension, although a very small through-thickness stress
gradient exists. The remote load is characterized by an average
remote stress, o”/oy=P/agbt, where P is the Y-direction ap-
plied force on one-half of the specimen required to impose the
remote displacement boundary condition.

The constitutive model used in the initial SGC formulation
is Jo-deformation theory of plasticity based on the Ramberg-
Osgood power-law form of equation (1). The three-dimen-

Journal of Applied Mechanics

sional generalized tensorial form was coded into a user-defined
material subroutine UMAT of the ABAQUS (1987) finite ele-
ment program, along with the Jacobian matrix. The material
constants were taken as those previously determined values,
which best fit the engineering stress-strain curve. In the nu-
merical analysis, the Poisson’s ratio, v, was set to 0.3, while
experimental measurement gave »=0.256. This difference
should be of only minor significance, especially at high loads.

The constitutive model used for the final LGC formulation
was J, flow theory of plasticity with isotropic hypoelasticity
based on the Jaumann rate of Kirchhoff stress. A true stress/
logarithmic plastic strain curve was derived from the experi-
mental engineering stress strain curve. This true stress/plastic
strain curve was multilinearized for input into ABAQUS, along
with the prior values of E and ».

Computation was performed on an Alliant FX-8 multipro-
cessor computer using version 4-6-162 (1987) of the ABAQUS
finite element program. One iteration took about 85 minutes
on the single processor. For the SGC formulation with de-
formation theory plasticity, three iterations were generally re-
quired to reach convergence. It took nine load increments to
reach about 95 percent of the limit load (Pymy=0dobt). The
LGC formulation with flow theory plasticity required sub-
stantially more computation time. To reach the same level of
remote load, it took 17 load increments with a total of 92
iterations.

Experimental Procedures. Tests of the surface-cracked
specimens were performed on an Instron 1325 servohydraulic
load frame (1000-kN capacity). The specimens were loaded
through two 38.1-mm diameter pins. The amplitude (geomet-
ric) moire method was used to record the in-plane displace-
ments. Detailed description of the method can be found in
Parks (1986). Specimen surfaces were carefully prepared for
optical observation. The area of interest on the specimens was
coated with white polyurethane paint (thinned 1:4 with pol-
yurethane thinner) using an air brush. The higher background
reflectivity of the white paint, as compared with bare
metal,improved contrast of the resultant experimental fringes.
Linear amplitude gratings were replicated onto the front and
back surfaces. These gratings were approximately 100-mm
square with a pitch of 50.8 um. A 20-power microscope was
used to align the specimen grating, transfer side down, with
either the crack plane or a reference line on the specimen
surface. Cellulose tape was placed along one edge of the trans-
fer grating to maintain alignment. The grating was then folded
back and a liberal amount of cyanoacrylate adhesive was placed
at the joint between grating and the specimen where they were
taped together. A rubber-coated print roller was then used to
press the grating into the adhesive, making sure not to trap
air bubbles under the grating. After two or three minutes, the
acetate backing on the transfer was peeled away, leaving the
grating bonded to the painted surface. The master amplitude
gratings, on glass photographic plates, were used to make
flexible reference gratings on sheet film by contact printing
with collimated light. Correct exposure of the print to obtain
a 50/50 grating was obtained by making multiple exposures
of different durations, developing, and inspecting the resulting
film under a microscope. The reference gratings were placed
over the specimen grating to obtain a null field, and cellulose
tape was applied at two points along one edge to maintain

" alignment during the test.

High resolution (512 %480 pixel) CCD video cameras were
used to make real-time recordings of the optical data generated
by geometric moire method. The video signals were recorded
on Umatic format video recorders; a separate camera and
recorder system were employed to record front and back sur-
face displacement fringe patterns simultaneously. In addition,
two 35-mm cameras with 105-mm macro lenses and power
winders were used to collect data at discrete times during the
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test. Full-field (spatially continuous) moire patterns repre-
senting surface displacements, Uy, were collected on both the
front and back surfaces of the specimen over areas extending
approximately one-half the plate width above and below the
crack plane (where uniform remote strain was observed). The
50.8-pm sensitivity proved ideal for measuring moderate plastic
deformations at remote stress levels approaching yield; how-
ever, it became a limitation at stress levels below ¢®/0,=0.75.

The shadow moire method was used to record the out-of-
plane displacement. Detailed description of the technique and
the relevant equations can be found in Dykes (1971). Prepa-
ration of the specimens for shadow moire tests began by grit
blasting the area of interest to produce a uniform matte surface.
A small aluminum frame holding the reference grating with a
50.8-um pitch was mounted on the specimen using spring clips.
Small screws through the frame allowed adjustment of the
reference grating to be parallel to the specimen’s surface. A
collimated monochromatic source (arc lamp) was used for
illumination. Both video and film were used to record the fringe
patterns, Data were collected on the back surface of several
replicate specimens. Sensitivities ranged from 13 to 50 pm/
fringe. The higher sensitivity provided good data in the elastic
to elastic-plastic regimes, while the 50 um/fringe sensitivity
allowed data collection to extend well beyond net section yield-
ing. Reference displacement points (Uz=0) were located at
X= x50 mm and Y= £50 mm.

Results

A preliminary numerical analysis employed a SGC formu-
lation and deformation theory of plasticity. The displacement
fields on the back face were compared with experimental re-
sults. Though the in-plane displacement (Uy) from this sim-
ulation agreed well with the experimental results, the out-of-
phase displacement (U;) was much larger than the experi-
mental values—by a factor of two. Careful examination of the
displacement revealed that the remote plane (plane Y= 4) had
a quite significant through-thickness translation with respect
to the cracked plane. At high load (6%/0y—1.0), the through-
thickness relative translation AU, between the remote plane
(Y=~h) and the cracked plane (Y=0) was as large as half of
the specimen thickness. The SGC formulation was thought to
be inappropriate under these circumstances, since it did not
take the global rotation into its global equilibrium calculation.

The analysis was then performed with a LGC formulation.
Little difference was found in the in-plane displacement pat-
terns at any load level, but the out-of-plane displacement was
reduced to about half of the SGC result at high load. These
results were in much better agreement with the experimental
data. This formulation was considered more appropriate.

In the following sections, the crack-tip fields of the large
geometry change formulation will be critically examined, in
comparison with an earlier HRR-dominance study using SGC
formulation (Parks and Wang, 1988). The correlation of global
deformation features and the transition of the crack-tip HRR
constraints will be established through both numerical and
experimental results. Finally, the development of the plastic
zone through the remaining ligament shows how the crack
front loses HRR-dominance through the relaxation of con-
strainis by global plastic flow.

J-integral. The J-integral was evaluated in six domains us-
ing the virtual crack extension (VCE) method provided in
ABAQUS. The method was first developed by Parks (1977).
A modified version is used in ABAQUS version 4-6 which is
based on the work of Li, Shih, and Needleman (1985) and
Nakamura, Shih, and Freund (1989). The J-integral is domain
dependent because of the (locally) nonproportional loading;
this being in conjunction with the use of flow theory. Mc-
Meeking (1977) showed that, in plane strain small-scale yield-
ing, the finite strain affects only a region not more than two
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Table 1 Mean radii of various domains and J from those
domains at ¢*/gy=0.955

domain level 1 2 3 4 5 6
Jo_o/(Gokal) | 8.776 | 11.94 [ 13.17 | 13.85 | 14.32 | 14.82
R/ (Js/00) 0.23 0.68 1.34 2.52 4.49 7.73
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Fig. 3 Calculated J-distribution along the crack front using LGC for-
mulation, compared with the J-distribution of SGC calcuiation
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Fig.4 CTOD from the numerical simulation and the estimated residual
CTOD following Rice (1967). The HRR estimate is calculated from the
local J using equation (5). The experimental CTOD is the residual CTOD
after the specimen is unloaded from a peak load value of ¢*/o, = 0.95.

to three CTODs from the crack tip. Recently, Moran, Ortiz,
and Shih (1989) studied the effect of the crack-tip mesh on

"LGC solutions under small-scale yielding. Three crack-tip

meshes, one with a finite radius notch, a second with crack-
tip nodes collapsed into a point, and a third with a key-hole
like tip, were used. The stress fields outside about two CTODs
were independent of the details of the crack-tip finite element
mesh. Here, the values of J-integral at center plane (¢=0)
from all six domains at highest load attained (which shows the
most path dependence) are listed in Table 1. The mean ref-
erence configuration radius of each domain, R, normalized by
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Fig. 5 Back-face in-plane displacement contours of numerical caicu-
lation at various load levels. The width of the areas shown is 34 mm.
The gradient of the contours is 12.5zm. (8) 0/og = 0.741; (b) 0" /6y = 0.821;
(¢} 0™lay = 0.870; (d) 0™lop = 0.955.

the characteristic crack-tip opening displacement Jg/ 0y, is also
listed in Table 1. Here, Ji is the J-integral from the sixth (most
remote) domain. The first three domains are clearly inside the
finite deformation zone (the mean radius of domain three here
corresponds to about three CTOD). The J-value varies sig-
nificantly throughout this region. The last three domains are
more or less out of the finite deformation zone, and the relative
variation of J is limited. This is consistent with results of
McMeeking (1979) and Moran et al. (1990). In the following
sections, all the reported J-values will be taken from the sixth
domain, which is considered to be most accurate.

Recalling that the numerical estimates of the global defor-
mation fields can be significantly affected by different for-
mulations, there is a need to check the effect of the formulations
on the crack-tip fields, such as J-integral and CTOD. Figure
2 shows the center plane (¢ =0 deg) normalized J at various
load levels. Also shown are the results of a previous SGC HRR-
dominance analysis (Parks and Wang, 1988). In normalizing
the LGC data, the reference yield stress, oq, is taken as 480
MPa, and the reference yield strain, ¢, is taken as oo/ E = .00233.
Little difference is seen between the two formulations, except
that the J from the LGC formulation is slightly smaller than
the SGC values for n = 10 (which represents the current material
behavior more closely than the high strain-hardening of n=5)
at high load.

Another comparison of formulations is the J distribution
along the crack front. Figure 3 shows J(¢), normalized by the
J value at the center plane, at various crack-front locations
{for parameter ¢, see Fig. 1) at the highest load level. For
comparison, the previous results (Parks and Wang, 1988) of
SGC analysis are also shown. Again, very little difference is
seen between the two formulations. The effect of the for-
mulation on the crack-front J variation is slight at all load
levels up to this magnitude.

CTOD. Figure 4 shows the crack-tip opening displacement
(CTOD) along the crack front. The CTOD was obtained from
the deformed crack-opening profiles using the 45 deg intercept
definition. Also shown in Fig. 4 is the experimentally deter-
mined residual component of the CTOD along the crack front.
These data were obtained by loading the specimen to ¢/
0o=0.95, unloading, cooling the specimen in liquid nitrogen
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Fig. 6 Comparison of center line (line X=0, Z=1) normal strain (eyy)
between the numerical and experimental results

and loading to failure by cleavage. Using fracture surface to-
pography, the CTOD values are taken as the distance sepa-
rating the tip of the fatigue precrack after blunting. Details of
the procedures are found in Reuter and Lloyd (1990). The
calculated CTOD distribution is very similar to the J distri-
bution of Fig. 3, and it falls slightly below the HRR value of
equation (5), which is also shown in Fig. 4. A tentative esti-
mation of the residual CTOD of the numerical simulation is
given, following the spirit of Rice’s (1967) formula to estimate
the elastic part of CTOD. The elastic part of the CTOD is
obtained as A, =d, (aeg, 1) - AJ/20,. The equation is similar
to equation (5), except that the effective flow strength is taken
as twice the yield stress, since the effective elastic stress range
required to initiate reversed plasticity is 20o. The AJ° is cal-
culated as AJ = —(AK;)?>/E’ (E’ is the plane-strain modulus)
from the elastic K; of the same surface crack, according to the
results of Raju and Newman (1979). The residual CTOD shown
in Fig. 4 is the difference between the total CTOD at o./
60o=0.955 and the unloading part, Ad,. It is clear that the
estimated residual CTOD is in good agreement with the ex-
perimental result.

The CTOD results are consistent with an earlier HRR-dom-
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Fig. 7 Back-face out-of-plane displacement contours of numerical cal-
culation at various load levels. The width of the areas shown is 34 mm.
The gradient of the contours is 25.0um. (&) ¢™/ay = 0.741; (b) 0™/0p = 0.821;

(c) 0™loy = 0.870; (d) ¢™lgy = 0.955.
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Fig. 8 Back-face out-of-plane displacement fringes of experiments by
Epstein et al. (1988) at various load levels. The width of the areas shown
is 39 mm. (8) ¢*lop = 0.61, 14.1pmlfringe; (b) ¢™/op = 0.65, 50.8pmifringe;
{(¢) 0”lop =0.98, 50.8umifringe.

inance study (Wang, 1988). Those SGC results showed that
the CTOD versus the J-relation stays essentially unchanged
from small-scale yielding to large-scale plastic yielding. Here,
even at the highest load, the CTOD versus the J-relation is
very close to that of a dominant HRR singular field, even
though (as will be argued further below) no such dominant
field exists at high loads. Delatte (1987) also found that the
CTOD versus J-relation shows only slight deviation from equa-
tion (5) when a tensile-loaded plate with semi-circular surface
crack loses HRR-dominance. All these surface crack results
are in contrast with the early plane-strain study by McMeeking
and Parks (1979), who noted appreciable differences in the
terminal slope of CTOD versus J curves when comparing dif-
ferent specimen geometries. This implies that for a part-through
surface crack, the closeness of the computed CTOD versus J
relation to that of the HRR singularity field does not necessarily
guarantee HRR-dominance.

In-plane Displacement and Strain. Computed contours of
the in-plane displacement (Uy) on the back face are shown
in Fig. 5 at various load levels. The original ABAQUS output
showed only one-quarter of the figure. A program developed
by Stringfellow (1988) was used to mirror image the original
plot to a full picture. The contour gradient was set to 12.5um/
contour for easy comparison with experimental results (see
below). At stress levels, /0y, below 0.741, the displacement
gradients are very small. From the symmetry condition, the
displacement on the symmetry plane Y=0 is zero (Uy=0).
Since the innermost contour shown is also a contour of zero
displacement, the region bounded by Y=0 and the interior
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Fig.9 Comparison of back-face center line (line X=0, Z= t)out-of-plane
displacement between the numerical calculation and the experimentai
results

contour of Uy=0 must have Uy<0 (compressive strain) on
the back face. At high loads, a large gradient is seen outside
the compression zone. This high gradient is the surface man-
ifestation of shear zones (see also Fig. 10). The higher the load
level, the sharper the shear zones. The compressive zone gen-
erally shrinks with increasing load.

For a better examination of the quantitative agreement be-
tween the numerical and the experimental results, the in-plane
normal strain, eyy, along the back-face center-line (line X =0,
Z=1)is shown in Fig. 6 at the highest load level (6*/0y=0.955).
Close agreement is seen in the overall pattern, although the
numerical value is slightly smaller than the experimental value.
The region with the highest strain is the zone of intense shear-
ing. The peak corresponds to the shear zones observed in the
displacement contours of Fig. 5. This peak is about 2.3 mm
off the cracked plane. Considering that the remaining ligament
at the deepest crack penetration is about 2.6 mm
(=0.4%6.35mm), the shear zone occurs at roughly =45 deg
lines from the crack front. A small region of negative strain
is seen in a region near the center (¥Y'=0). This is the com-
pressive zone noted previously. Recent examination of moire
patterns by Lloyd (1989) confirmed that there is a region of
compression with a small strain of less than .002.
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Fig. 10 Composite isometric contours of plastic strain on the center
plane (plane x=0, facing reader) and on the back face (plane Z=1,
on the top). The gradient of the contours is .0025. The dimensions of
the region shown are: AZ=1t (1=6.35 mm), AX=1.531, AY=1.76tL
(8) 6™lag=0.741; (b} 0™lay = 0.870; (€) 6™ lo, = 0.955.

Out-of-Plane Displacement. The back-face out-of-plane
displacement Uz was monitored in the same region as the in-
plane displacements throughout the loading. The computed
out-of-plane displacement contours are shown in Fig. 7 at
various load levels. The location of the reference (Uz=0)
displacement point was the same as the experiments. The dis-
placement gradient was 25 um/contour for easy comparison
with experimental results. Again, at stress levels, ¢*/a;, below
about 0.74, the displacement gradients are almost uniform.
At higher stresses, a high negative displacement zone encircled
by some densely clustered contours is seen. This region is
roughly similar to the compression zone seen in previous in-
plane displacement contours. Physically, the material on the
back face is sucked in (relatively) towards the crack front as
the specimen is stretched. This is the phenomenon of dimpling.
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Fig. 11 Normalized near-tip crack-opening stress (syy) at center plane

(X =0} (read left), and the calculated out-of-plane displacement (U;) at
the back-face center point (X=0, Y=0, Z=1) (read right), both versus
load level. Local stress is calculated at a distance r=6 d,J/o, ahead of
the crack front, and is normalized by the HRR stress at the same nor-
malized distance. Stress calculations are from SGC solutions (Parks and
Wang, 1988), while displacement calculations are from the current LGC
solution.

Pronounced dimpling becomes apparent at the stress level 6®/
gp=0.87. It has been shown that this is also the load level at
which the center plane (¢ = 0) crack fields lose HRR-dominance
(Parks and Wang, 1988). Figure 8 shows the experimental out-
of-plane displacement moire pattern at various load levels.
(Note: companion specimens were used to obtain back-face
in-plane and out-of-plane moire data.) The close comparison
we can make at high load level is between the ¢%/a,=0.955
contour of the numerical result and the ¢*/gy=0.98 moire
pattern. From the numerical results, there are eight contours
between the center point and the outermost contour in the
observed region, a 200-pm displacement variation. Counting
the size difference, the experimental moire pattern has roughly
four contours, which also represents about 200 um. This com-
parison is admittedly crude. More accurate comparison is made
in Fig. 9 for the lower load levels. In this figure, the out-of-
plane displacement along the center line (line X=0, Z=t in
Fig. 1) is plotted at various stress levels. The available exper-
imental data at two close load levels are also drawn in the
figure. The quantitative agreement is very good, although the
numerical values are slightly smaller than those of the exper-
iments.

Plastic Zone. Plastic zone is here defined as the region
within which the equivalent plastic strain exceeds 0.25 percent.
Plastic zone advance is monitored through the equivalent plas-
tic strain contour on the center plane (X=0) and back face
(Z=1) as shown in Fig. 10. Up to a stress level 6*/a9=0.5,
the plastic zone is small relative to the remaining ligament.
The plastic zone then gradually grows along the two +45 deg
lines (only one side is shown) to the back face with the increase
of load. At a stress level of about 0.8 (near that of Fig. 10(a)),
the plastic zone reaches the back face and then spreads to the
neighboring region at higher loads, while sharpening at the 45
deg location. At a load level of about 0.9 (near that of Fig.
10(b)), the remaining ligament becomes fully plastic. Note that,
on the back face at the highest loads, the high-strain zones
show curvature away from the cracked plane (plane Y=0)
(Fig. 10(c)). The increasing distance from the shear zone to
the cracked plane, with increasing distance from the center

* plane (plane X =0), reflects the corresponding increase in dis-

tance from the back face to the curved crack front,

Disecussion

The comprehensive nonlinear finite element analysis pre-
sented here establishes that our early HRR-dominance study
based on SGC formulation and deformation theory of plas-
ticity is sound even though such formulation can not accurately
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predict global out-of-plane deformation fields. Through a par-
ticular numerical analysis based on LGC formulation and using
flow theory of plasticity, the limits of HRR dominance at the
crack tip and the global deformation features associated with
the loss of HRR-dominance are analyzed. The close agreement
exhibited between the experimental results and the numerical
simulation in the global deformation fields validates the nu-
merical analysis, which in turn indicates that an earlier HRR-
dominance study (Parks and Wang, 1988), using a different
formulation, has its own merits. This joint experimental/com-
putational effort illustrates how the often separated ap-
proaches can be synthesized to provide deeper understanding
of complex engineering problems. It also emphasizes that the
“rightness’’ of a numerical formulation is dependent upon the
very purpose of the calculation.

Our LGC analysis shows that the load at which pronounced
back-face dimpling in a tensile-loaded surface-cracked plate
first appears roughly coincides with the load at which the crack-
tip field rapidly begins to lose HRR-dominance. Intensive
shearing becomes apparent at the load levels 6™/0,=0.8. Fig-
ure 11 shows the variation of out-of-plane displacement at the
center of the back face as the load increases (read right). The
dimpling associated with the back-face penetration of the plas-
tic zone accelerates once the load level exceeds about 0.7. Also
shown in Fig. 11 is the variation of center plane (¢ =0 deg)
crack opening stress (oyy) at a distance r=6 X (d,J/ay) ahead
of the crack front, normalized by the corresponding HRR
stress, as the plate is loaded from small-scale yielding to fully
plastic conditions (read left). By examining the frend of the
stress deviation from HRR singularity field, it is obvious that
the crack tip gradually (i.e., linearly with respect to the load
level) loses HRR constraint below 6™/0y=0.78, and the stress
rapidly deviates from the HRR stress once the load exceeds
this value. Here we emphasize the frend of deviation from
HRR field, rather than an absolute degree of agreement as
used by some researchers (e.g., Shih and German, 1981), since
the approach is less arbitrary. Recall the results of Fig. 10; it
is apparent that there is an intrinsic correlation between the
loss of crack-tip HRR-dominance and the growth of the global
tensile plastic zone. It is seen that as long as some portion of
the ligament remains elastic, the loss of HRR constraint is
gradual. Once the ligament becomes fully plastic, the crack
tip loses HRR constraint much more rapidly. This conclusion
is likely applicable for a plate with a moderately deep crack
(a/t=.25) under tension. Al-Ani and Hancock (1991) showed
that in shallow plane-strain cracks (a/t=<0.2), the fully plastic
field first reaches the front face (plane Z=0 in Fig. 1) as the
crack tip first gradually, then abruptly, loses HRR-dominance.

The calculated out-of-plane displacement and the in-plane
strain are slightly smaller than those of the experimental values
at the same load levels. One reason is that the cracked area of
the numerical model is smaller than that of many of the ex-
perimental specimens. The experimental specimens generally
have somewhat deeper (larger a/f) and longer (smaller a/c)
surface cracks than the numerical model. The other reason
could be that the remote boundary conditions applied in the
experiments were slightly different from the mathematical
model of the FE analysis. By any accounts, the differences are
small, and the agreements should be considered satisfactory.

A logical extension of the analysis would be a stable crack
growth of this class of crack configuration. With present
knowledge and computational power, detailed continuum
modeling of crack growth seems unfeasible. A simplified model,
such as the line-spring, could be used to grow a crack up to
several multiples of CTOD. Although the results of Shawki,
Nakamura, and Parks (1989) give some encouragement, the
task remains formidable.

Another remaining issue regarding the HRR-dominance in
a surface-cracked plate is the effect of the ratio of bending to
tension on HRR-dominance. This ratio affects the stress triax-
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iality at the crack tip. In fully plastic plane-strain analyses,
Shih (1985) showed that the ratio of bending to tension in the
remaining ligament of a deep edge-cracked bar had a strong
effect on the attainment of HRR-dominance at the crack tip.
This subject remains for future investigation.
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A continuum damage mechanics description of elastic-brittle fracture provides an
appropriate constitutive model for impact simulations involving ceramic, rock, or
similar materials. For an orthotropically damaged solid, a complementary energy
Sfunction may be derived from a mesomechanical description of three orthogonal

arrays of coalescing cracks. Damage evolution equations suggested by dynamic
Sfracture test measurements may be expressed in terms of tensor power functions
which generalize classical one-dimensional analyses. Measured Weibull strength dis-
tributions may be employed to account for flaw size distribution effects on the
damage accumulation rate. The resulting model avoids the introduction of effective
Stress assumptions or the use of specialized material property coefficients obtained
Jrom nonstandard mechanical fests.

Introduction

The effective use of general-purpose finite element codes in
the dynamic analysis of fracture mechanics related problems,
including for example impact dynamics simulations (Kawata
and Shioiri, 1985; Anderson, 1987) and the design of wellbore
fracturing treatments (Swenson and Taylor, 1983; Ang and
Valliappan, 1988), is hindered by difficulties associated with
continuum modeling of brittle fracture processes and resulting
structural failures. Although materials science research has
provided considerable insight into basic fracture mechanics
mechanisms, incorporation of such knowledge into thermo-
dynamically consistent three-dimensional models presents un-
usual geometric complications. Many numerical models have
been dimensionally limited (Seaman et al., 1985) or have
adopted strong fracture geometry assumptions (Mendelsohn,
1984a,b) which restrict their general utility. The continuum
damage mechanics (Kachanov, 1986) approach to such prob-
lems aims at the development of intensive constitutive descrip-
tions of fracture which can be easily incorporated into existing
numerical codes. This paper describes a continuum damage
mechanics model of elastic-brittle materials based on a three-
dimensional mesomechanical (Haritos et al., 1988) description
of elastic damage and a kinetic equation which accurately
reflects the results of dynamic material property tests. The
modeling methodology employs classical elasticity solutions to
derive a complementary energy function for an orthotropically
damaged elastic medium and a kinetic model (Murakami, 1987)
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to describe dynamic evolution of a second-order damage ten-
sor. Weibull analysis of dynamic fracture tests provides a sta-
tistical description of flaw distributions which affect the damage
accumulation rate under applied tensile loads. The resulting
model incorporates a minimal number of measured material
behavior coefficients, all of which may be determined using
conventional test procedures. Implementation of the model as
a constitutive augmentation of a structural finite element code
provides for its application in impact dynamics simulations.

Elastic Damage Model

A thermodynamically consistent elastic damage model pre-
sumes the existence of a free energy function of a strain tensor
E and a damage tensor D. The latter is assumed here to be of
second order, allowing at most for orthotropic damage states
but suitable for approximate analysis of many engineering
applications. It is often found convenient to develop damage
mechanics models in terms of a complementary energy function
QS, D), with 8 the stress tensor, an approach used in the
discussion which follows. The complementary energy function
yields the constitutive relations

E=00/08lp, G=00/0Dlg (1a,b)

where G is the intensive energy release rate tensor and only
isothermal processes are considered. Equations (1) imply that
the damage is in principle reversible, with thermally activated
crack healing suggested by micromechanical thermodynamics
(Krausz and Krausz, 1988). It is assumed here that a general
state of orthotropic damage may be represented by three or-
thogonal arrays of penny-shaped cracks. The cracks may in-
teract and coalesce, but the effects of three planar arrays of
interacting cracks will be superposed to quantify the comple-
mentary energy {. This mesomechanical procedure (Atkinson,
1987) is an alternative to beginning with a postulated form for
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a damage effect tensor (Chow and Wang, 1987a,b) based on
triaxial or other material property tests. It should be noted
that in the present context (excluding, e.g., electromagnetic
effects), the complementary energy function is defined ther-
modynamically by static equilibrium states. Hence, this section
employs static stress intensity factors in deriving an expression
for Q. Rate effects associated with dynamic crack propagation
are imbedded in the formulation of the damage evolution equa-
tions discussed in the next section.

The complementary energy per unit volume of a uniaxially
stressed elastic body containing a single penny-shaped crack
of radius ‘“‘@’’ is (Sneddon, 1946)

Q=c*/QE)+[8(1 - ¥/ BE)Pd/V (20)

where E and » are Young’s modulus and Poisson’s ratio for
the isotropic solid, ¢ is the stress applied normal to the crack,
and V'is the bulk volume, with V> >¢a’. In terms of the crack
area (A =wd?) and mode I stress intensity factor (K.), the
associated extensive energy release rate (Hellan, 1984) is

Go=00/0A1 ,=(1 =KL/ (VE), Ku=2a(a/m"%. (b0

In the case of a uniaxially stressed sphere of radius ‘‘6’’ con-
taining the same crack, the stress intensity factor is increased
to K; (Tada, 1973), defined by

Ki=cK:(1—-D"YY/(1- D)y,
D=A/(xb*) = (a/b)%, ¢c=1 (3a,b,c)

where the damage (D) has been introduced and the only re-
striction on the characteristic dimensions is ¢<b. The asso-
ciated intensive energy release rate is therefore

G =00/8D!,= (3/)[(1 - >/ EV(D'*—D)/(1-D)* (4a)

where V=(4/3)xb’. Integration provides the complementary
energy density

Q= ¢/ QE) + 3/m{1 — v)o*/ Elf (D) (4b)
where
f(D)=(D"*-D)/(1-D)
—In(1+D")—(1/2)In(1 - D). (4c)
oy
0
0
M=14
0
0

The effect of crack coalescence is quantified by the variation
of the stress intensity factor reflected in f(D).

Similarly, Segedin’s (1950) expression for the change in com-
plementary energy due to a penny-shaped crack in an elastic
medium under a remote shearing stress 7 parallel to the crack
may be written

Q=(1+v)/E+ {16(1 - W/ [3Q - »)E]}7(@/V). (4d)

Recognizing the principal importance of mode I fracture in
most engineering applications (Broek, 1987), if finite size cor-
rections are neglected in considering shear stress effects, then

Q=1+ »/E+@/m){(1 -/ [2—v)E]}* D

Note that for small crack concentrations, Egs. (2¢) and (4d)
lead to the same D*? dependence of the added compliance on
the damage for both normal and shear stress effects. Hence,
the effect of finite crack concentrations on the added com-
pliance in shear is assumed here to have the same damage
dependence as in (4b), namely .

Q=0 +n/E+@/m{(1-)/[Q-EPf(D). @f)
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(de)

In terms of a six-dimensional stress vector expressed in the
principal damage coordinate system (x, ¥, 2),

®)

the preceding results may be combined to obtain a general
expression for (Q(S,D)

Q=(1/2E){ 0% + B3 + o} — 29010, + 0,03 + 0103)
+ 00} + 03+ o303 + 21+ v)[dh + 03 + 05+ Bi(oh + 0F)
+ Bao(0h + 0B + Bsy(o5 + 0] )

T
0" = {010203040506} = { 05x0yy0:02y070x2 ) s

(62)
where
;= (6/m)(1 =) (Dy)
(D) =(D}"*~D;)/(1-D)
~In(1+D/*—(1/2)In(1-D) (6¢)
D;= (wa})/ (7b*) = (a;/b)? (6d)
Bi= /M1 - )/ 2= (D)) (6¢)

with i=(1, 2, 3), no summation implied, and (D,, D,, Ds) the
eigenvalues of the damage tensor. The stress-strain relations
in the principal damage coordinate system are then

(6b)

€=039/00ilp; i=1,2,... 6 j=1,2,3 (7a)
where
€7 = (16063646566} = {Enrbyp€or2€5y265.260 ) . (7b)
In matrix form, Eq. (6a) is
Q=(1/2E)"Co, C=C+M(D) (7c)

where C represents the compliance of the undamaged solid
and M is a damage effect matrix (Wang and Chow, 1989). In
component form

I —-v —» 0 0 0
-y 1 - 0 0 0
-y —v 1 0 0 0
C=1o 0o 0 2045 © 0 (ad
0 0 0 0 21+» 0
o 0 0 0 0 21+
00 0 0 0 !
@ 0 0 0 0
0 O3 0 0 0
7
0 0 21+ +8) 0 0 (7¢)
00 0 2(1 4+ »)(B2+ B3) 0
00 0 0 2(1+)(B)+ 83) ]

Chow and Wang (1987a,b) have shown that such damage effect
matrices can properly represent fourth-order tensor functions
of a second-order damage tensor D and hence satisfy invariance
requirements for the elastic constitutive relations.

Application of the preceding elastic-damage model to prob-
lems of dynamic fracture in brittle materials requires that sev-
eral additional points be considered. In many finite element
codes, convenient implementation of the derived constitutive
model calls for use of the stress-strain relations (7a) in inverted
form, namely

o=Ke, K=C! (1.8

where K is the elastic modulus matrix for the damaged material.
In addition, in the case of brittle materials, the preceding
analysis must be modified to account for the fact that not all
of the accumulated damage is active under all states of stress
and strain (Ortiz, 1985 and Ju, 1989). Consistent with previous
work (Ortiz, 1985) and considering the constitutive relations
(75, the components of the elastic modulus matrix K are mod-
ified to account for brittle material response using
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a—a(o), (no sum); B;~Bu(ey), (no sum); i=(1,2,3}

(7h)
where u is the unit step function. The effect of the substitutions
(7h) is to cause only that portion of the total damage activated
by tensile normal stresses to affect the stiffness matrix of dam-
aged solid. Finally, a proper accounting for large rotation
effects, important to impact modeling, requires that appro-
priate stress and strain measures be employed. Hence, the stress
(S) and strain (E) tensors of the preceding discussion are de-
fined to be the second Piola-Kirchoff and Lagrangian measures
(Malvern, 1969).

S=(o./p)F 'TF™7; E=(1/2)(C-D), C=FF (7i,))

where T is the Cauchy stress, F is the deformation gradient
tensor, p is the density, and p, is the density in the density in
the reference (undeformed) configuration. These definitions
imply that

Q=p,0 (7k)
where Q is the complementary energy density per unit mass,

Damage Evolution Equations
The damage evolution equations may be written in the gen-

eral form

vy v
D =D(S,D) (8a)

v . .
D=D-WD+DW; W=(1/2(L~L"); L=FF~' (8b,c,d)

where (8b) is the corotational rate of change of the damage.
For example, one possible choice for the evolution relation, a
special case of (8a) suggested by the infinitesimal deformation
analysis of Ju (1989), is

v v
D = D(G). (8e)

The evolution relation used in the present paper is motivated
by the damage models of Cordebois and Sidoroff (1982) and
reduces to Kachanov’s classical evolution relation in one di-
mension (Kachanov, 1986). Here a power function of the ten-
sile normal stress (Leckie and Onat, 1981) is used to describe
the evolution of damage, but with a quotient factor introduced
to account for the acceleration of the damage accumulation
rate with reduction in the effective area under load (Kausch,
1987). The kinetic model proposed here

D = A[s°* 15 §°=1-D)"’81-D)""? (81

with A constant and k an integer, defines the corotational
damage evolution rate as an objective isotropic function of
the mesostress (8% of Cordebois and Sidoroff (1982). The
positive projection of the mesostress tensor (S°*) is that defined
by Ortiz (1985)

3
§ =P*8°= D u\)si®s; Isil =1 (8h,i)
i=1
S5 =Pt Piju= Qi Qv QraQi 8/,k)
3 3
Q=D s®s; Q=D u\)si®s; (81,m)
i=1

i=1

where the \; and s; are the eigenvalues and eigenvectors of 8¢
and P* is a fourth-order projection tensor. The positive pro-
jection operator is introduced in order to stipulate that damage
growth occurs only under tensile loading conditions.

The evolution Eqgs. (8) may be evaluated by comparison with
published experimental data (Davidge et al., 1973) describing
the response of ceramic in constant load and constant loading
rate tests. The cited three-point bending tests are analyzed here
as uniaxial tension (Batdorf and Heinisch, 1978) applied to
the reduced volume
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V,=V/[2(m+ 1)1 (%a)

where V is the sample volume and ‘‘m’’ is a Weibull modulus
(Batdorf and Crose, 1974), to be discussed later. In uniaxial
tension, the evolution Eqgs. (8) reduce to

D=A[o/(1- D). (9b)
For a constant load test (o constant), Eq. (9b) reduces to
1-(1-D)Y**!'= (k+ 1)Ao%t (10a)

where D =0 at time £ =0. If sample fracture is defined by D= D,
at t=r7, the time to failure at any applied stress is

r={1—(1-D)*"'VIk+ DA. (10b)

The parameter D, is the damage at fracture (see, e.g., Ju,
1989), with 0<D.<1. In general, results of a series of tests
on identical samples would satisfy the similarity relation

(10¢)
for different applied stress levels ¢; and o,. Similarly, for con-

stant loading rate tests (c=Eé&¢ with € and E constant), Eq.
(8) reduces to

/1= (02/ )"

- (1-D)Y'=A(Eé)+! (11a)
with time to fracture
r=[1-(1—-D)**"1/146". (11b)

The variation of the failure stress with loading rate for identical
samples would then satisfy

)k+1 (llc)

for different strain rates e, and ¢,. Consistency of the pre-
ceding damage description of constant load and constant load-
ing rate tests requires that the time to failure (7.) under a
constant stress ¢ and the time to failure (7.,) at the same value
of o in a constant strain rate test be related by

Tes=To/(k+1) (12)

for identical samples. Equations (10c), (11¢), and (12) were
derived by Davidge et al. (1973) based on a fracture mechanics
analysis, and verified experimentally for alumina. Assuming
that the experimental results generally represent the behavior
of the material under study, the stochastic distribution of the
parameters 4 and k may be estimated and kinetic equations
of the form (8) used to describe damage accumulation under
arbitrary stress histories. For the case in which £ is an absolute
constant, for any two samples tested at the same loading rate,
Eq. (115) implies

251/&2:(01/02

A1/Ay=(ox/ )", (13a,b,0)

For the referenced experiments on alumina, it was found that
the measured bending strengths at various strain rates were
described by two-parameter Weibull distributions incorporat-
ing identical Weibull moduli (m) and differing only in their
mean strengths (o,,). A two-parameter Weibull model (Matsuo,
1981) estimates the probability of failure (F) of a ceramic part
of volume ¥V in uniaxial tension ¢ due to internal flaws as

F=1-exp{—~ V[1/(m+1/2)Ko/0,)"} (l4a)

where o, and m are determined experimentally. Since the meas-
ured strengths at any strain rate were described by

In {1/ -Fl=mIn (6)—m In (o,)

+In{V,[1/(m+1/2)]}, (14b)
which is written in terms of the mean strength (o,,) as
Inln [I/(1-F))]—-Inln Q)=m In (¢)—m In (6,,), (14c)

then if Egs. (13) and (14¢) hold for any given strain rate, in
general

A/A,= {In[1/(1 — F))/In(2) )¢+ D7/m, (14d)
where A4,, is the value of A for the mean strength material
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calculated using (115). This provides a distribution of damage
accumulation rate parameters 4 which lead to measured var-
iations in material strength. Since the variable F in Eq. (14d)
is a measure of material quality, the appropriate value for an
A to be used in continuum simulations is
1
A= S A(F)YdF=A,T[(k+1)/m+11/{In@)I*+ DMy (14e)
0

where I' is the gamma function. In summary, the measured
Weibull parameters o, and m serve to represent the effect of
adistribution of flaws in the material on the continuum damage
accumulation rate. Note that in finite element implementations
of the preceding damage evolution model, Egs. (92) and (14a),
can be used to correct (at the element level) experimentally
measured material properties in order to account for sample
volume effects.

The quantities m, k, g,, and 4,, calculated from the exper-
iments of Davidge et al. (1973), with D.=0.99, provide ap-
propriate values for 95 percent Al,Oj:

m=13.2; k=22; 0,=120 MPa (m»)"3? (15a,b,0)
Ap=2.09%x10""MPa *sec™ !, (15d)

The cited experimental data used in calculating the preceding
parameters was measured at strain rates between
1.8 x 10 %ec ™! and 1.8 x 10 *sec ™ !. In general, the measured
parameters of Eqgs. (15) will reflect the rate dependence of
fracture processes in the material of interest (Williams and
Knauss, 1985), such as are conventionally discussed in terms
of crack velocity, dependent stress intensity factors (Hellan,
1984).

Finite Element Implementation

The material model described in the two preceding sections
was implemented as a constitutive augmentation to the dy-
namic finite element code DYNA3D (Goudreau and Hallquist,
1982) for use in impact dynamics simulations. The implemen-
tation follows general guidelines for such augmentations
(Hallquist, 1982) and employs EISPACK routines (Smith et
al., 1976) for required eigenvalue calculations. The augmen-
tation is vectorized consistent with the basic DYNA3D code,
and incorporates as history (state) variables for each element
the components of the symmetric damage tensor D. The kinetic
equations and finite element implementation allow for inde-
pendent evolution of the damage state in each element, with
respect to both orientation of the damage eigenvectors and
magnitude of the damage eigenvalues.

A one-step iteration procedure is used to integrate the ev-
olution equations and update the stress at each time step. This
procedure is similar to that employed in the basic DYNA3D
code to update the pressure in materials whose equation of
state is nonlinear in internal energy. Given current values for
the strain (E,"* ") and values of the damage and stress at the
last time step (D", S,\™), the components of the stress are
first estimated as

* ~
Sij(n+l) :Kijkl(Drs(n)y Srs(n))Ekl("Jrl)- (160)
These estimates are then used to update the damage and the
stress in the form
. , *
Dl_j(n+1):Dij(n) +Dij(Dk1(”): Srs(n+1) )At
~ *
Sij(n+ 1) :Kijkl(D(s(".H), Srs(n+ 1 )Ekl(n+ 1) (160)

where Af is the time step and the functions Dy are defined by
Eqgs. (8). If the trial damage state of Eq. (16b) is inadmissible,
based on the fracture criterion discussed in the next paragraph,
a radial return algorithm (Hughes, 1984) is used to locate the
fractured state in principal damage space. As in the case of
the equation of state relations just mentioned, the outlined
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(16b)

integration procedure is motivated by the nonlinear depend-
ence of the stiffness matrix on the damage tensor and the
relatively small time steps employed in the explicit DYNA3D
code. .

The stress-strain relations must be augmented by a brittle
fracture criterion. Consistent with the damaged-based contin-
uum approach used here, element fracture is defined by a
minimum normal damage criterion

D;=D, i=1, 2, or 3. (164)

That is, damage is accumulated until an eigenvalue D; reaches
the critical damage value D,, at which time the element is
assumed to fracture along a plane normal to the ith eigenvector
of the damage tensor. The fractured material is assumed to be
unable to support any tensile normal stress or any shear stress
component on the plane of fracture. Alternative fracture cri-
teria could of course be adopted, but should be consistent with
the evolutional equations employed, and be used in the ex-
perimental evaluation of damage accumulation coefficients.
In order to avoid numerical instabilities associated with abrupt
changes in element stiffness, evolution from the undamaged
state to the fractured state is extended over a minimum of
three time steps. This procedure is consistent with existing stress
based element failure models included in the standard DYNA3D
code.

Impact Simulations

The constitutive subroutine just described may be employed
in the analysis of high-velocity impact experiments involving
brittle solids. Tower et al. (1987) have used electromagnetic
railguns to study the effect of low length to diameter ratio
projectiles of various material types on steel plate targets at
velocities as high as 7 km/sec. The behavior of ceramic pro-
jectiles in these experiments is anomalous, in that they exhibit
a modest reduction in penetration efficiency with increased
velocity, apparently due to ‘‘shattering’’ (Tower et al., 1987)
of the projectile at sufficiently rapid loading rates. The con-
stitutive subroutine developed here was applied to simulate the
impact of spherical projectiles on steel plate, in order to es-
timate the effects of damage accumulation and brittle fracture
on the penetration performance of ceramic. The numerical
modeling incorporated plate thickness to sphere diameter and
plate width to sphere diameter ratios of 1.1 and 5.6, respec-
tively, and the following material properties: (1) for the alu-
mina sphere, Young’s modulus=276 GPa, Poisson’s
ratio=0.22, reference density=3600 kg/m®, k=22, and
D.=0.99, for various values of A; (2) for the steel target,
Young’s modulus =207 GPa, Poisson’s ratio =0.30, and ref-
erence density = 7860 kg/m>. The steel was assumed to be per-
fectly plastic, with a yield strength of 414 MPa, and to obey
the Los Alamos equation of state (Reddy, 1976). Figures 1 and
2 show an oblique sectioned view of a typical three-dimensional
impact simulation and a corresponding contour plot of the
von Mises effective stress (Hallquist, 1982) in the projectile,
at ten microseconds after impact for an initial velocity of 1
km/sec. Figure 3 shows the time variation of the depth of
penetration (P, defined as the vertical displacement of the
upper surface of the target centerline) for a damage accu-

Fig. 1 Sectioned view of a 1-km/sec impact of a ceramic sphere on a
steel plate (=10 psec)
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Fig.2 Contour plotof the von Mises effective stress in a ceramic sphere
impacting a steel plate at 1-km/sec (1= 10 psec)
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Fig. 3 Depth of penetration (cm) versus time (usec) for a 1-km/sec im-
pact of a ceramic sphere on a steel plate (k=22, A=2.09x10"%
MPa~#sec™")

mulation parameter appropriate for mean strength ceramic.
The dependence of the predicted dimensionless penetration
depth (P/d, d=sphere diameter) on A4 is shown in Fig. 4 for
impacts at 1 km/sec. The results are qualitatively as expected,
with ‘‘weaker’ ceramics, characterized by decreased mean
fracture strength and increased values of A, leading to a re-
duction in predicted penetration depth at constant impact ve-
locity. The difference between predicted penetration depths
for perfectly elastic spheres and spheres exhibiting strength
properties comparable to those measured in the Davidge et al.
(1973) experiments is approximately 26 percent. The predicted
value of P/d=0.43 for high quality alumina, and a target
thickness approximately equal to the sphere diameter, is gen-
erally consistent with the experimental data of Tower et al.
(1987).

Conclusion

A complementary energy density-based approach to con-
stitutive modeling of damaged elastic solids provides a me-
somechanical description of the continuum stress-strain
relations which need not invoke common effective stress as-
sumptions, even in the case of finite crack concentrations. The
algebraic form of the resulting material compliance matrix is
analogous to that derived in simple one-dimensional cases
(Broek, 1987), and differs significantly from those developed
on the basis of effective area models (Murakami, 1987). Com-
bining the complementary energy density function with tensor
power function forms for the dissipative (evolutional) relations
and an appropriate fracture criterion provides for the simu-
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Fig. 4 Dependence of the dimensionless depth of penetration (P/d) on
the continuum damage accumulation rate (A) for 1-km/sec impact of a
ceramic sphere on a steel plate (k= 22, A,,=2.09 x 10~% MPa~%sec™")

lation of brittle fracture processes under large-rotation con-
ditions characteristic of many impact dynamics problems. The
use of measured Weibull strength parameters provides a simple
accounting for flaw distribution effects described in tensorial
form by Leckie and Onat (1981). Second-order tensor damage
models of the type described here are the simplest of those
used in three-dimensional analyses, and present few compli-
cations in finite element implementation beyond those asso-
ciated with modeling of composites and other anisotropic
materials. Nonetheless, the state variable storage requirements
for such models are considerable, emphasizing the value of
modeling simplicity, already motivated by the difficulties of
obtaining application specific model parameters for a variety
of dynamic analysis tasks (Zukas et al., 1982).
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ERRATA

Errata on ‘“Transient Thermal Stresses in Cylindrically Or-
thotropic Composite Tubes,”” ASME JOURNAL OF APPLIED
MEecHANICS, Vol. 56, June 1989, pp. 411-417, and on the
follow-up paper, ‘“The Initial Phase of Transient Thermal
Stresses due to General Boundary Thermal Loads in Ortho-
tropic Hollow Cylinders,”” ASME JOURNAL OF APPLIED ME-
CHANICS, Vol. 57, Sept. 1990, pp. 719-724, both by G. A.
Kardomateas.

The term g, was omitted in Eq. (14) of the 1989 paper and
Eq. (11) of the 1990 paper, and this error carried through in
the remaining of the equations, which otherwise are correct.

To account for this error, replace d, and ds, in these equa-
tions (e.g., Eq. (14) of the 1989 paper and all equations there-
after that involve dy, or ds,,) by d4,q, and ds,qs, respectively,
as well as replace g, by g,/q, and g; by ¢3/q-.
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Singular Fields in

David Durban

Omri Rand

Plane-Strain Penetration

Local singular fields are investigated in the vicinity of the vertex of a sharp wedge
that penetrates a viscous solid. Material behavior is modeled by the usual power-

law constitutive relation. Wall friction is accounted for by imposing friction factors

Faculty of Aerospace Engineering,
Technion-israel Institute of Technology,
Haifa 32000, Israel

along the walls of the wedge. The case of a Newtonian fluid is investigated analyt-
ically, and sample numerical results are presented for nonlinear strain rate hardening.
It is shown that the exponent of strain rate singularity increases as the wedge becomes

sharper and smoother. Increasing the hardening parameter also results in a stronger
strain rate singularity. High levels of wall friction induce an intensive shear boundary

layer near the wall.

1 Introduction

Steady penetration of a rigid wedge into viscoplastic media
will induce singular strain rate and stress fields in the neigh-
borhood of the wedge tip. A start of such penetration studies
has been presented recently by Fleck and Durban (1991) for a
rigid conical cone with a rough wall that penetrates a power-
law viscous solid. The present work addresses the plane-strain
version of the penetration problem with the same material
model, so that the near-tip singular field is governed by the
HRR equation (Hutchinson, 1968; Rice and Rosengren, 1968).
Frictional boundary conditions are accounted for along the
walls of the wedge by assuming that wall roughness is measured
by the friction factor. That factor determines the relative con-
tribution of the shear stress at the wall to the effective plastic
stress.

The study reveals the nature of the coupling between wall
friction and the strain-rate hardening of the material within
the singular zone. This could be helpful in analyzing experi-
mental data of creep indentation where difficulties arise in
measuring creep properties due to wall friction (Atkins et al.,
1966; Matthews, 1980).

The governing equations for the stress function are given in
the next section. We show that the mixed boundary data at
each wall, that supplements the HRR equation, can be ex-
pressed in terms of the circumferential profile of the stress
function. In Section 3, we consider in detail the special case
of a Newtonian fluid. The field equation admits an exact so-
lution which is used here for a simple illustration of the singular
field characteristics for symmetric penetration modes. It is
shown that the exponent of strain-rate singularity increases as
the wedge becomes sharper and smoother. There is also a
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noticeable build-up of a near-wall boundary layer at high levels
of friction. An interesting comparison is made between steady
penetration of a rigid, perfectly rough knife (a wedge of zero
thickness) in a Newtonian fluid and a stationary crack in an
Hookean solid (modes I and II). Both fields have the same
exponent of the singularity but entirely different stress profiles
within the singular zone.

Finally, in Section 4 we show results of numerical calcula-
tions again for symmetric fields, but with different strain-rate
hardening parameters. It is confirmed that the strain-rate com-
ponents become less singular with increasing wall friction and
wedge angle. Similarly, increasing the strain-rate hardening
parameter results in an increasing strain-rate singularity. These
results are in agreement with the findings reported by Fleck
and Durban (1991) for the conical indentor. The near-wall
boundary layer build-up is demonstrated for a number of cases.
A similar boundary layer has been observed experimentally by
Roth and Oxley (1972) in orthogonal machining. Comparison
with available results for the analogous free-notch problem
shows that below a certain level of wall friction the penetrating
wedge induces a stronger singularity than the free notch.

The paper concludes with an example of asymmetric pen-
etration where the wedge has one smooth wall while the other
wall is of considerable roughness. Again, an intensive shear
boundary layer is observed near the rough wall.

- /A

Fig. 1 Notation for steady penetration of a rigid wedge. A plane polar
system (r,0) is attached to the apex.
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2 Stress Function Formulation

A rigid wedge (Fig. 1) is steadily penetrating, under plane-
strain conditions, an incompressible nonlinear viscous solid.
The problem addressed here is that of determining the essential
features of the near-tip singular field for.given geometry, wall
friction, and material response.

The rheological model of the medium is described by the
pure power-law relation

3/0,\"""'S
D=={— —
. 2<0’o> g, M

where (g,, n) are material parameters, D is the Eulerian strain
rate, S is the stress deviator, and g, is the Mises effective stress.
For our problem

;= (0,~ 0 +37 @)

3
4
where (o,, 0y, T,9) denote, with the usual notation, the in-plane
polar stress components.

Equilibrium requirements are satisfied if the stresses are
derived from an Airy stress function F(r, ) by

1 1

Ur=_Far+_2FsGH (3(1)
r r
GB=Fsrr (3b)
1
TH= <;F,e> " (39

Assuming that the near-tip singular field is governed by a
separation of variables form, viz.

F=r¢), “)
we find that the stresses (3) may be rewritten as

o=r"" X" +5¢) =r'", (5a)
op=r""2s(s = )¢ =r*"%G (5b)
Ta=r"H1=5)¢’' =r""2iy (5¢)

where the prime denotes differentiation with respect to 8, and
a tilde stands for the circumferential profile of the quantity.
Similarly, the effective stress (2) becomes

172
aﬁ?””{kﬁ " —5(s=2)9]" +4(s - 1)2(¢’)2}
ﬂrs_z&
2

Inserting relations (5)-(6) in the constitutive law (1) results
in the strain-rate components

©®

n+l
&=—6= (7> o5 1" R g —s(s—2)¢)

=kr"" 9 (Ta)

n+1
&= (§> o5 " A5 2(1 - 5)$ 1 =kr"¢Pey  (TD)
where
n+1i
k: (iz'—j‘) 0'0_" (7C) '

is a suitable scaling coefficient.
Substituting (7a)-(7b) in the compatibility equation results
in the r-independent equation,

& —n(s=2)[n(s—2)+21&—-2[n(s-2)+11é5=0. (8)

In terms of ¢ we have, in (8), a fourth-order nonlinear dif-
ferential equation, due to Hutchinson (1968),

Journal of Applied Mechanics

dZ
{W—H(S“Z)[”(S"Z)‘FZ]} {53_1[¢” —S(S—2)¢]}

+4(s=Din(s-2)+ 116 ') =0 (9)

where the circumferential profile of the effective stress g, is
defined by (6).

Equation (9) is supplemented by four boundary conditions,
two at each wall of the wedge. Assuming that wall friction is
imposed through the friction factor m, and expecting that the
shear stresses -along the wall oppose the direction of flow, we
get, from (2), the boundary data

-m
\379= { 1]09 at 0= +8 (10a)
+my
or, with the aid of (5¢)-(6),
+
2%,01 I&,_,:O at 6= =+8. (106)
—my

Employing the friction factor in viscoplastic flow problems is
preferable to the use of the conventional Coulomb friction
coefficient. This has been demonstrated in a number of studies
by Durban (1979, 1980, 1983, 1984) on steady forming proc-
esses. The shear factor measures local surface roughness by
stating the relative contribution of the shear stress along the
wall to the total effective stress. This particular measure re-
mains physically valid even in the absence of normal pressure.
The values of the friction factors (m,, m,) vary from zero for
a smooth wall to unity for a perfectly rough wall. Conditions
(10) may be expressed in terms of the circumferential profiles
of the strain rates (7a)-(7b) as

AN 1-m?eg+mie=0 at 6=0
N 1—mbeg—myE,=0 at 6=—p. (11a)

This, in turn, can be further reduced to a form involving linear
combinations of ¢ and its derivatives, namely

N 1-m(l=s)¢' +mep” —s(s—2)p]=0 at §=p
2N 1-mi(l=s5)¢’ —myldp” —s(s—2$]=0 at §=—p3 (11b)

In passing, it is worth mentioning that while we have assumed
so far that both friction factors (m;, m,) are positive, there
exists the possibility of penetration eigenfields where one of
the friction factors is negative. The near-tip velocity pattern
would then resemble a local circulation as in classical hydro-
dynamics. No attempt has been made in this paper to inves-
tigate such rotational fields but their likelihood ought to be
mentioned. Purely antisymmetric fields are not permissible for
the penetration problem since normal pressure is expected to
exist along both walls of the wedge.

In addition to (11) we have the obvious requirement that
the circumferential velocity component has to vanish at the
boundaries. To this end we denote the polar velocities com-
ponents by (#, v) and integrate the radial kinematic relation
€, = U,, to obtain, with the aid of (7a),

n(s—2)+1 €r

=k . 12
U= nGs—2)+1 (12)
Now, take the shear strain-rate definition
1/1 v
€r9_5<';u36+ U)r—;> (13)

and combine it with (76) and (12) to obtain the expression
2[n(s—2)+ 1]y —¢/
n(s=2)n(s—2)+11

U:krn(s~2)+l (14)

Thus, at §= £,

2[n(s—-2)+ 11y —¢ =0. (15a)
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Combining (15q4) with (11a) gives, after some algebraic ma-
nipulations, the alternative form of (154)

[n— (n—Dmil[¢"” —s(s—2)¢’]
—-2(1 ~s)im1 l—mf (n—1o” +2[n(s—2)+ 1]¢>’} =0

at0=8  (15b)

27/ 1 — m?* sinsBsin(s — 2)8+ m| (s — 2)sinsBcos(s — 2)B — scoss@sin(s — 2)8] = 0.

with a similar condition at 6§ = — 8 except that m, is replaced
by (—my).

The four homogeneous boundary conditions, (11) and (15),
provide the necessary data on ¢ and its derivatives along the
walls. Equation (9), along with that boundary data, form an
eigenvalue problem for the singularity measure s. Simple con-
siderations show that s should be bounded within the range

_2n <s<2
n+1
where the upper bound assures a singular field and the lower
bound guarantees finite power consumption near the wedge
tip.

When m, = m,=m the flow pattern may be expected to be
symmetric with respect to the axis #=0. The conditions along
the penetration line are then the same as for a smooth wall
with 7,,=0 and v=0 or, in terms of ¢,

¢’'=0 and ¢” =0 at 6=0. A7)
At the other extreme, for a perfectly rough wall where the

friction factor is equal to unity, we find from (11) that €, =0
or, from (7a),

(16)

¢" —s(s—2)p=0.
This gives, via (12), that

(18)

19

implying a sticking condition along the wall. It is also worth
noting that at a perfectly rough wall, condition (15) admits
the simplified form

" — (4l =s5)[n(s—-2)+ 1] +5(s—2)}¢ ' =0.

u=0,

(20)

3 The Newtonian Fluid (n=1)

It is instructive to consider first the case n=1 (Newtonian
fluid) where equation (9) admits the simple solution (Karal
and Karp, 1964)

¢ = Csin{s — 2)8 + Crcos(s — 2)8+ Cssins@ + Cycossf.  (21)
The same solution has been given by Rayleigh (1920) in dis-
cussing steady motion near corners. Subsequently, Dean and
Montagnon (1949), Taylor (1960), and Moffatt (1964), have
applied this solution to a variety of problems related to flow
fields near corners. Limiting the discussion to symmetric fields

m=0

(Ci=C3=0, m;=m,=m) we obtain, from (11b) and (15b),
the homogeneous system

Cysin(s — 2)8 + CysinsB=0 (22a)
(s—2)CIN 1 — m?sin(s — 2)B — mcos(s — 2)8]
+5Cy(\ 1 — m? sinsg — mcossB)=0.  (22b)

The transcendental equation for the eigenvalues s follows as
23)

The dependence of s on m and B3, as evaluated from (23) is
shown in Fig. 2. It can be clearly seen that the exponent of
singularity increases, (i.e., s decreases) with decreasing friction
and wedge angle; sharp and smooth wedges penetrate more
easily. For frictionless walls (m =0) we have, from (23),

m
S=—.

B

Expanding the solution of (23) in powers of m gives, to the

second order,
T m\  7m—28+tan28/m)’
8 [ ” <2ﬂ> " ans <26> ]

This expansion does not converge for very small wedge angles

@4

25)

(8— ), and for nearly flat wedges B—'I , but is nevertheless

an excellent approximation (Fig. 2)'to the exact results of (23)
as long as m* << (28)*Itan281.

At sufficiently large wedge angles and friction factors the
near-tip field becomes nonsingular (Fig. 2). A simple yet fairly
accurate estimation of those critical angles can be obtained at

EXACT SOLUTION
ASYMPTOTIC EXPANSION

o o [o}

a=75°

1.0 ! |
o) 0.5 1.0
m

Fig. 2 Singularity exponent for ditferent wedge angles and friction
factors. Newtonian fluid, n= 1. The corresponding free notch eigenvalue
is indicated by an arrow.

Fig. 3 Contours of constant effective stress for « =30 deg and with

ditferent friction tactors. Newtonian fluid, n=1. A boundary layer build-

up is observed as m increases.
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PERFECTLY
ROUGH
KNIFE

TR

Fig.4 Contours of constant effective stress for a perfectly rough knife
penetrating a Newtonian fluid, and for a crack in a Hookean solid. The
singularity exponent in both cases is s=3/2.

low levels of friction, from the linear approximation of (25)
along with the singularity requirement s < 2. This gives an upper
bound on the wedge angle

2a<Tt—m (26)
ensuring singular near-tip behavior.

Contours of constant effective stress (6), nondimensional-
ized with respect to their value at the wall, are here determined
by the relation

1
r=[1- B(cos20 — cos2R3)]2@-9 @n
with
B 25 (s —2)sinsBsin(s — 2)
(s — 2)*sin’sB + s”sin’(s — 2)B — 25 (5 — 2)sinsBsin(s — 2)Bcos2B’
(28

For a smooth wedge B vanishes identically, by (24), and (27)
becomes the circle r= 1, regardless of the wedge angle.

Typical contours of constant effective stress are displayed
in Fig. 3 with different values of the friction factor for a semi-
wedge angle of a=30 deg. An obvious build-up of a friction
boundary layer is clearly observed as the friction factor in-
creases. This is accompanied by the development of a bulb-
shaped singular zone ahead of the wedge.

In steady penetration of a rigid knife with zero thickness
(8= ) we find, from (23),

1 m
§=1+—arctan ———; (29)
T N 1—m?
with the associated contour, from (27)-(28),
1
r=[1-s2—s)sin?g]2@-, (30)

For a perfectly rough knife (m =1, s=3/2) the contour is given
by r=(1+ 3c0320)/ 4, indicating again the formation of a near-
wall friction boundary layer (Fig. 4). The stresses admit here
the same exponent of singularity (#~'?) as the crack-tip field
in a Hookean solid. Contours of constant effective stress for
the crack (nondimensionalized with respect to their value at
#==/2) are given by r=sin’0 and are shown for comparison
in Fig. 4. It should be added that the hydrostatic stress in
steady penetration of a rigid knife is negative

op=—(\3/3) <cos g) P12

while, in the near-tip field of a crack, the hydrostatic stress is
in a state of tension

0
on=2(/3/3) <cos£> ro12,
The contour for a mode II crack in a Hookean solid is identical

with that of the penetrating perfectly rough knife, but with a
hydrostatic tension environment

Journal of Applied Mechanics

2.0(

!
1.0

m
Fig. 5 Singularity exponent for different wedge angles and friction
factors, n=3. The corresponding free-notch eigenvalue is indicated by
an arrow.

n=1{3

n=7

n=5
N

n=3

20~ O
J N

s R,

|8 . -

. n=t
1.6 N

1.4 -

1.0 1 1 1 L 1 ;

0.0 0.2 0.4 0.6 0.8 1.0 m 2

Fig. 6 Influence of the strain-rate hardening exponent on the eigen-

value s, « = 30 deg. The corresponding free-notch eigenvalue is indicated
by an arrow.

op=(/3/3) <sin g) ro12,

4 Numerical Analysis for Nonlinear Strain-Rate Hard-
ening (n>1)

A special numerical scheme (Rand, 1988) has been employed
to solve the differential equation (9) along with the associated
boundary conditions (11) and (15). The function ¢(6) is rep-
resented by a stationary vector X, of dimension N, whose
components are the corresponding coefficients of the truncated
Fourier expansion

N
¢O =X+ ) {X,;lcos[(i—l)ﬂ
i=3,5,..
. , 6
+X,-sm[(1—1)§j'}. @31

Inserting (31) in equation (9) results in an expression which

. will be denoted by G(X,6). Similarly, substitution of (31) in

the boundary conditions (115) and (155) will give four expres-
sions that will be referred to as B;(X) with j=1,...,4, respec-
tively.
Now, we define an error functional E(X) by
8 4
E(X)= S [G(X,0)1d8+ D J[B; (X))
-8 Jj=1

The solution method used here is based on minimizing the

(32)
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(a) n=3 m=0.0944

€

Fig. 7 Contours of constant effective stress, «=30 deg; (a) n=3; (b) n=13

m=0.648

7 . —¢
Fig. 8 Contours of constant effective stress for a sharp wedge with
a=5deg, n=3

2. (bl n=13

-2 1 1
o] 50 00 ge 150

Fig.9 Stress components g, profiles within the singular zone for « = 30
deg and m=0.7; (a) n=3, (b) n=13

error E(X) over the vector X. This is done through an iterative
scheme whereby the Jacobian matrix is evaluated numerically
at each step. The dimension N of vector X depends of course
on the required accuracy. Simple measures have been defined
for the maximum error, induced by truncating X, in the dif-
ferential equation and in the boundary conditions. The di-
mension of vector X is increased until the convergence
requirements are met. This procedure can be further simplified,
for symmetric fields, by choosing s and evaluating the cor-
responding value of m. Once the eigenfunction ¢(f) has been
determined, along with the associated eigenvalue, it is possible
to construct the entire stress and strain-rate fields within the
singular zone. For simplicity, most of the results reported
below are for symmetric eigenfields with m, =m,=m.

914 / Vol. 58, DECEMBER 1991
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Fig. 10 Stress components g, profiles within the singular zone for
a=30 and n=3; (a) m=0.0965, (b) m=0.09919

Fig. 11 Contours of constant effective stress in asymmetric penetra-

tion

Figure 5 illustrates the dependence of the singularity level
on the friction factor m for n=3 and with a few wedge angles.
The variation of s with the strain-rate hardening parameter n
is shown in Fig. 6, for o =30 deg, indicating that s increases
with increasing n. This implies that the stress components—
behaving like o~ 7 ~2_become less singular as n increases.
On the other hand, the strain-rate components—behaving like
€~ P"¢~?_pecome more singular as » increases; for example,
with oo=30 deg and m =0.7 we have the eigenvalues s=(1.20,
1.72, 1.93) for n=(1, 3, 13), respectively. It follows that the
corresponding levels of strain-rate singularity are
n(2—s)=(0.80, 0.85, 0.92). It should be added that the sen-
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Fig. 12 Stress components g, profiles in asymmetric penetration with
a=53 deg, m;=1, m;=0, n=3

sitivity of s to « decreases considerably as » increases. Thus,
the curve of Fig. 6 for n=13 and o =30 will remain almost
unchanged over a wide range of wedge angles. This trend can
be observed also by comparing Figs. 2 and 5. By the same
token, the dependence of s on the friction factor m becomes
weaker with increasing n.

It is interesting to compare our results with those obtained
by Kuang and Xu (1987) for HRR fields near the tip of sharp
V-notches. Their results for the free-notch eigenvalues are in-
dicated in Figs. 2, 5, and 6. It can be seen that, for given o
and n, there is always a critical value of the friction factor
below which the penetrating wedge induces a stronger singu-
larity than the corresponding notch. That critical friction factor
appears to decrease with « (Figs. 2, 5), but its dependence on
n is more complex (Fig. 6). Other cases of plane-strain HRR
fields with various boundary conditions have been considered
recently by Alexandrov and Grishin (1987) and by Duva (1988).
A review of available wedge III solutions for notches and
wedges can be found in Ore and Durban (1988).

Typical contours of constant effective stress are shown in
Figs. 7(a)-7(b) for a wedge with a semi-angle of 30 deg. These
contours have been normalized with respect to their extent
along the walls. An obvious boundary layer build-up can be
observed as the friction factor m increases. It is also seen that
for higher values of n the singular field becomes more tapered.
Similar contours are shown in Fig. 8 for a sharper wedge with
a=1>5 deg.

Representative stress profiles are shown in Figs. 9(a)-9(b)
and 10(a)-10(b). All stress components are normalized with
respect to the value of &, at the walls. The first pair (Figs.
9(a)-9(b) illustrates the effect of » while the second pair (Figs.
10(@)-10(b) reflects the influence of m. The circumferential
deviatoric component (5, — &) is always positive along the pen-
etration line (6 =0 deg) implying, by (1), that the circumfer-
ential strain rate ¢, is also positive ahead of the crack. Above
a certain value of # there is a sign reversal in ¢y, so that the
circumferential strain rate becomes negative for higher values
of 6. That change of sign happens along a radius where ¢,= gy
with a state of simple radial shear at that particular angle. This
further implies that the radial velocity u vanishes along that
radius.

Journal of Applied Mechanics

Finally, we show some sample figures for asymmetric pen-
etration where each wall has a different friction factor. The
lower wall (#= —f() is smooth while the upper wall is very
rough. Again, the boundary layer near the rough wall is clearly
seen (Fig. 11). The associated stress profiles are shown in Fig.
12 for the case where the upper wall is perfectly rough. The
deviatoric (55— 6;) is here positive only within a limited range
of angles bounded by two radii along which the radial velocity
vanishes.
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Measurement of Monotonic Biaxial
Elastoplastic Stresses at Notch
Roots

Biaxial principal strains were measured at the roots of notches in aluminum specimens
with a laser-based interferometric technigue. Interference patterns from three tiny
indentations spaced 150 or 200 micrometers apart in an orthogonal pattern were
monitored with a microcomputer-controlled system. Elastoplastic strains up to one
percent were measured in real time with a resolution of 25 microstrain. Procedures
were developed for computing the two principal stresses from the incremental strain
data using Jo-flow theory. The validity of the computations was checked by com-
puting the stresses in smooth tensile specimens. Anisotropy in the thin sheet material
leads to errors in the computed lateral stresses (which should be zero), but the
maximum deviation of the computed effective stress from the uniaxial stress is only
Jfive percent, Three kinds of double-notched specimens were prepared to vary the
amount of constraint at the notch root. These were tested under monotonic tensile
loading and the biaxial notch-root strains recorded. There is considerable variation
among the strains once the elastic limit is passed. This is due primarily to the local
inhomogeneity of plastic strain, since the gage length of the measurement is only a
Jfew times larger than the grain size of the material. Local biaxial stresses were
computed from the measured strains for the three cases. The nature of the material’s
Stress-strain curve tends to smooth out the variations among tests, particularly when
the effective stress is computed. It is discovered that the local stress predicted by

W. N. Sharpe, Jr.

Department of Mechanical Engineering,
The Johns Hopkins University,
Baltimore, MD 21218

Fellow ASME

1 Introduction

The prediction and measurement of stresses and strains at
“‘stress concentrations’’ is an important problem in the field
of solid mechanics. Given the long history of research into the
elastic problem and the availability of sophisticated finite ele-
ment codes, one can expect to get good agreement between
predicted and measured elastic stresses and/or strains. How-
ever, the situation is not so favorable when the elastic limit of
the materials has been exceeded—theories carry restrictive as-
sumptions, computer predictions are cumbersome, and meas-
urements can no longer be made on elastic models such as
those used in photoelasticity. Local elastoplastic response at
a discontinuity in a component or structure is still a rich area
for research from an experimental, theoretical, and compu-
tational viewpoint.

The ability to predict stresses (as opposed to strains) is im-
portant from design considerations; one is much more likely
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the Neuber relation agrees very closely with the measured local effective stress.

to know the applied loads than the applied deformations. But
of course one does not measure stress directly; one measures
load on a simple geometry or measures strains on a complicated
geometry. Conversion to stress occurs through the basic def-
inition if load is measured and through the constitutive equa-
tions if strains are measured. This latter process is
straightforward for elastic behavior, but less well developed
for elastoplastic behavior. A major reason is the difficulty of
measuring the elastoplastic strains in situations that are truly
meaningful. Plasticity tends to initiate at stress concentrations,
and in most cases these are relatively small which inhibits the
use of the ubiquitous foil gages. Another difficulty with the
study of elastoplastic behavior is that one cannot scale up the
problem because the material’s grain size is so important.
This paper reports the results of a series of experiments on

.three geometries of double-notched specimens of 2024 alu-

minum. These three cases were chosen to vary the amount of
lateral constraint at the notch root. Longitudinal and lateral
strains, €, and e, were measured at the notch roots with a
laser-based technique having a gage length of either 150 um
and 200 pm—only a bit larger than the grain size of the ma-
terial. These measured principal strains are then converted into
stresses using the incremental version of the J, theory of plas-
ticity. The material tested is not isotropic which the theory
assumes, and this contributes to errors in the computed stresses;
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however, it is very important technologicaily because the sheet
material is widely used in the skins of aircraft.

The results reported here are part of a larger study of the
elastoplastic behavior at notch roots under cyclic loading—the
implications are obvious, one wants to be able to predict the
initiation of cracks under low-cycle fatigue conditions. The
discussion here focuses only the first monotonic part of the
loading cycle. The Neuber relation (Neuber, 1961)

K, xK.=K? 1)

(where K, is the stress concentration factor, K, is the strain
concentration factor, and K; is the elastic stress concentration
factor) is widely used for predicting the stresses and strains at
notch roots. It is generally regarded as satisfactory for plane
stress loading, but not for loadings approaching plane strain.
Another paper (Sharpe and Wang, 1991) explores this effect
of constraint on the validity of a modified version of the Neuber
relation for monotonic loading; the predicted strains were com-
pared with the measured ones. The conclusion there is that a
modification of the Neuber relation which makes it look more
like a linear relation (K, = K,) is an improvement when con-
straints are present.

The development and application of the Neuber relation is
reviewed in the Background section of Sharpe and Wang (1991)
and will not be repeated here. Surprisingly, there have been
few measurements of elastoplastic stresses in complicated ge-
ometries; those are reviewed in Section 2 of this paper. The
local biaxial strains are measured with a laser-based interfer-
ometric technique that measures the relative displacements be-
tween three tiny indentations in the specimen surface. The
computer-controlled version for measuring uniaxial strain has
been described elsewhere (Guillot and Sharpe, 1983) but the
important advance reported here is the extension of the system
to biaxial measurements of the principal strains ¢ and ¢,. The
technique is described only briefly since this paper focuses more
on the results than on the details of the measurement system.

The procedure for computing the stresses from the measured
strains, which is a straightforward inversion of the equations
of plasticity, is then presented. These procedures are applied
to stress-strain data from smooth specimens (both ¢, and ¢,
were measured) to validate the computational procedure and
examine the effect of anisotropy.

At this point, one should have confidence in the stress meas-
urements and can move on to the geometries in question.
Measured biaxial notch-root strains room the three cases (ten
different specimens were tested) are then presented; these serve
as the input for the stress calculations. The measured stresses
are presented as principal values o; and ¢,. These are used to
compute the effective stress o, which is compared to the stress
predicted by the Neuber relation. Finally, conclusions are drawn
as to the significance of the results.

2 Background

Theocaris (1962) wrote a paper in 1962 entitled ‘‘Experi-
mental Solution of Elastic-Plastic Plane Problems’’ in which
he presented procedures for computing stresses from strains
measured by photoelastic coatings on specimens. He presents
the equations for computing the change in stress components
doy, doy,, and dr,, from the measured strain increments de,,
de,, and dy,,. The specimen was a thin steel sheet with large
semicircular double notches to which a thin photoelastic coat-
ing was glued. The measurement of strains required analyses
of patterns taken at normal and at oblique incidence and was
tedious at best; however, it did give the strain field. The in-
cremental theory of plasticity based on J, was used, but only
seven increments were taken between the load corresponding
to incipient plasticity at the notch root and the load corre-
sponding to the spread of plasticity across the net section.
McClintock (1963) praised the paper in a later discussion and
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compared the measured stress and strain concentrations to
those predicted by the Neuber relation—showing that the pre-
dictions were accurate in the early stages of plastic deformation
at the notch root. :

A similar work was published shortly thereafter by Durelli
and Sciammarella (1963) who measured strains by moiré tech-
niques on a thin aluminum specimen with a central hole. Six
load increments were used which required iteration of the stress
increments to assure that the effective stress-strain curve was
being followed. The stress field in the neighborhood of the
hole was measured, and the stress and strain concentrations
were compared to those from the classic experimental work
by Griffith in 1948. Agreement was excellent, considering the
slight difference in specimen materials.

Photoplastic materials with nonlinear behavior similar to
that of metals are quite useful in gaining an understanding of
the development of plasticity in a given geometry and in eval-
uating theories. An example of such a study is the fine work
by Johnson (1976) in which he studied the plastic deformation
of a circumferentially notched shaft subjected to torsion load-
ing. He used a photoplastic material that has a stress-strain
curve similar in shape to a medium-strength aluminum and
the scattered light technique to measure the stresses on a plane
down the center of the shaft. The material was calibrated in
torsion, so he determined shear stresses directly from the fringe
patterns. The stress and strain concentrations showed good
agreement with the Neuber prediction for early stages of yield-
ing; indeed, this geometry is the same as analyzed by Neuber.

One wonders why foil-resistance strain gages are not used
to measure the necessary plastic strains; the larger post-yield
ones have the capability of measuring strains to ten percent
or more. One paper by Keil and Benning (1979) on their use
appears in 1979. However, they use the deformation theory
of plasticity instead of an incremental theory which, although
requiring additional assumptions, is easier to apply. They work
only with principal strains and provide nomographs from which
one can obtain the stresses for a representative selection of
materials. Given two strain measurements, one reads out the
two principal stresses.

It appears that the paucity of research papers describing
measurements of elastoplastic stresses is due more to the dif-
ficulty in measuring the strains than anything else. In fact, the
Handbook on Experimental Mechanics (1987) presents the
equations relating strain increments to stress increments on
page 10, but there is no later reference to their actual use.
Precedents have been set with the works of Theocaris and of
Durelli and Sciammarella, and similar studies would be con-
siderably easier with modern imaging and computational ca-
pabilities. However, these earlier works did not measure at the
point of real interest—the root of the stress concentration
where fatigue cracks initiate.

3 Strain Measurement Technique

The interferometric Strain/Displacement Gage (or ISDG) is
a laser-based system that measures in-plane relative displace-
ment between tiny reflective indentations in a specimen surface.
The pyramidal-shaped indentations are oriented so that the
light rays diffracted from their sides overlap to form inter-
ference patterns in space. When the distance between the in-

dents changes, the fringe patterns move; in effect, one simply

has an optical lever with a high ratio because of the interference
phenomenon. A microcomputer-controlled system for meas-
uring fractional fringe motion has been developed that has
suitable resolution for elastoplastic strain measurement over
gage lengths as short as 100 um (Guillot and Sharpe, 1983).
For more details about various applications of the technique,
see Sharpe (1982).

Strainsin two orthogonal directions can be measured if three
indentations are placed in the specimen surface as shown in

DECEMBER 1991, Vol. 58 | 917

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1
micrometers, and they are placed at the root of a notch with a 1-mm
radius. The black areas on either side are paint that was applied to reduce
stray reflections.

Three indentations at the root of a notch. The spacing is 150

Fig. 1. That photomicrograph shows indentations at the root
of a notch with a 1-mm radius; the spacing between them is
150 um. Longitudinal strain is measured in the direct of load-
ing, and lateral strain is measured in the perpendicular direc-
tion. The black areas at the sides of Fig. 1 are flat-black paint
that was applied to limit stray reflections from the polished
specimen surface.

Four fringe patterns are generated with the biaxial ISDG,
and one must use four fringe sensors (scanning mirrors and
photomultiplier tubes) to monitor the patterns and average out
the rigid body motion of the specimen. A microcomputer sys-
tem monitors the fringe motions, converts them to strains,
stores the load and strains, and increments the load control
signal to the test machine. The sampling rate is approximately
ten points per second, and the least count of strain is approx-
imately 35 microstrain for the 150-um gage length. The relative
uncertainty associated with the measurement of the relative
displacement of the indentations is approximately =+ three
percent.

The effect of the indentations on the local strain field, es-
pecially in the plastic region, is a matter of concern. Unfor-
tunately, there is no other experimental technique with a
suitably short gage length, resolution, and range to permit a
direct comparison at a notch root. The best that one can do
is compare the ISDG with other techniques on smooth spec-
imens, and this is quite good for longitudinal strains as will
be seen in Fig. 3. Further, the reproducibility and reasonable
behavior of the notch strain results that are presented here
indicate that the ISDG is measuring elastoplastic strains with
good fidelity.

4 Computation of Stresses

The computation of stresses from the measured strains are
based on the incremental J,-flow theory:

é=Sy/2G +f(0.) 55y @

where ‘‘+”’ denotes an increment in the applied stresses and
strains. The deviator stresses and strains are defined by S; =
oj — 1/3 oy and e; = e — 1/3 e ;. oy and ¢ are the
stress and total strain components, respectively. The effective
stress, o,, is given by (3/2 SijS,»j)m.

The function f{o,) describes the deviation of the material’s
effective stress-strain behavior from linear elasticity, and is
equal to 3/2 (1/E,—1/E)/g,. The modulus of elasticity is of
course E, and E, is the slope, do./de, of the effective-stress
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versus total-strain, e, curve of the point of interest (this stress-
strain curve is obtained in a uniaxial stress test).

Equation (2) can be contracted with S; to permit one to
solve for &, by noting that 2¢,5, = 35;S;. The effective stress
increment, @,, can then be re-inserted into Eq. (2) to produce
an equation relating S to e

S;j=2Gé;—FSySuéu 3)

where
_ 6Gf( 0,)
T 0,/G+ 202 (0.)

The total strain is made up of elastic and plastic components;
ie., e = e + €. By noting that €%, = 0, one can finally
write

bij:(Xéij‘l'Békkﬁij_FSkléklkSij- (4)
o = 2G, and 8 = K — 2G/3 where G and K have the familiar
definitions from elasticity of E/2 (1+») and E/3(1 —2v), re-
spectively. Equation (4) relates the increments of stress to the
increments of strain and is the constitutive expression used to
compute the stresses from the measured strains.

The stress and strain state of interest here is one of plane
stress on the surface at the root of the notch. The measurements
are in the principal directions because of the symmetry at the
center of the notch root. The principal stresses and strains are
therefore labelled o4, 03, €, €, and €3, respectively. ¢, and e,
are the strains that are measured, and the three unknowns can
be solved from the three equations of (4). The final version
of the equations that is used becomes:

_ (FS15: — B)Ae; + (FS:8;— B)Aey 6)
o+ B—FSi

Aoy =(oz+B—FS%)Ael + (B—FS1Sy)Aes + (B—FS1S3)Aes  (6)

Aoy =(B—-FS§),8;)A¢

+(a+B—FS3)Aey+ (B~ FS$,S5)Aes.  (7)
The principal stress, o; and o,, are the sums of the stress
increments as computed from the above three equations.

Implementation of Egs. (5)-(7) is straightforward. One has
the experimental record of applied load, P, ¢, and ¢, stored
as discrete points in a data file. At a given P,, the strain
increments are taken as €,,; — €,. The two stress increments
are then computed and added to the stress values (computed
previously) corresponding to P,. However, there are a couple
of points to be considered.

First, o, appears in the denominator of F in Eq. (3) so the
computations have to be started in some manner. They are
started by computing elastic stresses directly from the measured
strains. o, is computed at every increment, and when it exceeds
a present value, the program switches to the incremental cal-
culations of Egs. (5)~(7). This present value must be below the
proportional limit of the material, and in practice, is taken as
approximately 25 percent of the yield stress.

Second, the computation of f(s,) involves 1/E, which equals
de/do. Two kinds of 2024 aluminum were tested—T3 and
T351. The Ramberg-Osgood representation of the stress-strain
curve, ¢ = o,/E + (oe/M)“ ", fits the T351 stress-strain curve
quite well, and de/do, is easily computed. However, a much
better fit to the uniaxial stress-strain curve for the T3 material
is obtained with a polynomial, 6, = g(¢), where ¢ = 0./E +
€. The effective plastic strain, ¢, is the sum of the plastic
strain increments defined by

A =N2/3[(A — AR + (Al — A + (A — AEY)2. (8)
After the stress increments have been computed for load Py,
they are used to compute increments of elastic strain which
are subtracted from the measured strain increments, Ae; and
Ay, and the computed strain increment, Aes, to give the three

plastic strain increments needed in Eq. (8). The effective plastic
strain increment, Ae”, is added to the previously computed €’

A€3
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Fig. 2 Montage of photomicrographs of 2024 aluminum sheet—cour-
tesy of Dr. J. C. Newman, Jr. The thickness of the grains in the S direction
is approximately 25 micrometers. Grain boundaries have been high-
lighted.
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Fig. 3 Biaxial stress-strain curves from smooth specimens for the T3
and T351 materials. Measurements were made with the ISDG on the
edge and with foil gages (RSG) on the flat side of the specimens. One
lateral strain measurement was made on an edge with a RSG. The T3
material was tested both parallel (L) and perpendicular (T) to the roliing
direction.

so that the proper value of ¢ is used for the calculation of E,
at Pn+ 1.

These computations are implemented in a short FORTRAN
program on the same IBM-compatible microcomputer that was
used for control of the experiments. Noise in the data does
not appear to cause difficulties as will be seen in the next
sections.

5 Material Response and Prediction for Smooth Spec-
imens

This section presents the stresses and biaxial strains measured
in uniaxial stress tests on smooth specimens. The purposes of
these tests were to generate the constitutive equations needed
for stress computation and to obtain biaxial strain data which
could be used to check the computational procedures. One
should be able to take the biaxial data, run it through the stress
computation procedures, and get the result that o; = P/A and
o, = 0. As will be seen, the anisotropy of the material causes
less than perfect agreement.

Figure 2 is a photomicrograph of 2024 sheet material show-
ing the grain structure on the flat side of a sheet and on the
edges; one edge parallel to the rolling direction, and one edge
perpendicular to it. The nomenclature there is from ASTM E-
399; “L”’ refers to the rolling direction, “‘T’’ to the width
direction, and ‘S’ to the edge direction. The grains have, in
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Fig.4 The negative ratio of lateral and longitudinal piastic strain versus
longitudinal strain. The data presented are from two smooth specimens
that were instrumented with the biaxial ISDG on an edge and a smooth
specimen with a biaxial RSG on the flat side.

general, the shape of elongated pancakes and are thinner in
the direction perpendicular to the sheet.

Figure 3 shows the results from tests on three smooth spec-
imens of 2024-T3 aluminum. One specimen was loaded in the
L direction; it was instrumented with biaxial foil gages (RSGs)
on the flat side and the biaxial ISDG on the edge. Another
specimen was instrumented in the same way, but loaded in the
T direction. A third specimen was loaded in the L direction,
but used only the biaxial ISDG on the edge. In all cases, the
agreement between the ISDG and the foil gage was excellent
in the longitudinal direction (paralle! to the load axis). But
there is a significant difference between the lateral plastic strains
measured on the flat side of a specimen with a foil gage and
on the edge with the ISDG. That difference is greater when a
specimen is loaded in the L direction than when one is loaded
in the T direction.

It appears that the anisotropy of the material accounts for
these differences in the lateral strains measured on the flat
sides and edges of the smooth specimens. One might also argue
that the indentations of the ISDG are influencing the plastic
flow of the smaller grains on the edge. An argument against
that hypothesis is that the agreement between the ISDG and
the RSG lateral strains for the T-loaded specimen is actually
fairly good. Also, if the indentations harden the specimen
locally, one would expect smaller strains—not larger. Another
test was run with a 0.79-mm long foil gage on the 2.5-mm
thick edge of an L-loaded specimen. That result (RSG edge)
is seen in Fig. 3 to lie between the edge lateral strains measured
with the ISDG and the flat-side lateral strains. It therefore
appears that the lateral ISDG-measured strains are reasonably
accurate.

The 2024-T351 aluminum has the same general structure as
the T3, but the grains are thicker in the S direction. The biaxial
stress-strain curves, as measured with foil gages on the flat
side and the edge of the smooth specimen, are nearly identical.
One such curve is plotted in Fig. 3 and shows that this material
is nearly elastic-perfectly plastic.

A representation of the uniaxial material behavior (actually
the effective stress g, versus the total strain) is needed in order
to evaluate f(o,) in Eq. (3). The solid line through the ‘“L”’
longitudinal strain data in Fig. 3 is a sixth-order polynomial
fitted with the plotting package SIGMAPLOT from Jandel

" Scientific, Inc. Attempts to fit a Ramberg-Osgood equation

to the data gave significant discrepancies either just after the
proportional limit or at the maximum stress value and were
abandoned. The equation describing the uniaxial stress-strain
curve of 2024-T3 is:

o= —0.4569+7.5004 X 10% — 5.5733 X 10°%> + 3.6417 x 10°¢’
—1.0216 X 10"%* + 1.0241 X 10"6° — 3.4879x 10°¢°  (9)
where ¢ is in MPa and e is in m/m. The solid line fitted to the
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Fig. 5 Computed stresses for a smooth specimen versus the applied
stress. The two principal stresses are computed from biaxial strains
measured with foil gages on the flat side and the ISDG on the edge of
the same specimen. The effective stress is computed only for the ISDG-
measured stresses.

2024-T351 data is the Ramberg-Osgood equation with M =
414 MPa and n = 0.0094. This equation is much better at
fitting a curve that has a sharper transition to plasticity.

The anisotropy considerations are important because J,-flow
theory assumes isotropy and that the plastic Poisson’s ratio is
0.5. The anisotropy of the material is further illustrated in Fig.
4 which is a plot of the negative ratio of lateral to longitudinal
plastic strain for the two specimens loaded in the L direction.
The plastic strain was obtained by subtracting the computed
elastic strain using E = 71.8 x 10’ MPa and » = 0.325. This
subtraction and division generates noisy results at smaller
strains, so the values are only plotted for longitudinal strains
greater than 0.004 which corresponds roughly to the propor-
tional limit of the material. The Poisson’s ratio on the flat
side of the specimen generally adheres to the assumption of
the theory, but the edge results do not until later in the plastic
yielding. Therefore, one cannot expect the computed stresses
on the edge of the specimen to be accurate. However, the
inaccuracy can be evaluated by using the biaxial strains meas-
ured on the smooth specimens—the data in Fig. 3—to compute
the stresses ¢, and ¢,. The result should of course be o, = P/
A and o, = 0.

The stresses computed using the data from the T3 specimen
that was tested in the L direction and instrumented with both
the foil gages and the ISDG are plotted in Fig. 5. The agreement
is nearly perfect for the strains measured on the flat side of
the specimen where the behavior is more isotropic; o, is almost
exactly equal to P/A, and o, is nearly 0. Stresses computed
from the edge data are noisier because of the coarser resolution
of the ISDG, and o, shows significant negative stresses. These
clearly do not represent the physical situation; there are no
compressive lateral forces in these long specimens to generate
such a stress. The error in the computation comes from the
deviation from isotropy in a direction perpendicular to the
sheet material. Note that the computed edge stresses tend back
toward perfect agreement at the higher stresses—the corre-
sponding plastic Poisson’s ratio of Fig. 4 tends toward 0.5
also.

In other words, the stresses computed from strains on the
edge of the specimen (which are of greatest interest here) are
simply incorrect. But, what is the effect of this error? The
effective stress in this two-dimensional stress field is given by
(6} — o102 + 09)"? which means that an error in o, is sup-
pressed. The effective stress computed from the edge stresses
is plotted in Fig. 5 and agrees reasonably well with P/A; the
maximum error is about five percent.

Based on these results, one can go ahead with the measure-
ment of stresses at notch roots in this material with the un-
derstanding that the lateral stresses will be inaccurate, but the
computed longitudinal stresses and the effective stresses will
be accurate within x five percent.
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Fig.7 Measured biaxial strains at the notch roots——longitudinal on the
right and lateral on the left—for the three cases tested. The ordinate is
the net stress applied to the specimen.
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Table 1
Notch Thickness SCF SCF SCF (—e/€y)e  Number
Shape Peterson FEM Measured of Tests
U-notch 2.5 mm 1.92 2.02 1.97 0.30 5
V-notch 2.5 mm 3.50 3.64 3.52 0.21 3
U-notch 25.4 mm 1.92 2.09 1.85 0.16 2

6 Biaxial Strain Results for Notched Specimens

Double-notched specimens were prepared with three differ-
ent constraints at the notch root; i.e., three ratios of thickness
toroot radius. Two notch radii were used, and their dimensions
are given in Fig. 6. Table 1 lists the three cases and their elastic
stress concentration and constraint factors.

The ““SCF Peterson’’ is a two-dimensional value from his
handbook (Peterson, 1974). The ‘“'SCF FEM”’ are the results
of a three-dimensional finite element analysis of the three ge-
ometries. The initial linear regions of the load versus longi-
tudinal strain at the notch root were used to compute the *‘SCF
Measured”’ value. Five tests were run for the thin U-notch
geometry, and the variation of their initial slopes from the
mean value was — 2.4 percent + 5.7 percent which is an in-
dicator of the fidelity of the ISDG measurement system.

The value (—¢,/¢,) in Table 1 is the negative ratio of lateral
to longitudinal elastic strain as calculated at the notch root in
the finite element analysis. It should be the elastic Poisson’s
ratio of 0.325 for plane stress, and one sees that it is close to
that value for the thin U-notch specimens. The sharper the
stress concentration and the thicker the specimen, the smaller
this value. It would be 0.0 for plane strain, but that would be
very difficult to achieve without biaxial loading.

Figure 7 shows the results from ten different specimens for
the three cases of Table 1. Each test was loaded in tension,
and the testing program was set up so that when the longi-
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tudinal strain reached a value of 0.01, the loading reversed.
This value was chosen because cyclic loading over a range of
+ 0.01 will produce microcracking at the notch root in a few
hundred cycles. As mentioned earlier, the strain data used here
is the monotonic part of a cyclic load sequence. The data sets
ranged from 500 to 1000 points, but were reduced to around
150 for ease in plotting. i

A notable feature of the data of Fig. 7 is the variation among
the measured strains for a given case once the elastic limit has
been passed. This is not at all surprising in view of the fact
that the gage length is the same order of magnitude as the
grain size of the aluminum. There is more variation among
plastic strains for the V-notch specimens; the gage length there
is 150 um as opposed to 200 um for the U-notch specimens.
Part of this variation may come from local rotation of an
indentation in a single grain or from plastic deformation of
one of the faces of an indent. No matter what technique is
used, measurement of plastic deformation over a few grains
is likely to be inhomogeneous.

Figure 7 is the complete data set upon which the following
stress computations are based. The variation among the plastic
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strains measured for supposedly identical specimens will of
course show up in the computed stresses.

7 Computed Notch-Root Stresses

Given the measured biaxial strains of Fig. 7 and Eqs. (5)-
(7), the computation of the stresses is straightforward. The
following three figures present the computed stresses for the
three cases; they are plotted on the same scales. The abscissa
is the measured longitudinal strain, ¢;; its upper limit of .01
was the same in all tests.

Figure 8 shows the stresses for the five U-thin specimens.
The variation among the computed, o, and o, is similar to the
variation among the measured ¢; and measured e, respectively.
After all, ¢; is the major contributor in the calculation of .
The lateral stresses, o,, should be nearly zero in this thin spec-
imen with a moderate stress concentration. They are negative—
following the same pattern as the computed lateral stresses in
the smooth specimens (see Fig. 5). This arises from the ani-
sotropy of the material and again illustrates the point that the
computed stresses are not completely correct.

The computed stresses for the V-thin specimens are shown
in Fig. 9. The lateral stresses are approximately zero through-
out the loading, but one can speculate that they should be a
bit positive. That would be consistent with the increased level
of constraint for this geometry as shown in Table 1.

The lateral stresses for the thick 2024-T351 specimens, as
shown in Fig. 10, are always positive at the center of the notch
root because of the greater constraint of the surrounding elastic
material. The differences in the notch-root stresses for in-
creasing constraint are clearly demonstrated in Figs. 8-10.

8 Comparison With the Neuber Prediction

The Neuber relation was derived using the deformation the-
ory of plasticity for shear loading. Over the years, it has come
to be used for cyclic loading of specimens or components
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Fig. 10 Computed notch-root stresses for the thick U-notched speci-
mens
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subjected to tensile or compressive loading. Certainly its sim-
plicity has contributed to its popularity, but it is generally
regarded to give accurate predictions of local stresses and strains
only for plane-stress loading. The overall objective of the larger
cyclic testing program (of which these monotonic results are
a part) is to evaluate the Neuber relation for notched specimens
with various amounts of constraint. )

The computed stresses for the specimen with most constraint
show significant positive lateral stresses at the notch root and
lead one to use the effective stress, o,, as a measure of yielding.
The Neuber relation does not recognize this; it predicts a single
stress, o7, based on a uniaxial stress-strain curve (of course,
this is o, if the stress at the notch root is truly uniaxial). It is
therefore more appropriate to compare the measured effective
stress with the Neuber-predicted stress, and this is done in Fig.
11,

Figure 11 is a plot of the local effective stress versus the
product of the elastic stress concentration factor and the net
stress; this latter quantity would be known by a designer seeking
to predict the notch-root stresses. The Neuber prediction is a
straightforward application of Eq. (1) and the appropriate
constitutive equation. The experimental results shown were
obtained by computing o, for each test at discrete values of
K, X 0,4. Mean values were computed and are plotted as
circles. The error bars represent the maximum and minimum
values; not a statistical parameter. Where error bars are not
visible, they were smaller than the size of the circle.

Figure 11 (a) shows near-perfect agreement between the pre-
dicted and measured effective stresses. This is for a moderate
stress concentration factor and a thin specimen—nearly a purely
plane-stress situation as shown in Table 1. Note that the agree-
ment would not be as good if one used the measured ;. The
average maximum value of ¢ is 345 MPa (see Fig. 8), whereas
the average maximum o, is 373 MPa—an eight percent dif-
ference. But, referring back to Fig. 5, o, is a better measure
of the stress state in a smooth specimen. This result is nothing
new; it was stated in the Introduction that the Neuber relation
was generally valid for plane stress.

Figures 11(b) and 11 (c¢) show a greater discrepancy as one
moves toward more constraint, but in each case the peak o,
agree very closely. It is also interesting to note that the scatter
among the peak values of ¢, is very small for all three cases—
in spite of the scatter in the measured strains and the computed
stresses. The stress-strain curves flatten beyond the yield point,
and therefore large strain errors produce only small stress
errors.

9 Conclusions

There are three main conclusions from this work:

e RBiaxial elastoplastic strain measurements are feasible over
short gage lengths in materials and geometries that have prac-
tical significance. When applied to geometries that dictate the
principal strains and materials that meet the assumptions of
the theory, the addition of a second strain component enables
one to compute stresses. Although the ISDG measurement
system is somewhat sophisticated, once it is set up, testing
becomes routine. The strain measurements demonstrate the
needed for replication when plastic strains are measured over
gage lengths on the order of the grain size. However, the
variability among the strains is suppressed when they are used
to compute effective stresses. ‘

e Computation of elastoplastic stresses from measured
strains is easy—given modern microcomputer-based measure-
ment systems. The lack of accuracy lies more in the represen-
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tation of the material’s constitutive behavior than in the strain
measurements and the computational procedures. Anisotropy
of the material is important and leads to moderate errors in
the longitudinal stress, oy, but large errors in.the lateral stress,
0,. That is not a fatal flaw because one is really more interested
in the effective stress which suppresses the error in o;.

e The results show that the predicted peak stress from the
Neuber relation agrees with the measured peak effective stress
within the startling range of & two percent! The Neuber re-
lation is a good predictor of the effective stress at a notch root
for monotonic loading regardless of the amount of constraint.
This is important because a stress-based plasticity criterion
should use the effective stress. However, it does not follow
that the Neuber relation gives a good prediction of the strains;
the shape of the upper portion of the stress-strain curve tends
to dampen the variation of stresses. Low-cycle fatigue predic-
tions are based on strain-life curves, so this point is important.
However, for static design and monotonic loading, these results
give one considerable confidence in the Neuber relation.

It is hoped that this presentation of the measured biaxial
strains and the resulting computed stresses will contribute to
a better understanding of the basic mechanics of notch-root
behavior. The longer term goal is to gain a better understanding
of the initiation phase of fatigue crack growth in order to
improve life predictions.
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A Micromechanical Damage Model
for Uniaxially Reinforced
Composites Weakened by
Interfacial Arc Microcracks

A micromechanical anisotropic damage model is presented for uniaxially reinforced
(brittle matrix) composites weakened by an ensemble of (fiber/matrix) interfacial
microcracks. All microcracks are assumed to occur along the fiber/matrix interfaces,
and are modeled as arc microcracks under “‘cleavage 1°° deformation processes.
Microcrack-induced strains and overall elastic-damage compliances are analytically
derived based on micromechanical bimaterial (interfacial) arc-microcrack opening
displacements and mesostructural probabilistic distributions. Both ‘‘stationary”’ and
“‘evolutionary ”’ damage models are given. In particular, microcrack kinetic equations
are constructed based on micromechanical fracture criterion and mesostructural
geomelry in a representative volume element. Simple and efficient computational
algorithms as well as some numerical uniaxial tension tests are also presented. Finally,
it is noted that not a single arbitrary (fitted) ““material constant’ is employed in
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the present work.

1 Introduction

Initiated by Kachanov (1958) and Rabotnov (1963) for one-
dimensional creep damage of metals, continuum damage me-
chanics has been extensively explored and applied to various
engineering materials by many researchers. Most of the existing
works are classified as phenomenological damage models; see,
e.g., Krajcinovic (1984, 1986, 1989) and Bazant (1986) for a
comprehensive literature review. There are, however, some
micromechanical “‘stationary’’ or ‘‘evolutionary’’ damage
models proposed in the literature; see e.g., Budiansky and
O’Connell (1976), Horii and Nemat-Nasser (1983, 1985),
Kachanov (1987), Krajcinovic and Fanella (1986), Sumarac
and Krajcinovic (1987), and Ju (1991).

In particular, interesting studies on damage mechanics in
modern fibrous composite materials were presented by Weits-
man (1987, 1988), Talreja (1985, 1986), and Allen et al. (1987)
for distributed microcracks within the framework of phenom-
enological damage models. On the other hand, some note-
worthy micromechanical (primarily ‘‘stationary’’) damage
models for composites were proposed by, e.g., Wang et al.
(1984), Laws et al. (1983), and Hashin (1985) for transverse

(parallel) matrix crack systems, and Laws and Dvorak (1987)

for aligned penny-shaped microcracks. It is noted that existing

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
or MEcHANICAL ENGINEERS for publication in the JOURNAL oF APPLIED ME-
CHANICS.

Discussion on this paper should be addressed to the Technical Editor, Prof.
Leon M. Keer, The Technological Institute, Northwestern University, Evanston,
1L 60208, and will be accepted until two months after final publication of the
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the
ASME Applied Mechanics Division, Jan. 17, 1990; final revision, Nov. 19, 1990.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.248. Redistributi&oﬁ%{égn% QS]R?I:QH'CQX% orc

phenomenological damage models of Weitsman, Talreja, and
Allen et al. employed either vector-valued or second-rank (sym-
metric or nonsymmetric) ‘‘damage tensors”’ (treated as internal
state variables) to characterize the state of damage in composite
materials. However, a vector or a second-rank damage tensor
is inherently incapable of describing general anisotropy in com-
posites. An appropriate description of anisotropic damage gen-
erally involves a fourth-rank (or even eighth-rank) damage
tensor representation; see, Chaboche (1979), Cordebois and
Sidoroff (1979), Ju (1989), and Krajcinovic (1989) for further
remarks. In addition, in spite of attractive thermodynamic
basis, specific functional forms of the Helmholtz or Gibbs free
energy potentials in phenomenological damage models are to
some extent arbitrary (heuristic). Therefore, the resulting over-
all stiffness-damage relationships and stress-strain laws are also
somewhat arbitrary. Moreover, in order to have constitutive
predictive capability, phenomenological damage models em-
pirically postulate functional forms for damage ‘‘evolution
equations.”’ Consequently, in thermodynamic potentials and
damage evolution equations existing phenomenological models
rely on the use of many (perhaps up to 100) fitted ‘‘material
constants.’’ Thus, it becomes difficult to identify these fitted
constants from actual experimental data of composites.
Hence, as pointed out by Krajcinovic and Fanella (1986)
and Weitsman (1988), micromechanical damage theories for
composites are warranted to incorporate mesostructural ge-
ometry, micromechanical deformations, and microcrack
growth into the damage mechanics framework. Most of ex-
isting micromechanical damage models for composites focus
on the effects of transverse stationary matrix cracks or aligned
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penny-shaped microcracks (fiber breaks) on overall compliance
tensors. The present paper, on the other hand, considers dam-
age effects on uniaxially reinforced composites due to the ex-
istence and growth of many microcracks at the fiber/matrix
interfaces. This circumstance corresponds to an ensemble of
randomly distributed arc microcracks along the interfaces be-
tween cylindrical inclusions and extended exterior regions un-
der plane strain and *‘cleavage 1"’ deformation processes. In
the case of a single arc crack at the fiber/matrix interface
subjected to remote tension field, solutions are available in
England (1966), Perlman and Sih (1967), Toya (1974), and
Piva (1982). In particular, Toya’s solution is very suitable for
damage mechanics formulation because it provides analytical
expressions for arc microcrack opening displacements and
fracture energy criteria.

An outline of this paper is as follows. The representation
of the fourth-rank damage tensor and the thermodynamic basis
for microcrack-weakened brittle composites are presented in
Sec. 2. It is assumed that distributed arc microcrack concen-
tration justified the use of effective continuum medium theory.
Based on Toya’s (1974) micromechanical solution of interface
arc-crack opening displacements, damage-induced strains and
compliances are systematically derived in Sec. 3 for an ensem-
ble of randomly distributed and oriented (not necessarily pe-
riodically spaced) open arc microcracks. In Sec. 4, microcrack
growth (evolution) is considered based on Toya’s (1974) mi-
cromechanical fracture criterion for a single arc microcrack
under uniaxial tension. The extension to account for biaxial
tension loadings can be readily made. ‘‘Stable’’ and ‘‘unsta-
ble’’ domains are identified for stationary and propagating arc
microcracks, respectively. As a consequence, a simple “‘evo-
lutionary model’’ is rendered. It is emphasized that the present
work does not employ any fitted ‘‘material constant.” Simple
and efficient computational algorithms are given in Sec. 5. In
addition, some numerical uniaxial tension tests are presented
to illustrate the potential capability of the proposed damage
model for composites.

It is noted that the present work assumes an inferface be-
tween a fiber and a matrix material. However, if there exists
a third phase (such as a thin coated film) between a fiber and
amatrix, an attractive choice is to use an interphase microcrack
model; see Achenbach and Zhu (1989) for detailed discussions
on the effects of an interphase and of fiber proximity. In
Achenbach and Zhu (1989), the authors considered a simple
one-dimensional linear elastic extensional and shear springs
numerical model for periodically spaced fibers in a matrix
material. Further investigation is needed to incorporate an
interphase model (such as Achenbach and Zhu (1989)) into the
present framework.

2 Thermodynamic Basis

We employ a fourth-rank anisotropic damage tensor to rep-
resent the state of damage in composite materials. It is worth
mentioning that the fourth-rank damage tensor utilized has an
appealing correspondence with the fourth-rank overall com-
pliance tensor.

Within the framework of homogenization concept for in-
homogeneous effective continuum medium, one may define
the homogenized Gibbs free energy as

xE%a:[S"-(I-FD)]:a m

where ¢ is the volume-average stress tensor, 8° is the undam-
aged (constant) linear elastic compliance of a composite
material, Iis the fourth-rank unit tensor, D denotes the fourth-
rank damage tensor, and ‘‘:”’ denotes the tensor contraction
operation. It is emphasized that D is an evolving tensorial state
variable, not a constant tensor (see also Chaboche (1979),
Krajcinovic (1984), and Ju (1989) for more thermodynamics
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details). By the Clausius-Duhem inequality for isothermal
process, we have (e = the volume-average strain)

x—0o:e=0 )]

The standard Coleman’s method then leads to the following
macroscopic stress-strain law and overall elastic-damage com-
pliance tensor S:

e=S:0; S=[S°-(1+D)] 3)
together with the damage dissipative inequality:

1. 1 .
> a:S:0=0, or 3 a:[S°D}]:e=0. )

From Eq. (4), it is observed that the evolution S (or D) plays
an essential role in microcrack energy dissipation and growth.
During a damage /oading process, the total strain tensor e is
amenable to an additive decomposition: € = e °+¢*, where ¢°
and €* denote the elastic and damage-induced strains, respec-
tively. The elastic-damage compliance tensor is also suitable
for an additive decomposition: 8§ = §° + 8*, where S* signifies
the damage-induced compliance. Clearly, the relationship be-
tween 8* and D can be formally expressed as 8* = S°D.
Therefore, if one can micromechanically derive the damage-
induced compliance $*, then one can explicitly express the
fourth-rank damage tensor D by means of micromechanics.

3 Microcrack-Induced Inelastic Strains and Overall
Compliances

In this section, damage-induced strains and compliances are
derived for an ensemble of randomly distributed fiber/matrix
interfacial arc microcracks. Microcrack interactions are ne-
glected at this stage of the development, and shall be subjects
of future study. Accordingly, only ‘“‘Taylor’s model”’ is con-
structed here.

3.1 Microcrack-Induced Strains. In Toya’s (1974) solu-
tion, the fiber and matrix are assumed to be homogeneous and
isotropic, but with different linear elastic properties. Toya
(1974) provided solutions for stresses, displacements, and de-
bonding criteria for an open arc crack at the bimaterial inter-
face under remote uniaxial and biaxial tension loadings. In
what follows, for simplicity, we only consider the case of
uniaxial tension loading.

Asremarked by Toya (1974), both stresses and displacements
oscillate violently at the immediate regions near the crack tips.
This is quite typical for the mixed boundary value problem
for interfacial cracks at bimaterial boundaries. However, the
extent of the oscillating regions is very small under remote
tension. Consequently, Toya (1974) concluded that his solu-
tions provided a good approximation to the physical state of
the body at the interface except in the immediate vicinity of
the crack tips. Although some results of oscillation-free bi-
material stress and displacement analyses were reported in the
literature, they were typically derived for line cracks at the
interface of two dissimilar semi-infinite materials.

The global (unprimed) and local (primed) Cartesian coor-
dinate systems as well as the local polar coordinate system (at
atypical arc point) are shown in Fig. 1. In particular, o denotes
the half-angle expanded by an arc microcrack, @ denotes the
radius of the fiber, ¢ denotes the angle between the x’-axis
and y-axis, and y(=7/2— ¢) signifies the angle between the
y-axis and y’-axis. The uniaxial tension p is applied in the y-
axis direction. Counterclockwise direction is taken as positive,
and 0 is measured from the x’-axis. In addition, n’ and (u/,
u;) represent the outward unit normal vector and the polar
coordinates at a typical point along the arc, respectively. The
expressions for u; and u§ under remote uniaxial tension are
given by Eq. (3.57) in Toya (1974) by means of a complex
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— X

Fig. 1 The local (primed) and global Cartesian coordinates, as well as
the polar coordinates at a typical arc point

variable form. Note that the real part is ¥/ and the imaginary
part is ug. Let us first transform the local polar coordinates
at a typical arc point to the local Cartesian coordinate defined
at the midpoint of the arc:

uy=u; cos §—ug sin 0 ; uy =u/ sin 0+uf cos 9. (5)

Futhermore, the Cartesian components of the unit outward
normal vector at a typical arc point are:

ni=cos 8 ; ny =sin 6. ©)

Under plane strain, the virgin (transversely isotropic) brittle
composite material is isotropic. However, if the composite
contains an ensemble of microcracks, it may become aniso-
tropic, depending on microcrack sizes and orientations. First,
the inelastic plane-strain components (in Voigt’s notation) due
to a single (kth) arc microcrack take the form:

«
a a
e =W =— S Uy cos 8 do=—

[

S (u; cos’d—ug sin 8 cos )do  (7)

—a

a (° ) a
g W =P =2 S,a u/ sin df=—
S (u; sin®0+ug sin 6 cos 0)dé (8)
et 07 =2e 0 =% S (s sin 6+ u; cos §)df
a (° .
=7 S () sin 20— u4 cos 26)d6  (9)

-«

where A is the surface area of a representative volume element
in two dimension.

In the above equations, it is implicitly assumed that the kth
arc microcrack is entirely open; i.e., u/ >0. Therefore, there
exist some restrictions on the arc microcrack size 2« and the
orientation ¢ (Toya, 1974). For example, in the case of epoxy
matrix (shear modulus x; = 346 KSIor 2.39 GN/ m?, Poisson’s
ratio 5, = 0.35) and glass fiber (shear modulus u, = 6410 KSI
or 44.2 GN/m?, Poisson’s ratio ; = 0.22) composite material,
the range of “‘entirely open’” arc microcracks is approximately

defined by |¢ | + <65 deg. See Fig. 2in Toya (1974) for more

information regarding allowable (¢, «) region.

The strains due to an ensemble of noninteracting arc mi-
crocracks can be evaluated by performing the following in-
tegration:

=N | gfg® P, wyan
Q

(10)

where N is the number of open (active) arc microcracks; i, j
=1, 2, 6; P (¢, ) is a joint probability density function of
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Fig.2 The axial-stress versus the axial and lateral-strain under different
microcrack concentrations « (varying from 0 to 0.64). Note that v =
N(ac)*lA. The dotted lines are the undamaged elastic stress-strain re-
sponses.

randomly distributed (not necessarily periodically spaced) arc
microcrack orientations and sizes; Q is the domain of all open
microcracks; and g},-") is the component of the following local-
global transformation matrix (Horii and Nemat-Nasser, 1983)

cos® sin? ¢ sin 2y
g%1=1] sin®y cosy  —sin2y|. an
1 .
—% sin 2y > sin 2¢  cos 2y

The total strain components can be obtained by adding ¢}
to the elastic contributions €, with € expressed as: € = Sjo;.

Remark 3.1 1In the case of biaxial tension loadings, €¢* can
be obtained by the same procedure outlined above. The only
modification required is to use Bq. (3.43) in Toya (1974) when
integrating arc crack-opening displacements.

3.2 Overall Elastic-Damage Compliances. To derive the
damage-induced compliance matrix §*, Eqs. (7)-(9) must be
modified. The key step is to construct the strain-stress rela-
tionship (¢*®" versus ¢') in local Cartesian coordinates. How-
ever, this local relationship is not readily available from (3.57)
in Toya (1974). The local stresses can be easily obtained as
follows:

o =ol=p cos’p ; 0§ =0,,=p sin’p ; d¢ Ea;yzi sin 2¢.

(12)
After a lengthy derivation, Egs. (7)-(9) can be recast as

ert® =1% {Z [ S (u/ic0s*0 — ug; sin & cos O)d()J a,»’}
i -
(13)

e300 =% {Z [ S (u}; sin®@ + ug; sin 8 cos G)de} 0;’}

i bt * 4

(14)

a “ ) , p
ek =1 {Z [ S . (u); sin26 — ug; cos 20)d0)} 0,»} (15)

where the summation is for i = 1, 2, 6, and the expressions
for u/; and ug; are
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1 1 1/2
Bi=A,a [sin 5 (@=0) sinz(a—i—()):l MY (16)

ujs= —2B; { -5
uy= :
in + (@—0)
_ ; Nr—o) | (1 _ 2y i 1 sin > (a—
_3, 1 —(cos a+ 2\ sin a)e? +‘(1 kgi(l W_L4>\ Y sin? o « sin B cos | XX 1n
2—k—k(cos o +2\ sin- q)e?M™ ™Y 2 .
sin 3 {(a+0)
1
L 21—k i sin > (o —0) ~ A=+ sin* e 20—k AN o5
—g—T—L’Z =™ cos 9.] cos | > 6—Nln K[1+ (cos o+ 2\ sin a)e? ™™ k
sin = (a+6) 1
1 2 . sin > (o= 6)
21— k) ) sin = (¢ —#6) X sin 50—)\ln —_— @n
+| S @ sinfsin S 6N | ——— sin 5 (et +0)
sin 3 (a+06)
U7 yj= —2m, |21°H k_ 9 e
uél = 1
sin = (a—0)
_p, | _[1=(cos a+2nsin @)D 4 (1 — k)(1 +4ND) sin® o < sin 6 sin | £ 6—X In 2
2—k~—k(cos a+ 2\ sin a)ezx(w‘a) 2 sin = (a+6)
L 208 ey o | i [Lgonin |2 || [ USR8 s 2000 e g
Tk € cos 9| sin 5 §—Aln ' k1 +(cos o+ 2 sin o)™~ 9] k
sin 3 (a+ O)J 1
. { sin = (a—0) |
21=8) oremy 1 sin 5 («=0) X cos {8 An T e @)
—k—e“”‘ ™ sin 6 cos -2-0—)\111 5‘“5(“+0)
sin = (@ +6)
2 - In the above equations, k, \, and A, are given material prop-
(18) erties defined as follows (Toya, 1974):
uly= kKy=3—49,; K=3—4n, (23)
| [1=(cos @+ 2 sin PO (1~ k(1 + 4?) sin’ o gE(”‘(iJ”‘Z) elatom) 1 8 24)
1 2—k—k(cos o+ 2\ sin a)eZ)\('rr—a) 1+ ki) (p1 + k1p2) +v
1 Iny kl1+k 14k
= (a—8 =_—t . g4 == |28 ~TK
L 2k ) 81n2(a ) A= . ,A1=4 + } (25)
—— == M o5 §| cos [z ~ANIn | —— U
k k 2 sin 3 (a+6) Therefore, Egs. (13)-(15) can be rewritten as (¢, j = 1, 2,
6)
1 * ’ 7 7
1 sin > (@=0) RN A (26)
_ 2(1k— k) ANa=m o g o > 0 —xlIn where 55 are the local compliance components of the form:
sin 2 (a+6) L
(19) Sy ik = S (u/;c08? 60— ug; sin 0 cos 6)do @7
f_ a . .
Ug Ry AN = S (u}; sin?9 + ug; sin 0 cos 6)do (28)
5. ) _ [ 1= (c0s at2) sin )7 — (1 - )1 +4N) sin” & o a ("
~B 2= k= k(cos o+ 2\ sin @)@ P S& =~ X (/; sin 26 —uf; cos 26)db. (29)
sin 1 (@—0)] It is noticed that the individual compliance matrix $*“* is
1 2(1-%) 1 @ nonsymmetric; i.e. S5% ' 282%) for j=j In terms of global
et N eog g sin {=0-N1In | ————— | | : s Y !
& A 5 ] N coordinates, S} can be rephrased as (Eq. (11))
sin = (a+
3 @t0)] S50 =gWeWspi . (30)
sin 1 (o —6) T Consequently, the total compliance S* due to an ensemble of
20=K) neen . 1 randomly oriented interfacial arc microcracks can be expressed
——T——e sin @ cos 50-—)\1n - as
sin 3 (o +6)
‘ 0 Sp=N S SO P(¢,0)dQ. (31
Q
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From Eqgs. (27)-(31), it is observed that 8* is actually a tensorial
function of the mean ¢‘arc microcrack density parameter’’ {w),
with w = N(aa)*/A. Finally, the overall elastic-damage com-
pliance S is obtained simply by writing S =8°+§*.

4 Microcrack Kinetic Equations

It is typical that brittle fibrous composites have some preex-
isting arc microcracks along the fiber/matrix interfaces even
before specimens are first loaded. Some of these initial mi-
crocracks may grow (propagate) later upon application of loads.
In this section, we transform the stationary damage model
presented in Sec. 3 into an ‘‘evolutionary’’ model so that the
model possesses a constitutive predictive capability. That is,
““cleavage 1’’ microcrack growth and evolution of S* are con-
sidered.

The present work is not restricted to monotonically increas-
ing loads. In fact, loading/unloading sequences can be easily
accommodated by computing and checking whether there is
undergoing microcrack growth (excluding those previously
propagating and currently arrested microcracks). If there is
no (¢, «) region in which microcrack growth is now taking
place, then the incremental load step is in an unloading state.
Moreover, the damage-induced inelastic compliance S* takes
the form:

§* =83 + 87 +8; (32)

the compliance contribution from undergoing
microcrack growth, 87 = the contribution from stationary
microcracks having initial sizes, and Sf = the contribution
from arrested microcrack due to previous microcrack growth.
In particular, if S} = 0, then the current load level, p is not
high enough to cause further damage.

where 8§} =

4.1 TInterfacial Microcrack Fracture Criterion. The mixed-
mode bimaterial fracture criterion was provided by Egs. (4.7)-
(4.8) in Toya (1974) for a single, entirely open arc microcrack
along the fiber/matrix interface under biaxial and uniaxial
tension. It is implicitly assumed that the bonding strength
between the fiber and matrix is sufficiently small compared
with the fracture toughness of the matrix, so that an existing
arc microcrack grows along the bimaterial interface. Thus,
microcrack kinking into the matrix is not considered here.
Toya’s fracture criterion for a fip of an arc microcrack under
uniaxial tension reads:

Ilg PPkaA (1 + 4N 7NN, sin o™~ = 24V
where 7‘fis the specific surface tension energy of the interface
(i.e., critical energy release rate), and N, together with its
complex conjugate Ny are functions of ¢, «, and elastic material
properties (see Eq. (4.9) in Toya, 1974). Note that one tip of
a microcrack may reach the fracture criterion (33) before the
other tip does. Hence, one tip may propagate while the other
is stationary. ‘ .

When the energy release rate reaches its critical value (or
when tension reaches a critical value p,,), an arc microcrack
may grow in a stable or unstable fashion, according to Fig. 3
in Toya (1974). Within a limited range of the (¢, o) region,
Eq. (33) may have two solutions for « and ¢. Thus, one tip
or both tips may actually grow in a stable manner, This implies
that the final microcrack size oy and orientation ¢, can be

(33

analytically obtained. However, for other ranges of (¢, o)’

region, there is only one solution for Eq. (33). Namely, an arc
microcrack may grow in an unstable manner outside the limited
two-solution (¢, o) domain. Moreover, with further increase
of the tensile stress p(>p,,), even an originally stable arc mi-
crocrack will grow continuously in an unstable manner.

In the case of many randomly distributed open arc micro-
cracks, Eq. (33) is systematically checked for every permissible
microcrack orientation ¢ and size « to numerically determine
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Fig. 3 The overall compliance S;, versus microcrack concentration
for various stationary damage model simulations. The dotted line is the
elastic response.

the domains of ‘‘growth zone’’ and “‘stationary zone’’ under
a given tensile stress p and known elastic material properties.

4.2 Microcrack Growth—A Simple Evolutionary
Model. Since analytical solutions for mixed boundary value
problems are not yet available for partially closed, entirely
closed (mode II frictional sliding), or kinked arc microcracks,
it is assumed here that all arc microcracks are entirely open
and confined to the fiber/matrix interfaces. In view of the
limiting range of ‘‘stable microcrack growth,”’ it appears rea-
sonable and practical to simplify the distributed microcrack
kinetics as follows. If one tip of an arc microcrack reaches or
exceeds the critical surface energy required to initiate micro-
crack growth, then both tips of the arc microcrack may grow
continuously (generally in a nonsymmetric fashion) until the
half-angle size reaches ay and the central crack ‘‘orientation”
¢y=0 deg (i.e., approximately aligned with the applied tensile
loading direction). In the case of the aforementioned epoxy-
glass composite, oy = 65 deg is a reasonable value since it is
the maximum allowable half-angle size for an arc microcrack
to remain open. It is noted that the arc-microcrack central
orientation indeed changes during microcrack growth.

In the case of many randomly distributed arc microcracks,
Eq. (33) is used to numerically (iteratively) define bounds of
(¢, o) regions undergoing microcrack growth for a particular
tensile stress p. For simplicity, we shall assume that all arc
microcracks are of equal initial size «; and are such oriented
that l¢;l + ;<65 deg (opening) always holds. Thus, for a
specified interface toughness y’f , one can perform numerical
iteration to obtain the minimum tension stress p,., required to
cause the first arc microcracks to propagate. The correspond-
ing initial central microcrack orientations are denoted by =+ ...
The proposed microcrack kinetic sequence (for epoxy-glass
composite) proceeds as follows.

(1) As p<p,, all arc microcracks are stable and of initial
size «;. Due to preferred initial microcrack orientations to
ensure opening, the overall response is anisotropic even if virgin
composite is isotropic (in plane strain). Although the overall
response is currently linear and reversible, the material state
is really elastic-damage.

(2) As p=p,., those microcracks with central orientations
+ ¢, become unstable, and increase their lengths to of = 65
deg as well as change their orientations to ¢, = 0. The con-
tributions from partially or entirely closed portions are ne-
glected here.

(3) As p=p;>p,, the unstable microcrack growth region
increases. Therefore, microcracks in specific orientation do-
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main @, become activated and increase in size to ay = 65 deg
as well as change their orientations to ¢, = 0. It 1s noted that
actual bounds of Q.. depend on p,, p., o; and 7 and can be
obtained by numerical iteration. The compliance contrxbuaons
S and S} in Eq. (32) can be computed as follows:

si=n | g% 06, apP@ds G0

Tact

(3%

St=N S g T8+ ®) (¢, g P($)d¢
Q.

n

where P(¢) is a probability density function of microcrack
orientation, and Qy, is the stable (no growth) domain.

(4) Asp.,<p<p,,unloading takes place. There is no further
microcrack growth and S} = 0. Hence, the elastic-damage
compliance remains its previous value.

(5) As p>p,, more microcracks are activated. The unstable
growth domain can be computed similar to step (3). However,
S in step (3) should now be replaced by the sum of S;; and
S7.

f(6) At some higher stress level p = p,., the energy release
rate reaches the critical value of the matrix energy barrier.
Therefore, microcracks having size oy will resume to propagate
(kink) into the matrix, and eventually lead to final failure.

As was commented by Sumarac and Krajcinovic (1987), the
above scheme implicitly assumes that ultimate failure prefers
“‘runaway cracks’’ in comparison with ‘‘localization modes.”’

5 Computational Algorithms and Numerical Simula-
tions

In this section, computational integration algorithms are
given for the proposed micromechanical damage model. Fur-
thermore, a number of uniaxial tension numerical simulations
are presented. In the absence of suitable plane-strain experi-
mental data at this stage, however, actual experimental vali-
dation is not included here. Experimental verification of the
proposed model should be performed in the future once data
become available.

5.1 Computational Integration Algorithms. The pro-
posed micromechanical damage model does not include mi-
crocrack interaction effects, and therefore falls into the category
of “Taylor’s model.”” The computational schemes involved in
the proposed stress-controlled micromechanical damage model
proceed as follows. It is assumed that all initial arc microcracks
are of equal size «; and entirely open.

(1) For a given load level p, compute ‘‘unstable orientation
bounds’ (—¢;, —¢) and (¢, ¢;) according to the fracture
criterion Eq. (33). For example, one may use the bisection
method to locate the very first unstable microcrack orientations
+ ¢, and later the bounds defining the microcrack growth
domain. These ‘‘unstable orientation bounds’’ should be stored
as history variables since they are irreversible.

(2) Obtain the individual and total damage-induced inelastic
compliance §**’ and $* by actually evaluating the double
integral involved in Eq. (31). Numerical integration of Eq. (31)
can be efficiently carried out by two double ‘‘Gauss quadra-
tures’’—one for stationary and the other for unstable regions.
In particular, one needs to integrate compliance contributions
from every 9-angle along an arc, and from every open micro-

crack. Here, we employ Gauss quadrature rule with 60 inte-

gration points for each single integral.

(3) Obtain updated overall elastic-damage compliance S by
adding S* to §°.

(4) Apply the next load p and go back to step (1).

5.2 Some Uniaxial Tension Tests. A number of mixed-
mode plane-strain uniaxial tension tests are considered in this
section for various fiber sizes @, microcrack concentrations
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Fig. 4 The axial-stress versus the axial and lateral-strain for two dit-
ferent initial microcrack sizes: o; = 10 deg and «; = 20 deg. Note that
a = 0.1in. and N/A = 100.

and initial microcrack half-angle sizes «;. Both stationary and
evolutionary models are utilized. The composite material con-
sidered here is epoxy matrix/glass fiber; see Sec. 3.1 for elastic
properties. The volume ratio of matrix and fiber constituents
are 0.8 and 0.2, respectively. The overall Young’s modulus
and Poisson’s ratio are found to be £ = 1151 KSI (7.93
GN/m? and n = 0.3481, respectively. Therefore, the (plane-
strain) elastic compliance matrix takes the form: (unit = KSI~ h

0.00076383  —0.00040784 0
[S°1=| —0.00040784  0.00076383 0 36)
0 0 0.0023433

Moreover, the interfacial specific surface tension energy (frac-
ture toughness) 2y is taken as 0.001 K/in. (0.175 KN/m). It
is noted that all the figures presented in this section are under
the plane-strain conditions.

First, we examine the effects of different initial microcrack
concentrations w on stress-strain responses and compliances
of the uniaxially reinforced epoxy-glass composite. The initial
microcrack concentration parameter o increases gradually (with
256 increments) from 0 to 0.64. All microcracks are assumed
to be stationary, open, and of half-angle size ;= 10 deg. In
view of Fig. 2 in Toya (1974), 1¢| +«a=<65 deg is required for
microcrack opening. Therefore, arc microcracks are assumed
to be perfectly randomly oriented between ¢ = — 55 deg and
¢ = 55 deg; i.e. the probability desnity of orientation is P
(¢)= 0.521. The uniaxial tension stress is applied in the 2-
direction, and the lateral direction is denoted as the 1-direction.
The axial-stress (KSI) versus the axial and lateral-strain curves
are displayed in Fig. 2 for monotonically increasing values of
w. The elastic (undamaged) stress-strain response is also shown
in Fig. 2 for comparison purpose. The elastic-damage com-
pliance component S,, versus « parameter is shown in Fig 3.

Next, we perform ‘‘process model’’ uniaxial tension tests.
Let the fiber radius be ¢ = 0.1 in. and microcrack number
density be N/A = 100. Two initial half-angle sizes of arc
microcracks are considered: o; = 10 deg and o; = 20 deg,
respectively. The (plane-strain) axial-stress versus the axial and
lateral-strain responses are recorded in Fig. 4. It is noted that
before the load p reaches a certain critical value p,,, the stress-
strain response is /inear (up to the corner point denoted by
Der) for either o; = 10 or o; = 20 deg. This is due to the fact
that all pre-existing microcracks are stationary. After the crit-
ical value p,, (the corner point) is reached, more and more
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Fig. 6 The overall compliance S,, versus the axial stress p for two
different sets of a and NJA values. Note that o; = 10 deg.

microcracks become unstable and start to grow in size (cleavage
1 processes). Therefore, the overall stress-strain responses in
Fig. 4 become nonlinear after the corner points. In the case
of o; = 10 deg, it is found (by numerical iteration) that the
first microcracks to become unstable (propagating) are ori-
ented in the direction ¢, = 5.01. Later, as p increases, more
‘“‘orientation fans’’ are enclosed within the unstable growth
domain. In the case of o; = 20 deg, on the other hand, it is
found that ¢, = 10.59 deg. It is also observed from Fig. 4
that larger initial microcrack size o; = 20 results in lower
critical load level p,, for microcrack growth.

Let us now fix the initial microcrack size o; = 10 deg and
vary fiber sizes and microcrack number densities: (i) @ =
0.05 in. and N/A = 40, and (ii) ¢ = 0.1 in. and N/A4 = 100,
respectively. The (plane-strain) axial-stress versus the axial and
lateral-strain responses are shown in Fig. 5. Similar to Fig. 4,
the stress-strain curves are /inear up to the corner points (cor-
responding to critical threshold stresses for the first microcrack
growth). The stress-strain curves subsequently become nonl/in-
ear after certain threshold stresses p,, are reached at the corner
points. The changes in overall elastic-damage compliances Sy
and S;, versus axial stresses are plotted in Figs. 6 and 7. It is
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Fig. 8 The axial-stress versus the axial and lateral-strain for two dif-
ferent fiber sizes and microcrack number densities. Note that o; = 20
deg.

observed that Sy, increases as tensile stress level p increases
(after reaching critical threshold stresses p.). However, S, is
negative and decreases as the stress increases. The above
uniaxial tension tests are repeated for fixed initial microcrack
size o; = 20 deg. The corresponding (plane-strain) axial-stress
versus the axial and lateral-strain responses are shown in Fig.
8. The corresponding changes in overall elastic-damage com-
pliances S,, and Sy, versus axial stresses are qualitatively similar
to those for o; = 10 deg in Figs. 6 and 7, and are therefore
not plotted here. From the above tests, it is observed that
stress-strain curves and overall moduli deviate from their purely
elastic (undamaged) counterparts even for stationary micro-
crack models. Moreover, results of evolutionary microcrack

‘models are clearly different from those of stationary models

due to growth of pre-existing arc microcracks. Finally, it is
noted that the microcrack number density N/A is fixed and
prescribed (e.g., based on results of scanning electron mi-
croscopy or computerized tomography, etc.) in each of the
foregoing tests. That is, N/A is not a function of load. How-
ever, the average (mean) microcrack density parameter
(w) (= {N(aa)*/AY) does increase with load due to microcrack
growth (i.e., increase in « value).
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6 Conclusion

A micromechanical damage model is presented for uniaxially
reinforced brittle matrix fibrous composites, based on Toya’s
(1974) analytical solutions. All microcracks are assumed to
occur along the fiber/matrix interfaces, and are modeled as
arc microcracks under ‘‘cleavage 1’ plane-strain deformation
processes. Thermodynamic basis is rendered based on a fourth-
rank damage tensor. Microcrack-induced strains and compli-
ances are analytically derived. It is noted that the overall elastic-
damage compliance matrix is nonsymmetric. Microcrack ki-
netic equations are given based on micromechanical fracture
criterion and mesostructural geometry in a representative vol-
ume (area) element, Moreover, simple computational algo-
rithms and a number of uniaxial tension tests are presented to
illustrate the potential capability of the proposed microme-
chanical damage model. It is emphasized that the present work
does not employ any arbitrary (fitted) ‘‘material constant.”
The proposed framework can be readily extended to account
for biaxial tension loadings, as addressed in Remark 3. 1. Issues
related to the effects of an interphase (not interface), fiber
proximity, microcrack interaction, closed microcracks, micro-
crack kinking, and microcrack nucleation mechanisms (cleav-
age 2) warrant further studies in the future to extend the
proposed method.
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Weight Function Analysis of
Interface Cracks: Mismatch
Versus Oscillation

This paper has two goals. First, it is aimed at providing a fundamental understanding
of the oscillatory behavior of an interface crack between two dissimilar materials
Jrom the viewpoint of the interface mismatch that results from the cracking. Second,
we extend the Bueckner-Rice weight function method to facilitate the interface crack
analysis. Using properties of the surface Green’s functions of a homogeneous solid
and solutions obtained from weight function formulae, a mismatch analysis is carried
out which indicates that the local mismatch near the crack tip results in the oscillatory
near-tip field while the mismatch on the global scale leads to the corresponding
Stress intensity factors. For an oscillatory interface crack field, it is shown that,
other than a few extra material constants, the interface weight function analysis is
completely parallel to the well-developed homogeneous theory so that knowledge
of one crack solution for a given bimaterial geometry is sufficient for determination
of solutions under any other loading conditions.

Huajian Gao

Division of Applied Mechanics,
Stanford University,

Stanford, CA 94305

Mem. ASME

Introduction

The problem to be discussed in this paper involves cracks
along an interface between two dissimilar materials #1 and #2.
When the two materials are isotropic, Williams (1959) discov-
ered the so-called oscillatory behavior for the elastic field near

o= —:217” [ Re(kr) Y )] (6)+ Im(kr"‘)ij(B)] G, j=x, y)(3 )

the crack tip. In the coordinate system shown in Fig. 1(a), the
crack-tip field has a universal structure for each given material
pair with the normal stress gy, and shear stress o), along the
interface ahead of the crack tip given by

(0yy+ ioy)g=o=kr'/[2zr )

where i=+/—1. The complex constant k defines the stress
intensity factor for an interface crack by Eq. (5) below and
the ““oscillation index”’ ¢ is related to the material constants
by

e=(1/2m)n[(k1/ p1 + 1/ p2)/ (k2/ p2 + 1/ 1)) 2

Subscripts 1 and 2 refer to the materials #1 and #2, k=3 —4»
for plane strain and «=(3-v)/(1+v) for plane stress,
v=Poisson ratio, and u = shear modulus. The complete near-
tip stress field in the xy-plane can be written in the form (Rice
et al., 1990)
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In the sense of the crack-tip field structure expressed in (1)
and (3), the angular functions £};(6) and Z%(6) can be said to
correspond to crack modes I and II that are inherently coupled
together along the interface with a variable singularity strength
kr'®. The antiplane shear mode (mode IIT) involves no oscil-
lation and will not be discussed in this paper.

Y

NN

(a)

7

.

()]

Fig. 1 (a) A semi-infinite crack along a bimaterial interface with coor-
dinates x, y and r, 6; (b) a semi-infinite crack in a homogeneous soiid
interacting with a dislocation
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The fracture analysis of interface cracks has been compli-
cated by the oscillatory feature of the near-tip deformation
field. For example, the oscillatory displacement field associated
with (1, 3) is kinematically inconsistent in that it implies in-
terpenetration of the crack faces behind the tip; this suggests
that a small zone of nonlinear deformation (Knowles and
Sternberg, 1983) and/or mechanical contact (Comninou, 1977)
exists near the tip. Despite of these complications, Rice (1988)
has argued that the oscillatory solution can still be used to
characterize the interface crack field since the contact zone
size is extremely small (e.g., subatomic) for a broad range of
bimaterial and loading configurations of practical importance.
For an absolute characterization of the interface stress intensity
factor, Rice (1988) introduced a scaling length 7 so that Eq.
(1) may be rewritten as

(0yy +ioydp-0=K(r/ FYe/N2mr @)

where the coefficient K = k7 shall be defined as the stress
intensity factor for the interface crack. As pointed out by Rice,
the scaling length 7 may be chosen arbitrarily as long as it is
held fixed when specimens of a given material pair but with
different loading and geometry conditions are considered. Dif-
ferent values of 7 will not alter the magnitude of X but will
change its phase angle. Since the oscillation index e is typically
very small, the variable quantity (r/#)*=explieln(r/F)] has a
very weak variation with r. Thus, it may sometimes be justified
to choose F as a representative scale of the ‘‘fracture process
zone’’ for a given bimaterial combination and define the ‘‘mode
I and II" interface stress intensity factors K; and Kj; as

K=K+ iKy= k. )

It should be understood that the definition of (5) rigorously
reduces to that of the classical mode I, 11 stress intensity factors
only when e=0, but for simplicity we will use the same stress
intensity factor notations (K;, Ky and K=K;+ iKy) for both
homogeneous and interface cracks.

The stress intensity factor K defined in (5) can then be used
to characterize the interface fracture toughness. Since interface
fracture is inherently mixed mode with K being a complex
number, the interface toughness in general cannot be given by
a single material constant analogous to the K. concept in
homogeneous crack theory, rather the toughness is defined by
a failure locus that gives the critical magnitude of K as a
function of the phase angle of K (Cao and Evans, 1989; Wang
and Suo, 1990).

Based upon the above definition and understanding for the
interface stress intensity factor, the crack face relative dis-
placements behind the crack tip Au;=(1;)g-r— (4;)s= - » are
found to be

le
. Cct+ ¢ r r
Auy+iduy=—————— | -} K [— 6
o = 5+ 2ie)cosh(re) <r> w0
where the constant

8(1—»)/E for plane strain
c=k+1)/p= ™

8/E for plane stress

(E=Young’s modulus) with subscripts 1, 2 measures the com-
pliance of each material. One can use the crack solutions pro-
vided in (1) and (6) to derive the Irwin-type energy release rate
per unit length of crack extension along the interface, with the
result giving

G + ¢
16cosh’re

An interesting special case occurs when the oscillation van-
ishes. Letting ¢ =0 in Eq. (2) yields the so-called nonoscillation
condition on the moduli:

[k~ 1)/pll = (k2 — 1)/ pa — (, = 1)/ =0 . ®
where [ 1] denotes the jump in facross the interface. Equation

K7+ KD ®
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(9) can be alternatively written as [(1 —2»)/u]] =0 for plane-
strain conditions. The nonoscillation condition has been dis-
cussed recently by several authors for interface cracks in gen-
eral anisotropic media (e.g., Ting, 1986; Bassani and Qu, 1989;
Suo, 1990). Under the condition ¢ =0, the following two im-
portant observations can be made by examining Eqgs. (1), (6),
(8): (i) The near-tip stress field decouples so that the ratio
0y,/ 0y = K/Ky; remains constant along the interface ahead of
the crack tip; (ii) The crack face relative displacement Au; and
the energy release rate G become the average of the corre-
sponding homogeneous solutions for materials #1 and #2. For
instance, letting ¢ =0 in Eq. (8) results in

G=(G1+G)/2, (10)

where

G=3 (Kj+KH) (11
with subscripts 1 or 2 denotes the familiar Irwin G — K relation
between the energy release rate and the stress intensity factors
for cracks in the homogeneous solid #1 or #2, respectively.

This paper has two goals. First, it is aimed at providing a
fundamental understanding of the crack-tip oscillation from
the viewpoint of the interface mismatch that results from the
cracking. Second, we extend the Bueckner-Rice weight func-
tion method (Bueckner, 1970, 1973; Rice, 1972) to facilitate
the interface crack analysis. Using properties of the surface
Green’s functions of a homogeneous solid and solutions ob-
tained from weight function formulae, a mismatch analysis is
carried out which indicates that the local mismatch near the
crack tip results in the oscillatory near-tip field structure while
the mismatch on the global scale leads to the corresponding
stress intensity factors. For oscillatory interface crack field, it
is shown that, other than a few extra material constants, the
weight function analysis for interface cracks is completely par-
allel to its homogeneous counterpart so that any one known
crack solution is sufficient for determining solutions for the
same bimaterial geometry under any other loading conditions.
The reader is referred to Rice’s (1989) review article for more
references on the weight function development in homoge-
neous crack analyses. Sham and Bueckner (1988) has also
attempted to use the weight function method to study a com-
posite wedge under antiplane loading. Our result is significant
in that it allows many well-established weight function appli-
cations to be directly extended to the interface crack analysis,
such as those involving crack interaction with arbitrary forces,
transformation strains and dislocations. The weight function
approach is also important in devising finite element schemes
(e.g., Sham, 1987) to compute stress intensity factors for ar-
bitrary geometry.

Background

Muskhelishvili’s Complex Variable Representation. The
field of plane elastic deformation may be represented by the
standard complex Kolosov-Muskhelishvili potentials ¢(z), ¥(z)
where z=x+ iy (Muskhelishvili, 1953). For crack problems it
is convenient to use an associated pair of potentials ¢(z), Q(z)
where

Vz)=z9"(2) +¥(z). 12)
The displacement field u=u,+ iu, is then expressed as
2uu = k() ~ Qz) + (Z —2)¢’ 1) (13)

where the overbar denotes complex conjugation. The stress
components are derived from

Oxxt 0y = 2[¢ I(Z) + ¢ (2)]
Oy +ioy=¢0"(2)+ 2 (2) - (2—2)9" (). (14)
The solutions to two-dimensional crack problems can be fully
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expressed in terms of ¢(z), Q(z). For example, the asymptotic
crack-tip field in a homogeneous solid has a universal structure

represented by
$(2)=0@) =K (z— /27 (15)

where the tip is assumed to be located at x=7and K =K+ iK};
is the stress intensity factor. For a finite crack of length /
subjected to the crack face traction ¢, = o + io}}, correspond-
ing to the reduced problem of remote loads, the solution is

- 1
&(2) =Q(z) =5 F;[\/z(z— )] —z] .

The stress field derived form (14), (16) results in the well-known
stress intensity factor solution

K=0¢"\/7l/2.

Weight Function Theory. The weight function A.;(x; /) is
defined as the mode « («v=1, II, III) stress intensity factor at
a crack tip located at x=/ due to a point force in j-direction
at a position x. If h.;(x; /) is known, then the stress intensity
factors are obtained by superposition as the weighted average
of applied forces over the whole body. Using a reciprocal
relation between the energetic force on a crack tip, which is
just the energy release rate G given in (11), and a point force
P acting at x, Rice (1972) has shown that

du; 0 c

“Eﬁ%==2;§%ﬁ=iz (](} h(/ﬁ‘]{}] h[y).
It is convenient for us to define the complex valued weight
function 4, as

(16)

17

(18)

P = Roe+ iRy, (19)
Using the displacement representation (13) and the fact that
(18) must hold for any combinations of K; and K;; leads to
Zﬂh1= kp(2) — 0 2) +(Z—2)$(2)

2phr= k[ —i®(2)] — [ ()] + (Z—2) [~ idu(z)]  (20)
where ¢,, Q,, are two ‘‘weight function potentials®® which are
related to the regular displacement potentials ¢, Q by
00z D) _c+ MG D _c
== Koz ), —r2==KQ(z; ).
ol a4 du(z; ) o 4 w(@ )
The functional dependence on the crack-tip location / has been
shown explicitly in the expressions of (21). Equations (20), (21)
indicate that the weight function 4, may be treated as a special
displacement field associated with stresses 2uUg= Cijpihle.i»
where Cyy is the elastic modulus tensor. The mode I stress
quantities U%, are represented by ¢, @, in the same manner
as (14):

@1

26Ut Uy) =20 3(2) + 61/2)]
2u(Usy+ iU = $uf@) + 0if2) — @~ Ddbwr (). (22)
The mode II stress quantities U” are obtained from the same
relations but using the potential pair (- i¢,,, iQ,).
With the knowledge of 4, and U, the following applications

are possible:
(a) For a body force distribution f;,

Kud=|  hofos DA,

body

(b) For an arbitrary distribution of transformation strain
ef (Rice, 1985; Gao, 1989),

(23)

Kb=2n|  Uttx; Deliada.
body

@4

(c) For a general Somigliana dislocation Au=u*~u~ on a
dislocation cut surface d, having normal N pointing from the
(—) side to the (+) side of d,

Journal of Applied Mechanics

K)=2p S Ukhx; DN (x)Au(x)dL. (25)
d
(d) For a dislocation at s=x;+ iy, with constant Burgers
vector b= b+ ib,, the formula (25) can be simplified to

K= —ib[$w(2)+ 0, ()] - iblz—2)bi@)T.  (26)

Using the basic weight function relations (21), a passage
from one crack solution to any other solutions under the same
geometry is established as follows: Starting with a known
crack solution, deriving the weight function potential from the
known solutions by (21) and calculating the stress intensity
factors by (23)-(26), the full solution to any other loading
system can then be obtained by integrating (21) with respect
to the crack position parameter /. Thus, knowledge of one
crack solution is sufficient for determining the solutions for
the same geometry under any other loading conditions.

For a semi-infinite crack with crack tip located at x=/,
differentiating the K-field potentials in (15) with respect to the
crack-tip position / yields

2
= Ry e
¢ eV2w(z—1)

Similarly, potentials in Egs. (16) and the K solution of (17)
lead to ¢, @, for a finite crack of length /. At the right crack
tip x=1, it may be shown that

2 b4
=Q. = — /—
d)w w (_21['1 Z"'[

Using the weight function formulae, the solution to a semi-
infinite crack interacting with a dislocation (Fig. 1(b)) may be
easily obtained as

@7

28)

4i b

oV 2t ’

_ ib
K=- ¢'(z)=9'(z)=—-7r—c(—'z_—t)\/; 29)

Analysis of Interface Mismatch.

Surface Green’s Functions. Observe that the interface crack
problem shown in Fig. 1(¢) may be viewed as interaction
between two elastic half-planes #1 and #2 via forces along
the interface plane y = 0. We first consider the fundamental

F
Flx-1)/8p ? F(k-1)/8p
%
(&)
F(x-1)/8u Flx-1)/8p

Lo

7

(b)

Fig. 2 Antisymmetric surface Green’s functions of a homogeneous
haif-plane: (a)lateral expansion about a normal force; (b) antisymmetric
warp about a shear force
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(a)

-
/%>x

Fig. 3 (a) The basic interface crack problem considered in this paper,
(b) the corresponding homogeneous configuration

Green’s function problem of a homogeneous half-plane sub-
jected to a concentrated surface force F. As schematically
shown in Fig. 2, a fundamental result of contact mechanics
indicates that a unit normal force F causes a uniform lateral
expansion F(x—1)/8u along the surface. Similarly, a shear
force causes an antisymmetric ‘‘warp’’ with the same mag-
nitude. These surface deformations are represented by the
“surface Green’s function’’ (SGF) tensor G which allows one
to use a simple superposition procedure to write the surface
displacement vector u(x) due to an arbitrary distribution of
surface traction t(x’) in the convolution form

u;(x)= S Gix—x")t;0x" )dx ' 30)
Specifically, the Green’s function component G, (x—x’) cor-
responds to the ith displacement at x due to a unit point force
in the j-direction at x’. Standard two-dimensional elasticity
solutions for G can be found in standard textbooks as (e.g.,
Muskhelishvili, 1953)

c
Guw=G,,= ~ i Inlx—-x'1,

€3]

k—1
Gy=—Gy=—"sgn(x—x’).
Xy vx 8/‘-

The tensor G can be separated into a symmetric part G5 and
an antisymmetric part G4, i.e.,

G=G*+G“. (32)
The symmetric part G° is diagonal with components Gy, Gy,

while the antisymmetric part G* has two off-diagonal com-
ponents Gy, = — G,,. Following (31), the matrix forms for GS

and G* are
10
GS= -£ Inlx—x'1,
47 1 0 1

4 k—1

GA=—— 01 ’ 33
8 | 10 sgn(x—x’). (33)

The symmetric tensor G also represents symmetric displace-

ment responses with respect to a force while the antisymmetric
tensor G* also represents the antisymmetric responses. The
tensor G* is of the same constant magnitude but opposite sign
on both sides of the force, generating the lateral expansion
with respect to a normal force and the antisymmetric warp
with respect tc a shear force, as shown in Fig. 2. The Green’s
function tensors of (33) satisfies Betti’s reciprocal theorem

Gij(x—x’)=Gj,-x'—x). (34)

934 / Vol. 58, DECEMBER 1991

k=13 |
(4_u) _[ow Gadx

10

Homogenous crack Interface crack

k= 1Y 1
(—‘I—LI_JZ'IGW (x)dx

\

Fig. 4 The procedure of separating a homogeneous crack and forming
an interface crack

The antisymmetry G,,(x—x') = — Gx{(x—x") is due to the fact
that we have kept the same set of variables x, x’, rather than
interchanging them as in the reciprocal relation (34).

It is well known that under traction boundary conditions,
stresses of a bimaterial interface may be expressed in terms of
the two Dundurs mismatch constants (Dundurs, 1968)

6= /4]
Cy+ €y '

G—C
ctep’

In particular, the oscillation index e defined in Eq. (2) is related
to the parameter g by

1 1-8 B 3
el e R
It is interesting to observe that « and 8 simply measure the
dissimilarity of surface Green’s function tensors G5 and G*
given in (33). By requiring 0<v<1/2 and p>0, Dundurs
showed that o and 3 are confined to a parallelogram in the
(a,B) plane enclosed by o= 1 and o — 48 = £ 1. Calculations
by Suga et al. (1988) on more than a hundred material pairs
suggest that the values of 8 are mostly restricted to 181 <0.25,
implying that lel <0.08. Hence, the oscillation index is a very
small parameter for most of the bimaterial combinations of
interest.

(33)

(36)

The Basic Interface Crack Problem. A general interface
crack problem may involve complicated geometry and loading
configurations. Without accounting for too much complica-
tions, we define the basic interface crack problem as a collinear
crack array lying along an interface between two semi-infinite
solids #1 and #2 and having a pair of unit point forces on the
upper and lower crack faces as shown in Fig. 3(«). The solution
to the basic problem can be used as the building block to
construct the solutions to the given collinear crack problem
with arbitrary crack-face traction, or to construct the solutions
under general loading if the crack-face traction is equated to
that would be induced at the crack site by the applied loadings
in the absence of a crack.

Analysis of Interface Mismatch via SGF Tensor. To un-
derstand the basic interface crack problem, we consider the
corresponding homogeneous cracks in Fig. 3(b). The case of
a pair of wedge opening normal forces acting on the crack
faces results in a mode I deformation field near the crack tips.
Imagine that the body is separated without relaxation into two
half-planes along the crack plane y=0, as shown in Fig. 4.
Along the separated surface ahead of an arbitrarily chosen
crack tip, a distribution of a normal traction o,,(x) would be
found which is independent of the material moduli in the
present case of point force loading. Set the coordinate origin
at the chosen crack tip. Then, by superposing on the Green’s
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function G4, the traction ayy(x) results in a horizontal surface

displacement
k—1\ (¥
ux(x) = <T,,L—> Sooyy(x’)dx'

relative to the crack tip. Since the vertical surface displacement
ahead of the crack tip is identically zero by symmetry, the only
interface mismatch arising in the process of joining an upper
half-plane #1 with a lower half-plane #2 to form an interface
crack is the difference in lateral displacements. Obviously, this
lateral mismatch is given by

(3N

X

[0l = [0~ 1741 | a3,

0

(3%

([u, ()1 = 0). If the parameter (x— 1)/y is the same for no. 1
and no. 2, then there is no interface mismatch so that no extra
forces shall be needed in forming the interface crack. But the
compatibility condition [[(x—1)/u]l =0 is just the nonoscilla-
tion condition (9). Similar arguments may be applied to for-
mation of interface cracks under mode II shear conditions with
the same conclusion that there is no interface mismatch if the
nonoscillatory condition is satisfied. Combining the mode I
and II results, one finds that the interface mismatch may be
represented by a continuous distribution of dislocations along
the interface with density

AN _ e 1y/4umo)
X

(39
where u=u,+iu, and o=o0,,+ioy,. Equation (39) provides a
relation between the traction and the mismatch along the in-
terface between two semi-infinite solids. Thus, for the basic
interface crack problem (Fig. 3(@)), when e¢=0, there is no
mismatch so that the stress state in each half plane #1 and #2
remains identical to that of the corresponding homogeneous
cracks. This by superposition is also true for cracks under
arbitrary crack-face traction. Given the fact that interface crack
problems under general loading can be solved by the corre-
sponding reduced problems involving crack-face tractions, it
can be concluded that the interface crack field for collinear
cracks in an infinite bimaterial body will remain identical to
that of the corresponding homogeneous crack if the induced
crack-face traction is independent of the material moduli. An
obvious example is a finite crack or collinear cracks subjected
to remote stresses in which case the stress solutions are identical
to the corresponding homogeneous solutions. However, the
induced traction in general will depend on the moduli of both
materials so that the stress intensity factors will depend on the
moduli of both materials while the structure of the stress field
remains the same as that of the homogeneous cracks.

The nonoscillation condition for the interface crack fields
can be given a more general interpretation as requiring the
antisymmetric SGF tensor G to be continuous across the
interface, i.e.,

1G*1=0. (40)

The condition (40) also applies to more complex interface crack
problems such as those involving anisotropic materials. Those
problems will be considered in a separate paper (Gao et al.,
1991).

The above SGF analysis indicates that for interface cracks
in an infinite body subjected to prescribed crack-face traction,
the oscillation and mismatch are equivalent in that the mis-
match vanishes when oscillation does and vice versa, This is
not true for interface cracks involving more complicated load-
ings and/or finite geometries such as thin films on a substrate.
In those problems, there is also a strong dependence of the
crack field on the other Dundurs parameter «. The reader is
referred to Hutchinson (1990) for a review on some of the
recent results of the stress intensity factors for various fracture
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specimens. Hutchinson and co-workers (e.g., Suo and Hutch-
inson, 1989; He and Hutchinson, 1989) have proposed to ig-
nore the oscillation effects by setting e =0 in many engineering
applications, provided that in those cases the effect of ¢ (or
B) is much less significant compared to that of «.

Weight Function Analysis of Nonoscillatory Interface
Crack Fields

To understand the singularity nature of the oscillatory in-
terface crack field, it is helpful to consider first the nonoscil-
latory case, i.e., when e=0. In that case, the interface crack
field has the same near-tip structure as homogeneous cracks
and one may define the interface weight function h, = A, + ihiy,
in the same manner as the homogeneous case. The reciprocal
relation (18) also holds for interface cracks if the homogeneous
energy release rate G is replaced by the interface energy release
rate G given by Eq. (8). Under the nonoscillation condition,
G=(G1+G,)/2 so that the fundamental weight function re-
lation analogous to (18) may be written as

%_CI-I‘CZ
a8

Similarly, the interface weight functions A;, A can be repre-
sented by two weight function potentials ¢,,, Q,,. The analog

Ky B+ Ky byp). én

of (21) is 80z )
L) _atop .,
al - 8 K d’w(za [)’
Mz ) a+o )
= 8 KQ,(z; ). 42)

Equations (41), (42) are the basic weight function relations for
the nonoscillatory interface crack fields. The weight function
formulae (23)~(26) for crack interactions with arbitrary forces,
transformation strains, and dislocations also apply for the
interface cracks. It suffices to calculate one crack solution for
a given material pair and geometry; all the other solutions can
be developed from the weight function potentials ¢,, Q,, fol-
lowing the same approach established in the homogeneous
weight function theory.

For collinear cracks between two semi-infinite solids, one
may conveniently choose u, ¢, @, and K in (41), (42) as the
solutions under remote stresses or prescribed crack face trac-
tion, in which case the deformation field in each material is
identical to the corresponding homogeneous crack field. It is
thus clear that for this special case the interface weight func-
tions 4, are related to the homogeneous weight functions by

[2¢,/(c; + c)l(hy), in #1
[2(,‘2/(6'1 + Cz)](ha)z in #2

where (hy)1, (h,), denote the homogeneous weight function
field in material #1, #2, respectively. It can be shown that the
continuity of &, across the interface is guaranteed by the non-
oscillation condition. Using the weight functions as the basic
building block, one may further write the stress intensity fac-
tors for an interface crack between two semi-infinite solids in
the following form

o

(43)

_ 2¢1(K) 1 +20)(K),
c+¢

where ()1, (f); are the homogeneous solutions for the quantity

Jf due to the loads lying, respectively, in material regions #1,

#2. Similar relations also apply to complex potential functions;

it may be shown that

2¢1(9)1 +2cx(¢)2
)+ Cy ’

K (44)

Q= 2¢1(M); + 20(2),

45
C1+ ¢ ( )

=

Therefore, under the nonoscillation condition, the stress
intensity factor for the bimaterial case of Fig. 1(b), i.e., a semi-
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infinite interface crack interacting with a dislocation ahead of
the crack tip, can be directly derived from the corresponding
homogeneous solutions (29) as
8i b
K= ——mm——— . (46)
(c1+ )V 2wt

The associated complex potential function is
2ib t
(e, +e)z—H) Nz’

Oscillatory Interface Crack Field Versus Interface Mis-
match

$'(2)=0"(z)= 47

Crack-Tip Oscillation Versus Local Mismatch. When the
nonoscillation condition (9) is violated, oscillation at an in-
terface crack tip would occur as a consequence of the interface
mismatch. The oscillatory near-tip field expressed in (1), (3),
(6) can be represented by the following potentials

I?e—‘ire

]"‘ 13
2~/ 27(z — Dcosh(we) <Z_—1>

d{ () =04 (z) =

o Ty Ke™ AN
i (2)=¢it) 2+/2w(z— Dcosh(me) (z - l> “8)

where the subscripts refer to the two materials and the crack
tip lies at x=1.

The relation (39) between the mismatch and traction along
the interface can be used to form an iteration procedure that
adjusts an initially assumed traction distribution o(x) to the
oscillatory state. In that procedure, the mismatch due to the
initial o(x) is represented by an array of dislocations with
density given in (39), but the superposed effect of such mis-
match dislocations will change the traction o(x) itself, forming
a loop adjustment between the traction and mismatch along
the interface. It will be shown below that this procedure leads
to the oscillatory singularity field. Set up the coordinate origin
at a chosen crack tip. The mismatch dislocation density along
the interface ahead of the crack tip is related to the traction
there by (39). Use the nonoscillatory field as the initial state
in the loop adjustment procedure described above, so that the
traction is taken as o(x)=K/~/27x and

ollu()1 K
S (- 1)/ 4] ——=
ox K A2 7I'X
The superposed effect of such dislocations within the crack
tip region characterized by £ can be calculated from the single
dislocation formula (47), which modifies, for example, the
potential function ¢’(z) in material #1 as

L 42 S’" 1 eI ,
7!'((.'1+C2)K 0 z—t at

K |, ni_zi)+oEd| (0
_2\/21rz ¢ F € (50)

where the approximation e = — 8/ (correct to the second order
in B8) has been used and quantities of order z/7 are ignored in
the present ‘‘near-tip’’ calculation.

At a fixed position z, one may expand the exact solution of
¢1(z), given by (48) for /=0, into a power series of € as

49

¢ ()= K [1
SNy

e‘” 7 ie
61 (@)= zm cosh(7r€) < >

__X 2 N e 2\ 5
_ZM [l—le<ln f—1rl> ey <ln ;) +0(e ):|. 51
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Thus, the results (50) of the first adjustment from the non-
oscillatory state gives the first-order expansion in e of the
oscillatory field. Using the first-order potential given in (50)
to update the traction distribution a(x) by (14) and repeating
the above adjustment procedure result in the second-order
expansion expression of ¢{(z), as expressed in (51). Continuing
the adjustment procedure leads to a Taylor expansion series
in e of the oscillatory field at any given material point. Sum-
mation of such Taylor expansion then constructs the full os-
cillatory near-tip field.

Global Mismatch Effect. The presence of interface mis-
match not only alters the singularity nature at a crack tip as
we have explored, but also changes the singularity strength of
the oscillatory field. To understand how interface mismatch
affects the stress intensity factor K, consider, for example, a
semi-infinite crack subjected to a pair of crack-face forces
p=p,+ipy at a distance / behind the crack tip. In that case
the exact solution is (e.g., Rice and Sih, 1965)

K= |2 coshre(2)"
=p lcoswe[.

Again, for a fixed 7//, the above may be expanded into a Taylor
power series of e, giving

5 .
K=p [= | 1+icnl+0d)
7l {

where the zeroth-order term pv/2/wl corresponds to the non-
oscillatory solution. The first-order term can be understood
as the superposed effect of mismatch dislocations given by (39)
with traction o(x) taken as the e=0 result, i.e.,

Al 7] )
ox = [Ge= 17441 (+Df

Since the above dislocation density is of order ¢, it may be
justified to use the nonoscillatory crack-dislocation formula
(46) in the superposition procedure. Thus, the mismatch dis-
locations outside the crack-tip region characterized by 7 give
the first-order term in (53):

(52)

(3)

(54)

_ 8i S“‘ 1 <3|Iu(x)]]> e
(cLron2r dp Ax \ o

Y A P
=|p 7rIzenl.

As explained before, the traction and mismatch along the in-
terface will adjust themselves to the oscillatory state via the
loop procedure based on (39), eventually resulting in the full
Taylor expansion of the exact K-solution (52). Clearly, the
scaling length 7 is acting here as a characteristic distance at the
crack tip where the global information of geometry and loading
is transmitted to the fracture process zone.

(33)

A Finite Interface Crack. As the corresponding reduced
problem of that shown in Fig. 5, a crack along the interface
subjected to uniform crack-face traction oo, = 0}, + ia}, has the
following potential function solution (e.g., England, 1965;
Rice and Sih, 1965)

TEre—

o z ie
$1(2)=0(z) = m[\/z(z—l) <z_—l> —Z}
7reo_ z ie
$2(2) = (z) = m{x}z(z—l) <z_—_l> —z] (56)

Substituting this into (14) and using the stress intensity factor
definition given in (4), one finds that

K=+ 2ie)(f/ D) 0 7l/2. 57
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Fig. 5 A finite interface crack under remote loading

When e=0, the K of (57) reduces to the corresponding ho-
mogeneous solution (17) since the interface mismatch also van-
ishes in the present case (of infinite geometry).

Weight Function Method for Oscillatory Interface Crack
Fields

In general, an interface crack will have an oscillatory near-
tip field due to the existing interface mismatch. Since the os-
cillatory field predicts crack-face interpenetration behind the
crack tip, the forms given in (1), (3), (6) for the near-tip stress
and displacement field must be wrong on a sufficiently small
scale. However, the near-tip contact zone size estimated by
several authors (Comninou, 1977; Rice, 1988; Rice et al., 1989)
is found to be negligible (e.g., subatomic) for a broad range
of crack-tip loading configuration. Thus, Rice (1988) pointed
out that the stress intensity factor K as defined in (5) does
characterize the severity of the near-tip loading when the size
of the fracture process zone involving crack-face contact, ma-
terial nonlinearity (plasticity, microcracking, transformation)
and/or the discreteness of material microstructure (e.g., fiber
distance in a composite globally treated as a continuum) is
much smaller than characteristic macroscale dimensions such
as crack length or a film thickness. When such a size restriction
is met, the value and history of K uniquely characterize the
crack-tip state. With this understanding, we extend the weight
function method to the general interface crack analysis, for
determination of the oscillatory field solutions such as the stress
intensity factors.

In terms of the crack mode designation displayed in
K=k =K+ iK;;, we may define the weight function A, for
interface cracks in exactly the same manner as the homoge-
neous case. We note that the reciprocal relation (18) still holds
for the oscillatory interface crack field if the homogeneous
energy release rate G is replaced by the interface energy release
rate G given by (8). Therefore, the basic weight function re-
lation for interface cracks analogous to (18) is

%_ ¢+
8l 8 cosh®(me)
Similarly, two weight function potentials ¢,, and {,, can be
used to represent A, by (20), with (21) becoming
oz ) ato
dl 8 cosh’(me)

Ky b+ Ky hyp). (58)

K ¢z 1),

Nz ) ato
al 8 cosh’(me)

The above relations may be used to determine the weight func-
tion field by differentiating any known crack solution with
respect to the crack-tip position /, or to determine the full-
field potentials ¢, 2 by integration with respect to / from given
solutions of ¢,,, Q,,, and K. Therefore, other than a few material

KQ,(z; ). (59
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constants, the interface weight function formulation is com-
pletely parallel to its homogeneous counterpart developed by
Bueckner (1970) and Rice (1972) as presented in Egs. (18)-
(26). The important conclusion is that knowledge of any one
crack solution leads to the determination of crack solutions
for the same geometry under any other loading conditions.
The crack interaction with arbitrary forces, transformation
strains, and dislocation can be studied by the same formulae
(23)-(26), now with the understanding that K represents the
near-tip stress field in the sense of (1)-(5).

For a semi-infinite crack with crack tip located at x=/,
differentiating the crack-tip potentials in (48), with respect to
the crack-tip position / according to (59), yields the interface
weight function potentials as

en(bwl(z) = eﬁ"rém(z)
_ 4 cosh(we) 1

’;.\ Ie
— 60
ate 2w(z-1) <Z_> ©0

in material #1. The potential functions in material #2 are ob-
tained from ¢,,(z)=Q,,(z) and 2,,(2) = ¢,,,(z). Also, poten-
tials in Eqs. (56) and K in (57) lead to ¢,,, Q,, for a finite crack
of length /. At the right crack tip x=/, it may be shown that

€ yi(2) =€ "Qy1(z)

_ 4cosh(m) 1 [z \"PELAF 6D
C1+C2 m Z— l

Similarly, ¢w2(z)=ﬁ;:(z) and sz(z)=¢_w1(z). The complete
weight function field derived from the above potentials via

" (20), (22) can be used to compute the interface stress intensity

factors due to arbitrary forces, dislocations, and transfor-
mation strains according to formulae given in (23)-(26).

For example, when a dislocation at s =x,+ iy, in #2 interacts
with a finite interface crack lying along (0, /) of the x-axis,
substituting (61) into (26) immediately gives the K result

A cosh(me)

f ie _ 5 172 +ie
—_— e 7 - b —wE —
(c1 + e/l <l> { [ ‘ (S—l>

g \ 2
_ h mef 2
2 cosh(me)+ e (s — l> }

~(1/2+ ie)be™[(s —5)s™ P (s — 1) "2 ]

(62)
In the limit of a semi-infinite crack with crack tip at the co-
ordinate origin, (62) reduces to

4i cosh(me)

A A (R{pTTE A/— ie = e A/ iE/
e 4 cEn {b(e™ "(#/5) /N5 + e (/s INs)

— (1724 ie)be™[(s—5)s ¥ HF/s) ). (63)

These results are consistent with those derived by Suo (1989)
from a different approach.

Conclusions

We have accomplished the following in this paper: First,
it is shown that the near-tip oscillation of an interface crack
may be understood from the viewpoint of the interface mis-

_ match that results from the cracking. Our study indicates that

the local mismatch near the crack tip results in the oscillatory
near-tip field structure, while the mismatch on the global scale
leads to the corresponding stress intensity factors. The study
also reveals that the scaling length 7 introduced by Rice (1988)
in defining the interface stress intensity factor defines a char-
acteristic distance at the crack tip where global information
of geometry and loading is transmitted into the fracture process
zone. Second, we have extended the Bueckner-Rice weight
function method to the interface crack analysis, showing that,
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other than a few extra material constants, the interface weight
function analysis is completely parallel to its homogeneous
counterpart so that all the well established formulae such as
those given in (23)-(26) concerning crack interaction with
transformation strains and dislocations can be directly applied
to the interface crack problems. ‘

The interface weight function method presented here follows
Rice’s (1972) notion of reciprocal relations among energetic
forces on a crack tip and other interacting defects. An alter-
native approach can be formulated following that of Bueckner
(1970) in searching for a fundamental field whose potential
functions behave as z~/2** near a crack tip. Apparently un-
aware of Bueckner’s work, Stern and coworkers (e.g., Stern,
1978; Hong and Stern, 1978) developed a concept of ‘‘com-
plementary elastic state’’ for interface cracks which is essen-
tially the same as the fundamental field of Bueckner (1970).
However, the analysis by Stern and coworkers is cumbersome
and much less transparent than our present formulation given
in (58), (59). In recent years, the weight function method has
been intensively developed for both two and three-dimensional
crack analysis in homogeneous materials, as reviewed by Rice
(1989). Finite element schemes have also been devised to com-
pute the two and three-dimensional weight functions (e.g.,
Parks and Kamenetzky, 1979; Sham, 1987) for arbitrary ge-
ometry. Use of these existing techniques in the same vein of
the present work will greatly facilitate the interface fracture
analysis.
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Three-Dimensional Stress Fields of
Elastic Interface Cracks

Various aspects of stress fields near an interface crack in three-dimensional bimaterial
plates are investigated. Due to the nature of the resulting deformation field, three-
dimensional effects are more critical in a bimaterial plate than in a homogeneous
plate. In the close vicinity of the crack front, the stress field is characterized by the
asymptotic bimaterial K-field, and its domain size is a very small fraction of a plate
thickness. Unlike a homogeneous case, the asymptotic field always consists all three
modes of fracture, and an interface crack must propagate under mixed-mode con-
ditions. Furthermore, computational results have shown that the two phase angles
representing the relative magnitudes of the three modes strongly depend on the
bimaterial properties. It has been also observed that a significant antiplane (Mode
III) deformation exists along the crack front, especially near the free surface. Since
experimental investigations have shown that critical energy release rate G is highly
dependent on the phase angles, accurate prediction of the interface fracture behavior
requires not only the G distribution but also the variations of phase angles along
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the crack front.

1 Introduction

With the rapidly increasing use of composite materials for
engineering structures, a great deal of interest in the interface
crack has been generated. During the past few years, com-
prehensive analyses have been carried out, and many questions
regarding the mechanics of interface fracture has been an-
swered. However, progress has been generally restricted to
understanding of the two-dimensional idealization of an in-
terface crack, and limited work has been conducted on the
three-dimensional aspect of interface fracture. This is in part
due to the extreme complexity of such problems and the very
large computational efforts required for their numerical anal-
ysis. However, given the material mismatch along the interface
boundary, it is expected that the three-dimensional effects play
a more significant role in a bimaterial structure than in a
homogeneous structure.

In this study, detailed three-dimensional finite element com-
putations are performed to investigate the complete stress field
near the interface crack front. A large, finite thickness, bi-
material plate containing a finite length crack along the in-
terface under remote tensile load is considered. The purposes
of the analysis are to assess the zone of three-dimensionality
and to determine characteristic features of the deformation
field, including the variations of energy release rate and mixed-
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mode stress intensity factors along the crack front. Accurate
determinations of these parameters are essential in predicting
fracture behavior along the bimaterial crack front.

We also examine the field very close to the crack front to
determine the existence and size of the asymptotic bimaterial
K-field. In addition, the presence of bimaterial corner field
near the intersection of the crack front and free surface is
investigated. Near the free surface or in the corner field region
where the three-dimensional effects are large, variations of
stress intensity factors along the crack front are expected to
be significant. The behavior of these fracture parameters are
studied from a very detailed finite element model in conjunc-
tion with the bimaterial corner solutions.

2 Crack-Tip Field at Bimaterial Interfaces

2.1 Singular Stress Field. In an elastic bimaterial body
containing a crack along the interface, the stress field very
close to the crack front should correspond to the asymptotic
field based on the two-dimensional (plane strain and antiplane)
solutions (Williams, 1959). The form of the bimaterial K-field
given by Rice, Suo, and Wang (1990) (with an addition of
Mode III) is,

1 . .
o=—== {Re[Kr*] &; (8;¢) + Im[Kr"] &} (B;e
1,——27"{[],,() [Kr 1 &; (8:¢)
+Km 65 @), (D
where r and 8 are the in-plane coordinates of the plane normal
to the crack front, K is defined as the complex stress intensity
factor for the in-plane modes, K; + iKy, and 6;; are the angular

variations of stress components for each mode. The oscillatory
index ¢ is
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Here, x, = 3 — 4p, for plane strainand x, = 3 — v)/(1+».)
for plane stress, p, is the shear modulus, v, is the Poisson ratio
and the subscripts « = 1 and 2 refer to the materials above
and below the crack plane, respectively. Furthermore, 3 is one
of Dundurs’ parameters. In two-dimensional problems, the
solutions can be characterized by the two Dundurs’ parameters,
and thev are defined as (Dundurs, 1969),

kD= po(eg +1) L o — D — pale — 1) 3)
palkr+ D)+ pila+1) 7 pag + 1) + kg + 1)

Unlike two-dimensional cases, the above parameters are not
sufficient to characterize the full-field deformation of three-
dimensional boundary value problems. However, for any bi-
material combinations of 8 = 0 (under plane strain), the os-
cillatory index e vanishes, and the asymptotic stress field along
the three-dimensional crack front coincides with the homo-
geneous material solution. Note, a bimaterial combination
yields different Dundurs’ parameters under plane-strain and
plane-stress conditions.

2.2 Three-Dimensional Energy Release Rate. Based on
energy release arguments, the relationship between the energy
release rate G (or the equivalent J-integral in the case of an
elastic medium) and the stress intensity factors of an interface
crack is,

1 1
E*cosh?(me) 2u*

Here, E* and u* are the average/effective plane-strain tensile
modulus and shear modulus of two materials, respectively,
and they are

1 1 f1—-»2 1-»2\ 1 1(1 1
[U—— ____,}_1_+.___'}_2.. , == —4—]. (5)
E* 2\ E; E, p*2 \pr p2

The local energy release rate G along the crack front ad-

vancing in the x;-direction (i.e., along the interface boundary)
can be expressed in terms of near-tip fields for three-dimen-

sional bodies as,
ou;
Qlocal(s) = lim S <Wn1 — ol i) dr. (6)
I ax 1
local :

r—o
Here, the superscript ‘‘local’’ emphasizes that G°“ is a point-
wise energy release rate along a three-dimensional crack front.
Also, s represents the location/arc length of the crack tip on
the crack front measured from any reference point (e.g., corner
point), W is the strain energy density and »; are the components
of a unit vector normal to I', which surrounds the crack front
at s.

G= K+ K]+ Kul*. 4

2.3 Three-Dimensional Interaction Integrals. For elastic
interface cracks where the field is mixed mode, an effective
method was introduced to extract each stress intensity factor
by considering an auxiliary (pseudo) field that is the solution
to acrack problem under some arbitrary loads (Shih and Asaro,
1988). Here their formulation is extended to the general three-
dimensional case. We begin by superimposing an auxiliary field
to the actual field (the three-dimensional interface crack
boundary value problem) and introducing a local interaction
energy release rate as

aux
au,- aux au,-
nj—oy5"

3x1 . 6x1

I(S)=llmg [oijef}"xnl—oij nj}dl‘. (7)
T'(s)

r-o0

The variables with the superscript ‘‘aux’’ are the solutions of
the auxiliary field. The above integral is a conservation integral
as long as the limit (I' — 0) is preserved. Additionally, I(s)
along the crack front relates to local K at a point s by
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1 ux
I(s) [KKT™ + KK +EK111K711 , (8

E*cosh(re)
where Ki**, K™ and Kiff* are local stress intensity factors for
the auxiliary field at a point 5. To extract K}, we choose the
auxiliary field to be the known interface K-field shown in
equation (1) and the values of its stress intensity factors be
K™ = 1, K" = K5 = 0. Next, we calculate the interaction
energy (7) from both the actual and the auxiliary field solutions,
Finally, the Mode I component of stress intensity factor, K,
at a point son thé crack front can be deduced from 7(s) through
(8) as
E*cosh’(me)
— !

This procedure can be repeated for extracting Ky and Kjj; by
choosing the corresponding auxiliary fields to be the Mode II
and III singular field solutions, respectively, and using (8) after
each I(s) is evaluated through (7). To obtain the complete
variations of local K along the crack front, the calculation
must be carried out over the entire crack front.

From a discrete computational point of view, the expressions
(6) and (7) are not suitable for evaluating values of G'®(s)
and 7(s) since a precise numerical evaluation of limiting fields
along the crack front is difficult. An accurate procedure based
on the ‘““domain integral method’’ exists for obtaining three-
dimensional G and K. A detailed description of the domain
integral method for the similar three-dimensional mixed-mode
field is given by Nakamura and Parks (1989).

2.4 Phase Angles. The relative value of each stress in-
tensity factor along the crack front plays an important role in
the initiation and direction (e.g., kinking) of interface crack
growth. It is convenient to define their relative magnitude in
terms of nondimensional phase angles. The first phase angle
has been defined and employed in earlier two-dimensional
studies as

Ki(s)= (s). )]

(10

Im[KL*]
Re[KL*] )"

W(L)=tan"! {

Here, L is the reference/characteristic length and K is the
previously defined complex stress intensity factor for the in-
plane models. For nonzero ¢, this phase angle is a function of
L. However, for a small ¢, the phase angle essentially represents
the relative strengths between K; and Kj;.

In three-dimensional situations, Ky is generally nonzero,
and an additional phase angle is necessary to express the relative
strength of antiplane deformation. The second phase angle
may be introduced as

1 KIII
2u*
\/m K+ K] + K

—1 KIII
= ——. (11
M—J .

The above form of the second phase angle is consistent with
the relationship between G and stress intensity factors given
in (4). Suppose we imagine a coordinate system formed by

three othogonal axes: Re[KL®] / \/ E*cosh*(we), Im[KL"] /
A/ E*cosh®(me) and K/ ~/2u*. Then the length of a vector

from the origin to a point in such a coordinate space equals
\/§ . Thus, ¢ and ¢ are the standard spherical angles repre-
senting the directions of the vector in such a coordinate system.
Unlike the first phase angle, the second phase angle ¢ is always
independent of the characteristic length. This phase angle de-

¢ =cos”
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Fig. 1 Schematic of three-dimensional bimaterial plate with an inter-
face crack along the boundary under tensile load

creases for increasing relative magnitude of Ky, In a bimaterial

combination of ¢ = 0, the phase angles under pure Mode I,
11, III conditions are (¢, ¢) = {0, g), <§, gS, (*, 0), re-

spectively. (Under pure Mode III, ¥ is undefined.)

3 An Interface Crack in a Large Plate Under Tension

3.1 Computational Model. For the three-dimensional
study, a large bimaterial plate (thickness f) containing a through
crack on the interface is considered. This Griffith-type crack
is assumed to be under remote tensile stress ¢ as shown in
Fig. 1. In the model, the height and width of the plate are
chosen to be 30 times the crack length (W/a = 30, H/a =
30). These dimensions are large enough so that the geometry
represents essentially a finite length crack in an infinite (in-
plane) plate. We have selected this geometry for the analysis
since the only characteristic dimensions are the crack length
and the thickness. The computations are performed for various
plate thicknesses ranging from ¢/ = 0.001 to t/a = 1.0.

In order to minimize the complexity of the present three-
dimensional bimaterial study, the Poisson’s ratio of the upper
half plate is kept at »; = 0.2. Moreover, the material properties
of the lower half plate are selected so that the bimaterial com-
binations yield ¢ = 0 (and 8 = 0) under plane-strain conditions
(except for the elastic-rigid substrate plate). The three sets of
material properties employed in the analysis are; (1) », = 0.2,
u1/uy = 1.0 (homogeneous case), (2) v, = 0.3, p/py = 1.5,
and (3) v, = 0.4, u;/py = 3.0. With these combinations, the
oscillatory behavior in the asymptotic stress and deformation
fields disappear and the stress intensity factors in (1) are well
defined. Here, the extent of bimaterial mismatch can be meas-
ured by the other Dundurs’ parameter (o = 0, 0.1351, 0.3846
for each case).

In constructing the finite element mesh, we have used the
symmetry conditions across the center plane (x; = 0) and the
midplane (x; = 0) to model a quarter of the plate. Zero dis-
placement boundary conditions in the x-direction are pre-
scribed on the right and left planes of the model and also in
the x3-direction on the x;3 = 0 plane. The finite element mesh
of this geometry is constructed with 8-node trilinear hexah-
edron (brick) elements. In carrying out the analyses, two finite
element meshes are employed for each bimaterial combination.
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Fig.2 Typical finite element meshes for (a) a quarter of bimaterial plate,
(b) near crack front region. The front plane corresponds to the free
surface.

(b)

The first mesh, shown in Fig. 2(@), models the entire plate
while the finer second mesh is cylindrically shaped and models
only the near crack front region. This finer mesh, shown in
Fig. 2(b), is used to obtain more accurate solutions close to
the crack front. In order to prescribe the boundry condition
on the outer perimeter of the finer mesh, the computed dis-
placements from the first mesh are interpolated to the bound-
ary nodal points of the second mesh. The first (coarser) mesh
has a total of 6048 elements (8 layers through half-thickness).
The second (finer) mesh has 4860 elements (15 layers through
half-thickness). The outer most nodes of the second mesh have
a radial extent of 0.014 q, its crack-tip elements have a radial
extent of 107° ¢, and the thickness of the element layer ad-
joining the free surface is 1073 7.

3.2 Three-Dimensionality in a Bimaterial Plate. In a ho-
mogeneous plate with sufficiently small thickness (as compared
to in-plane dimensions), a three-dimensional region exists only
near the crack front. From various experimental and numerical
investigations it has been determined that such a region extends
to the radial distance of about a plate thickness from the crack
tip. Due to the mismatch in the material moduli along the
interface, the size of the three-dimensional region in a bima-
terial plate is expected to be substantially different from the
one in a homogeneous plate. Here the extent of three dimen-
sionality is quantitatively determined from the difference be-
tween the stress fields in a three-dimensional plate and the
corresponding plane-stress plate. For given in-plane coordi-
nates (x;, Xx,), the average difference through thickness is cal-

-culated as

/2
ave 1 !
D™ (x, x2)=“0mt "‘Tij (X1, X3, X3)
/2

—af s x)llds,  (12)

where 0;; are components of the three-dimensional stress field,
o are the plane-stress solutions of the same bimaterial
crack plate subjected to remote tension, and ! -1 is a spectral
matrix norm. This coordinate invariant parameter D*'® ap-
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Fig. 4 Normalized local G along the half-crack front for #/a = 0.1 with
various bimaterial combinations. (Note zero suppression of ordinate axis.)

proaches zero for closer agreement with the plane-stress so-
lution, becoming zero if and only if oy is identical to ai}»’l‘s"ess
throughout the thickness.

This parameter is calculated over the x;-x, plane of a rela-
tively thin bimaterial plate with ¢/a = 0.1, and the contours
of D*® = 0.10, 0.13, 0.16 are plotted in Fig. 3. As in the case
of a homogeneous material plate (now shown here), these
results indicate a strong three-dimensional effect near the crack-
tip (x; = 0, x, = 0) region. However, due to the modulus
mismatch, the three-dimensional zone extends ahead of the
crack and continues along the bimaterial boundary. The width
of this zone is nearly constant (~ 4f) for x;/¢t > 10 (or x,/
a>1) where the influence of the crack-tip field becomes neg-
ligible, In fact, this is the extent of three-dimensional zone
along the interface boundary in a bimaterial plate without a
crack.

3.3 Energy Release Rate and Stress Intemsity Fac-
tors. The energy release rate along the crack front is obtained
using the domain integral method. In Fig. 4, the local § along
the crack front are shown for plates (¢/a = 0.1) with various
bimaterial properties. In the figure, the G'°* are normalized
by G which is the energy release rate of a plane-stress plate
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Fig. 5 Normalized local stress intensity factor components along the
half-crack front in t/a = 0.1 plate with », = 0.4, g/, = 3.0

under tension, §™ = |KI%/[E*cosh’(we)] where K| = o

A +4eHma. (Here, ¢ is from the plane-stress conversion in

(2)). Since the plane-stress condition essentially exists far away

from the crack front in the current model (as shown by Fig.

3), this value must be close to the average value for G along

the entire crack front. Qur computed average G over the entire

crfack front is within one percent of the plane-stress solution,
ar

The G variations through-thickness of all cases are nearly
identical. The highest value is at the midplane (x;/¢f = 0), and
gl continuously decreases away from the midplane except
very near the free surface (x3/¢ = 0.5). In the same figure, the
distribution of §'°* along the crack front of an elastic-rigid
substrate model (», = 0.2) is also shown. The oscillatory index
for this model is e = 0.1255, and it is the worst possible
mismatch in a bimaterial plate. Contrary to the other cases,
gl jycreases towards the free surface. This behavior is at-
tributed to the much greater level of shearing condition af-
fecting the crack-tip field. The results from the homogeneous
plate (Nakamura and Parks, 1989) have shown that the be-
havior of G along the crack front is directly related to the
amount of in-plane and antiplane shear in the crack front
surrounding region. In a bimaterial plate, even in absence of
any remote shear loading, the antisymmetrical conditions are
induced by the material mismatch along the interface. The
magnitude of shear increases with a larger mismatch, and when
a sufficient bimaterial mismatch exists, a higher G'°** prevails
near the free surface as shown by the elastic-rigid substrate
result.

Each mode of stress intensity factor is computed along the
crack front via the interaction integral. Figure 5 shows K%,
KI and K along the crack front of the plate with », =
0.4, u;/p, = 3.0. Each stress intensity factor is normalized by
o~ \/&7:;, which is the amplitude of stress intensity factor under
plane-strain condition. In a plane-strain plate under tensile
loading, Kj; and Ky are zero as long as ¢ = 0. However, in
three-dimensional tensile plates, this condition (¢ = 0) does
not insure the symmetrical loading in the crack front region.
In fact, the stress field near the crack front is mixed mode.
Due to the relatively small bimaterial mismatch in this plate
(a = 0.3846, 8 = 0), the tensile force is still dominant and
values of Kj; and Ky are relatively small along the crack front.
Near the free surface, the amplitudes of both antisymmetrical
modes increase while K; decreases near the free surface (see
the discussion on the corner field in Section 4.3).

In order to study the relative strength of each mode effec-
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Fig. 6 Phase angles along the half-crack front in #/a = 0.1 plate with
various bimaterial combinations, (4) first-phase angle y, (b) second-phase
angle ¢

tively, the two phase angles described in the Section 2.4 are
plotted in Fig. 6. In the homogeneous plate (v, = 0.2, u;/u,
= 1.0), the only nonzero stress intensity factor is Kj, and the
phase angles are always y = 0 deg and ¢ = 90 deg along the
crack front. In the two bimaterial plates, the first phase angle
¥ remains nearly constant along the crack front except very
near the free surface. The results imply that the ratio of K;
and Kj; is essentially uniform throughout the crack front (see
also Fig. 5). The second phase angle ¢ decreases from the
midplane, reflecting the rising Mode III deformation near the
free surface. These results clearly show a higher mixed-mode
state near the free surface, and also larger in-plane and anti-
plane shear deformation in a plate with greater material mis-
match.

3.4 Effect of Thickness. The effect of thickness is shown
by the variation of the phase angles along the crack front in
Fig. 7. The results are given for the plate thickness, /a = 1.0,
0.1, 0.01, 0.001, with the bimaterial properties v, = 0.2, », =
0.4, ui/uy = 3.0. In all cases, the relative strength of Mode
II remains nearly constant along most of the crack front, as
shown by ¢ in Fig. 7(@). Similar results for ¢ in various plates

are shown in Fig. 7(b). Both Mode II and Mode III defor-"

mations increase for the thinner plates.

Corresponding solutions from the plane-strain plate (lim-
iting case of #/a— o) are also shown in the figures. As the
plate thickness increases, both ¥ and ¢ approach the plane-
strain limits (¢ = 0 deg, ¢ = 90 deg). Except near the free
surface, there is a very small difference in y between the results
for the t/a = 1.0 plate and the plane-strain limit. However,
a significant difference remains between the same plate and
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Fig. 7 Phase angles along the half-crack front in plates with various
thickness with », = 0.4, u,/u, = 3.0, (a) first-phase angle ¢, (b) second-
phase angle ¢. The corresponding plane strain results are also indicated.

the plane-strain solutions for ¢. These results indicate that
while the in-plane shear is small in a thick tensile plate, the
antiplane shear is not negligible and may play an influential
role in the fracture initiation.

3.5 Near Crack-Front Field. In order to use G and KX as
the fracture parameters in three-dimensional structures, one
must substantiate the asymptotic bimaterial K-field along the
crack front. A basic requirement for the existence of K-field
is a sufficient plane-strain constraint near the tip. The amount
of constraint can be measured by the parameter, g33/(oy; +
02). Under plane-strain conditions, this parameter equals »,
and », above and below the crack plane, respectively. The
angular variations of this parameter at various radial distances
away from the crack front near the midplane are plotted in
Fig. 8. The parameter indeed approaches the plane-strain limit
as r/t — 0, and the discontinuity jump at # = 0 is accurately
illustrated in the figure. At about r/¢t = 0.005, there is already
a sufficient constraint in both upper and lower half of the
plate.

The complete stress field very near the crack tip (/¢ = 0.001)
is plotted in Fig. 9. The components of computed stress are
normalized by the ¢ /ma/ /27 to obtained the dimensionless
angular variations over — 7 < § < 7. The solution from the
K-field (1), 6}, 6, 65", are also shown with dashed lines. Since
the field is a mixture of all modes, as shown in Fig. 5, these
functions are weighted by respective local stress intensity fac-
tors (K°/0™ n/7a = 1.08, 0.13, 0.01, for Modes I, II, III,
respectively at x3/t = 0.05). The figure shows an excellent
agreement between the computed stress components and the
asymptotic solutions, and these results confirm the existence
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of the K-field in three-dimensional bimaterial plates. We have
also compared the near-tip stresses with the corresponding
mixed-mode K-field solutions on a plane closer to the free
surface at the same radial location. The agreement of each
stress component is as good as that of the midplane results
except for the g3, component. The worsened result of o33 is
explained by a lesser constraint near the free surface.

The agreement with the K-field solution deteriorates as the
radial distance from the crack front increases. Based on the
results from individual stress components and the constraint
parameter, we conclude that the K-field exists within the radius
of about 0.5 percent of plate thickness near the midplane for
a plate with t/a = 1.0.

4 A Thin Plate Under Mixed-Mode Loading

4.1 Computational Model. For the investigation of the
stress field near the corner a different model is constructed.
It has been established in Section 3.2 that if the plate thickness
is sufficiently small, a nearly plane-stress field exists outside
the crack-front region (except the narrow band of three-di-
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Fig. 10(a) Normalized local stress intensity factor components along
the half-crack front in a very thin plate (f/a — 0) with », = 0.4, pylp, =
3.0. (b) Phase angles along the half-crack front in a thin plate with various
bimaterial combinations.

mensional zone ahead of crack). By taking the thickness to be
very small (¢/a — 0), one could assume an existence of annular
region where the field is essentially characterized by the plane-
stress K-field. An advantage for using such a thin plate model
with a surrounding plane-stress K-field is that the characteristic
dimension is reduced to the plate thickness alone.

For the computational model, a mesh with similar shape
and element arrangement as shown in Fig. 1(b) is constructed.
The maximum radial extent of a disk-shaped mesh is chosen
to be 100 times the thickness, which should be large enough
to contain any three-dimensional effects along the interface to
minimum. The external strip of boundary is subjected to the
traction of plane-stress mixed-mode bimaterial K-field. A de-
tailed description of a similar mesh is given in Nakamura and
Parks (1991). The amplitudes of far-field stress intensity fac-
tors are chosen as K = 1 and K = 1. This combination
is selected so that the resulting field along the crack front is
strongly mixed mode, and any numerical errors which may
arise from calculating smaller stress intensity factors are min-
imized. For the material properties, the same sets of Poisson’s
ratios and shear moduli as in the previous analysis are used.

4.2 Stress Intensity Factors. The stress intensity factors
along the crack front are computed by the interaction integrals
and normalized by the magnitude of applied load, K™ = K
+ K{* and the results are shown in Fig. 10(a). The two in-
plane stress intensity factors K and K} are nearly identical
along the crack front except near the free surface where Ko
decreases while K[¢°® increases. As in the previous model, the
antiplane Ki{™ rises from the symmetry plane (x;/¢ = 0) to-

ward the free surface.
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In Fig. 10(b), the phase angles of various bimaterial prop-
erties are plotted. The trends are similar for all cases: increasing
antisymmetrical deformation near the free surface as shown
by increasing y and decreasing ¢. Again, the levels of shear
deformation are greater in the plates with larger bimaterial
mismatch.

4.3 Corner Singularity Field. At a point sufficiently close
to the normal intersection of a crack front and a free surface,
the asymptotic deformation field can be characterized by the
corner singularity field of a quarter-infinite crack plane in a
half space. Such a corner field has an interesting implication
toward crack growth since the stress singularity on the free
surface is different from the usual 1/ /r singularity. The corner
field in the homogeneous material has been extensively inves-
tigated by Benthem (1977, 1979) and Bazant and Estenssoro
(1979). Recently, Barsoum and Chen (1989) and Ghahremani
and Shih (1991) have computed eigenvalues corresponding to
the singularities of corner fields in various interface cracks.

For many bimaterial combinations, the first two eigenvalues
are real, and the stress near the intersection of a homogeneous
solid may be expressed in terms of dominant symmetrical and
antisymmetrical elastic corner singularities as shown in a ho-
mogeneous material (Nakamura and Parks, 1989),

01008 = [Bs 0555 (6,009 + Ba 0™l (B SND].
Yl .

N
(13)
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Here, &5 and @4 are the corner stress intensity factors, and
g,-sj and gj; are angular functions corresponding to the dominant
symmetrical and antisymmetrical fields, respectively. The
spherical coordinates, p, ¢, and ¢, are centered at the corner,
and in the present model they are

p=Nr+7, ¢=tan"" <£>,Z=£—x3. (14)

2
Also, Ag is the eigenvalue for symmetrical fields, and A4 is the
eigenvalue for antisymmetrical fields. Typically, A¢ > —0.5
and Ay < —0.5 for many bimaterial solids (Ghahremani and
Shih, 1991). On the free surface we have p = r, and thus these
values of A suggest that the second term in (13) dominates as
r — 0 and the stress singularity is more severe than the usual
1/\/; singularity.

The general relationship between the bimaterial K-field and
the corner field is complex. However, for solids with ¢ = 0,
arelationship between the stress intensity factors and the corner
stress intensity factors can be expressed as,

K%ocal (Z) - (BSZ)\S+ 172

K™ ()= ® 24+ for z—0. (15)

KB @) =RO® a2

Here, R(\4) is a dimensionless factor equivalent to the ratio
of KIgtto K19, and it is a function of only A, and independent
of loading conditions. Equations (15) suggest that the local
stress intensity factor tends to zero in a symmetrical field (Mode
I) and tends to infinity in an antisymmetrical field (Modes II,
I11) for small z. Furthermore, since the corner field is always
mixed mode in a bimaterial plate, the energy release rate in-
creases to infinity near the free surface.

In order to determine the dominance of such corner sin-
gularity fields in a finite thickness plate, all three modes of
K are plotted in a log-log scale in Fig. 11. The small circles
in the figure indicate K'°®'at the midlocations of element layers
along the crack front. Also plotted in the figure are the straight
lines whose slopes are (\g + 1/2) for K;, (A4 + 1/2) for Kj;
and Kj;;. The values of Ay and M4 indicated in the figures are
given by Ghahremani and Shih (1991). The curves are nearly
straight for z/t < .003, and the agreements with the corner
field solutions are very good for both the homogeneous and
bimaterial plates shown in Fig. 11. Similar results are also
obtained with », = 0.3, p;/py = 1.5. Based on the behaviors
of K near a corner as shown in Fig. 11, we tentatively
conclude that the corner singularity field in a thin plate dom-
inates within the spherical radius of p/¢t = .003 from the
intersection in a thin bimaterial plate.

5 Discussions

The present analysis has shown that three-dimensional ef-
fects are more complex in a bimaterial plate than in a ho-
mogeneous plate with similar dimensions. It has been observed
that a large Mode I1I deformation exists along the crack front,
even in a relatively thick plate. Furthermore, the bimaterial
properties are found to play an important role in the state of
mixed mode. In view of determining fracture behavior, these
effects are very critical since they influence not only the var-
iations of energy release rate but also all three stress intensity

"factors along the crack front.

The manner which § varies along the crack front is directly
dependent on the relative magnitude of shear in the near crack-
front region. The rise of G near the free surface occurs when
there are sufficient shear loads. This phenomena is consistent
with the G variation observed in a homogeneous plate under
a remote shear loading (Nakamura and Parks, 1989). In a
bimaterial tensile plate, the shearing condition near the crack
front is caused by the material mismatch, and as a consequence,
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the behavior of G along the crack front is affected. The extent
of shearing increases with greater material mismatch in a plate,
and the most severe case occurs in an elastic-rigid substrate
plate. Certainly, any remotely applied antisymmetrical load-
ings enhance the shear deformation near the crack front, and
hence promote the increase of G near the frée surface.

Recently, Cao and Evans (1989) showed experimentally that
the critical energy release rate G, of a propagating interface
crack depends on the phase angle ¢, and that G, increases for
larger . The increase of G, is explained by the shielding of
the crack tip from the large stress by rubbing/contact of crack
surfaces under a large in-plane shear deformation (high ). A
similar mechanism is expected to operate under antiplane shear,
and the critical energy release rate should increase when the
relative magnitude of Kjy is high (small ¢). Thus, the critical
energy release is a function of both ¢ and ¢ as

Ge=G(¥,0).

Based on the above argument, to predict the location of a
crack growth initiation with an available G, (¥, ¢), one must
know the G variation (e.g., Fig. 4) as well as the complete
phase angle distributions (e.g., Fig. 6). In the near free-surface
region, the driving force G is generally high due to the mixed-
mode corner field. At the same time, there are greater shear
deformation (high ¢, low ¢) in the region, which may lead to
more fracture resistance condition. These two effects compete
during the initiation, and they must be considered carefully
when one tries to estimate the steady state angle made by the
propagating crack front and the free surface.

(16)
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Nonaxisymmetric Annular Punch

V. 1. Fabrikant

Department of Mechanical Engineering,
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Montreal, Quebec H3G 1M8, Canada

Problem

A general formulation is given for the first time to the title problem. The method

is based on the new results in potential theory obtained by the author earlier. The
problem is reduced to a two-dimensional integral equation with an elementary kernel.
Several specific examples are considered.

Introduction

It is impossible even to mention all the publications related
to the Dirichlet problem for a flat circular annulus, a particular
case of which is the annular punch problem. Their number is
awesome. One can find many references related to a contact
problem in Barber (1983). Other references related to the equiv-
alent electrostatic problem can be found in Love (1976). Why
is there any need for yet another paper on the subject? The
main reason is that the majority of publications is devoted to
the simplest, flat, centrally loaded, annular punch problem.
A very small number of publications treat nonflat but still
axisymmetric problems (Barber, 1976, 1983). An important
problem of circular sliding contact was considered by Keer
and Mowry (1979). The zone of contact was split in
two: circular and annular, with a complete adhesion applied
at the first one and Coulomb friction law at the other. Two
interesting problems involving annular crack, externally
cracked body and a penny-shaped crack were considered by
Selvadurai (1985, 1987). The case of an elastic plate on a half-
space was solved by Rajapakse (1988). Some more complicated
dynamical problems were considered by Veletsos (1987, 1988).

Though some results related to consideration of specific
harmonics have been published (Williams, 1963; Cooke, 1963),
no general solution to the problem has been attempted as yet.
This kind of solution is now possible due to the new results
in potential theory obtained by the author (Fabrikant, 1989).
The problem is reduced to a two-dimensional Fredholm in-
tegral equation with an elementary kernel which can be solved
numerically. Flat inclined and centrally loaded annular punches
are considered as examples. Asymptotic formulae are derived
for the case of a very narrow annulus.

Theory

Consider a rigid annular punch b < p < a penetrating a
transversely isotropic elastic half-space z > 0. Neglecting the
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shear stress under the punch base, the boundary conditions
for the problem can be formulated as follows:

w(p,¢) =06—5(p,¢), for b<p<a, 0=¢<2m;
0,=0, for p<borp>a, 0<¢p<2w;
Ty, =Tx=0, for 0=<p<oo, 0=¢<2m. (1)
Here, 6 is the maximum punch penetration and s describes the
shape of the punch base. It is well known (Fabrikant, 1989)

that the problem can be reduced to the governing integral
equation

o i Sa o (o, bo) podpoded
00 /%4 p2— 2ppyc08(6 — o)

=w(p,9). o)

Here, H is the elastic constant (see Fabrikant, 1989), w is the
known function (1), and 0 = — g, is the yet unknown function.
The following integral representation for the reciprocal of the
distance between two points can be found in (Fabrikant, 1989)

1 1
R Jo*+ ot~ 20poc0s(6 — 60)

N <£'9 ¢ - ¢0> dx
min(og,p) 4

2
== —— ©)
i g" \ oP =3P p§— X
Here,
1=K
MED =T Dkcosy+ &2 @

Substitution of (3) in (2) leads to the governing integral
equation

45 dx S podpo ,c(i)a(po,qb)
b \/pz_xz n \/p(z)_xz 00
b
4 S dx S podpo_ g <_x_2>0(p0, 0229
0 p2_x2 b p(2]_x2 PP H

In Fabrikant (1989) the £-operator was introduced as fol-
lows:

)
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1 2r
£ (pP) =37 | N~ 0o,

o0 2
== 37 K" [ e o, aas
0 _

=2, K" fp)e™. (6)

Here, f, is the nth Fourier coefficient of the function f. Ap-
plication of the operator

1\ 4 [ _odp
£<r> ar S,, Jry £6)
to both sides of (5) yields
27 Sa _Podpy_ £ <L)0(Po,¢)
rAfos—rr VO
4r S” A B2 —xdx [° pedpo 2
+ rz_xz S L£— U(pﬂy¢)
NEETR b2 P

1 I\ d [ pdp
—Le (—) 2 L2 homind). @
H di /
r T Jy 7‘2 _ ,02
We introduce a new unknown function

x(r,¢)=g 20900 ¢ (L) 5(poye). ®)
r p%—rz Lo

The inverse of (8) is readily available, and is

_ 280 d (" _rr (1
220 2 S rz__p2£<r>x(r,¢). ©)
Substitution of (8) in (7) gives
r S b - x2
72

amx(r)+o

T/ P=p %0
‘ ydy (x2>

x| —=—— (= )x(19$)
S,, VA= -2y VY

~ o <1> {2 om0y
=7 I - 0,9).
H d /
r rJy 7'2—,02
One can interchange the order of integration in the second

term of (10) and perform the integration with respect to x.
The result is

(10

x(r,¢)
L7 Kb — 60— K(r,),6— b0)
s SG Sb o X (7,90)dydsbo

_ L (1N d (" _pde
_21rH£<r> dr Sb\/?_‘;; L)w(p,9). (11)

The kernel of (11) can be expressed in terms of elementary
functions as follows:

1‘2 b2 172 }
Kb —d0)= ry( b2> —x(f, ¢“¢o> L <ﬂ>
y r r—b

29 ! lnE+Z] . (12)
E(l _I e—i(¢—¢o)> -
5 )

where
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=~/ yre®=90, 13)

Here, % denotes the real part of the expression to follow.
Thus, the general problem of annular punch has been reduced
to a Fredholm integral Eq. (11) with an elementary kernel which
can be solved numerically. It is noteworthy that the governing
equation for each specific harmonic will also have an elemen-
tary kernel. For example, the equation corresponding to the
zero harmonic is

2 [ Kop,r) —Ko(ry)
Xo(r)+-3 Sb —L—y—z:"%— xo(¥)dy
__1_1 wol(p)odp
o
with
AN Y
Ko(y,r)=r<f2_bz> lni_b. (15)

There have been so many variations of the governing integral
equation published for the case of axial symmetry, that there
is no doubt that Eq. (14) coincides with some known result,
though we have difficulty to pinpoint exactly which one. The
governing integral equation for the first harmonic will take
the form

2 S"Kl(y,r)—Kl(r,y)
+5 | R d
xi(r)+— , V7 x1(y)dy
1 r 2
:ﬁldig wile)ode )
T rar b r2__p2
with
-2\ y+b
K (y,r)= <12 P yln~—b—2b 17

There is no need to compute the stress distribution o if one is
interested in the integral characteristics only. Indeed, both the
resultant force P and the tilting moment M can be expressed
through the new unknown function x as follows:

2 (%" x(o.9)ododd [ xolo)pdp
P=r =4 : 18
m S‘o ‘gb pz—bz j‘b m ( )

Mo _2 SZW Su (20" = B*)x (p,$)cospdpdd
Tdo Jp N
“ @0’ = b)xi(p)dp

=-2 | U 9
Sb PN [pZ_bZ ( )

We note also that the kernels in (14) and (16) are finite at the
point y = r. The following limits can be computed

. Ko(y,r) —Ko(r,p) 1 r+b* . r+b

l — —

ylf} y-r r—b* [ 2r In r—b —b) 0)
lim K\(y,r) =K (r,y) 1 37— b In r+b 3

yr y "'7'2 7'2 b2 2r r—b ’

Equations (11), (12), (18), and (19) are the main new results
of this article.

Description of the Numerical Procedure
Consider the following integral equation:

a
K70+ | B =g (), @1
b
Here, 4 and g are known functions, & is the kernel, and f is
the as yet unknown function. The procedure which is usually
used may be described as follows. We divide the interval [b,
a} into n — 1 equal subintervals of length A = (@ — b)/(n
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— 1). The points of division are called x;, ¥ = 1, 2, ..., n.
Assume the unknown function f to be piecewise constant on
each of the subintervals and equal to f; on the subinterval
number k. Introduce a set of points r, = (xx + Xxx4+1)/2, for
k=1,2,...,n — 1. These assumptions allow us to reduce
the integral Eq. (21) to aset of n — | liner * algebraic equations

n—1
R(r)f (re) + Z ki (re ) fi=g(re),

i=1

fork=1,2,...,n — 1. (22)

Here,

Xit 1
Ki(ry) = S K(rex)dx. (23)
X

The second method to be used here is somewhat different
from that above. We consider the unknown function f to be
piecewise linear. Assuming fi = f(x;), fork = 1,2, ..., n,
this implies that at the kth subinterval the function f can be
expressed as follows:

Sx)=fi+ (er1=Si) <%£—k>, for xp<x<xps1. (24)

Substitution of (24) in (21) leads to a set of # linear algebraic
equations

0 n—1
RS+ 1 [mm ~——12”)] ¥ fo[ k(1) — (i~ 2Drs (1)
i=2

_ 0,-(r,)—0,»_1(r,)] +fn{9n~1("/)_ (n—-2)x,,~1(r1)]

A A
=g{r), n=x,forl = 1,2,...,n (25
Here,
Xi+1
0;(r)) = S K(r,x) (x—b)dx. 26)

i
Since the piecewise linear function follows the real function

more close than the piecewise constant one, we should expect
the set of Eqgs. (25) to give a more accurate solution than (22).

Examples
Flat, Centrally Loaded, Annular Punch. In this case wy =
const., and the governing integral Eq. (14) will take the form

2 (“Ky(y,r) = Ko(r,
00 425 | L2 )y

_ Wo r

2wH 2B

It is well known that the stress distribution ¢ has square root

singularities at p = @ and at p = b. We can then conclude

from (8) that function x, will have a logarithmic singularity

at the point o = b. In order to obtain an effective numerical

solution of (27) we have to eliminate singularities whenever

possible. We introduce a new unknown function

_ Xo{r)

r+bd’
In——+

r—b

which will have no singularities and will be limited on the [,
al. Substitution of (28) in (27) allows us to rewrite it as follows:

- 2 A/ P-0

@7

S(r) 28)

r+b

T M/t
* Ko(y,r) = Ko(r,y) y+b\ . owy
X Sb "—7:,2——f(y)1n <y—b> dy—zqu, 29
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Note that in the limiting case of r — b Eq. (29) yields
S“ 2 <y+b> f)dy  aws

s \y—b f—yz_b2‘4H'

The problem was solved numerically by using both methods
from the previous section. The value of the total force P was
computed in the first method according to the formula (18) as
follows:

(30)

n-1 Xit 1
. o+b pdp
P=4 fi S In (———> _—
; x; p— b / pZ _ b2
The resultant force in the case of the second numerical method
was computed as

n—1 i b
s (v
b : i+l p+b odp
_<1+A 1>f,+1] 5 1n<p—:b>\/;:;

o~ f (¥i+l 2
+f1+1Af,S 1n<p+z> p*dp } 32)
X; P pZ_bZ

The integrals in (31) and (32) can be computed exactly in terms
of elementary functions or it can be computed numerically.

Numerical computations were performed according to both
methods for different values of # and various ratios b/a. The
dimensionless quantity f* = Hf/wqis plotted on Fig. 1 against
the dimensionless argument p* = (o0 — b)/A + 1. The ar-
gument of each plot was scaled in such a way that it stretch
over the same interval. The pattern of each curve consists of
three long dashes and a certain number of dots which corre-
sponds to a specific ratio b/a defined by Table 1. For example,
five dots in the pattern correspond to the fifth line in Table
1, with b/a = 0.9. The dimensionless resultant force P* =
P/P, is presented in the Table 1. The quantity Py = 2wya/
(wH) corresponds to the resultant force producing normal
displacement wy when applied to a circular punch of radius a
(see Fabrikant, 1989, p. 342). The column denoted as exact
was computed independently according to the formula derived
in (Love, 1976). This formula in our notation reads

k ( ok
0

% - (] dt ?
P =1—’§ k S {So Ki(u,1) 7} du.

Here, k = ~/b/a, and K7 is the nth iteration of the kernel

€2V

(33)

2 ut

KL(UJ)—7r 27 (34

Let us point out some interesting features of the numerical
results in Table 1. First of all, two different methods lead to
different results, but the discrepancy between them decreases
as n increases, and in such a way that their average changes
very little being very close to the exact value. The second
conclusion is that each of the methods gives either upper or
lower bound for the computed quantity. This feature is ex-
tremely important since it allows us to estimate the error of
computation. As we expected, the second method is everywhere
more accurate than the first one.

An asymptotic solution for a very narrow annulus can be
found by using the analogy with a two-dimensional contact
problem. The stress distribution can be taken in the form

[of
a(p) = g =. (35)
&= (p-ro)
Here, oq is the as yet unknown constant,
c=(a—b)/2, rg=(+b)/2. (36)

Substitution of (35) in (8) yields
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Fig. 1 The dimensionless stress function

Table 1 220, SC (a2 2ot “0)
Wy =———= —_ .
n bla Mc;l)l.od 1 Met}:‘)d 2 Av;r_age E)Icﬁct WH\/I'—() e I+c¢ \/H—C
0.20000 1.0325 0.9855 1.0090 0.9989 Substitution of (37) in (39) and (40), lnterchange of the order
0.40000 1.0117 0.9807 0.9962 0.9907 of integration and subsequent integration yield
0.60000 0.9776 0.9587 0.9682 0.9651
0.80000 0.9027 0.8950 0.8988 0.8976 P=27"r00, 41)
10 0.90000 0.8224 0.8204 0.8214 0.8210
0.95000 0.7473 0.7483 0.7478 0.7478 16r,
0.99500 0.5598 0.5632 0.5615 0.5618 Wwo=27Hogln| —). 42)
0.99950 0.4440 0.4471 0.4456 0.4458 c
0.99995 0.3676 0.3702 0.3689 0.3691 .
020000 10115 09924 10022 0.9989 Here the following integral was used
0.40000 0.9993 0.9859 0.9926 0.9907 x 5 dt 8
0.60000 0.9704 0.9620 0.9662 0.9651 § ln( T 0) - 7rln< o > (43)
0.80000 0.8998 0.8964 0.8981 0.8976 = .
20 090000 08216  0.8207 08212 0.8210 —e \It+¢/ NiteNx—t Xte
0.95000 0.7475 0.7481 0.7478 0.7478
099500  0.5608 0.5625 0.5617 0.5618 We may now deduce from (41) and (42) that
0.99950 0.4449 0.4465 0.4457 0.4458
0.99995 0.3684 0.3697 0.3690 0.3691 p= TWol'g (44)
0.20000 1.0066 0.9946 1.0006 0.9989 = 16r\°
0.40000  0.9959 0.9876 0.9918 0.9907 Hin{ =22
0.60000 0.9684 0.9631 0.9657 0.9651 c
0.80000 0.8990 0.8968 0.8979 0.8976
30 0.90000 0.8214 0.8208 0.8211 0.8210 P Wo
0.95000 0.7476 0.7480 0.7478 0.7478 Gp=——3—= , (45)
0.99500 0.5612 0.5623 0.5617 0.5618 27°ry 16ry
0.99950 0.4452 0.4463 0.4457 0.4458 2rHn|——
0.99995 0.3686 0.3695 0.3691 0.3691
0.20000 1.0043 0.9958 1.0000 0.9989 2
0.40000 0.9944 0.9884 0.9914 0.9907 P = T (46)
0.60000 0.9674 0.9636 0.9655 0.9651 = 16(a+ b))’
0.80000 0.8986 0.8970 0.8978 0.8976 o [ ET
40 0.90000 0.8213 0.8209 0.8211 0.8210 a—b
0.95000 0.7477 0.7479 0.7478 0.7478
0.99500 0.5613 0.5622 0.5618 0.5618 The last result is in agreement with that of Smythe (1951)
0.99950 0.4454 0.4462 0.4458 0.4458 d Collins (1963
0.99995 0.3687 0.3694 0.3691 0.3691 and Collins ( ).

Flat Inclined Annular Punch. Assume that the punch is
tilted about axis Oy in the positive direction, and that the angle
of rotation is «. The normal displacements under the punch
(37) can be expressed as

X(f)zaoﬁ Sc—dx_
A2 ANE-Ax—t w(p,$)= —ap cosd. 47

. - Substitution of (47) in (16) leads to the governing integral
Here the following new variables were introduced 47 (16) leads to the g & &

equation
po=To+X, r=ro+t, (38) i+ S" K, (y,r) ~ K (r,y) d
and the small quantities of the order of c¢/ry, x/ry, and t/r; X! r - b = x1(7)dy
were neglected. The same procedure applied to (18) and (30) a 2B
yields, respectively, = e, (48)
2nH P B>
P=20p/3, S x(ydt '~ (39) Itisreminded that the kernel K, is defined by (17). We may
—cVit+e conclude once again that since the stress distribution is singular
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Fig. 2 The dimensionless stress function g*

at the edges p = b and p = a, the function x, will have a
logarithmic singularity at the point p = b. Introducing a new
unknown function g as
xi(r)
ry=-——=-—,
q(r) rih

n —

r—>b
we may rewrite (48) in the form

AP=b r+b 2 A P-1 S”Kl(y,r)—Kl(r,y)

49

27y MY ) y=r
y+b o
X In|{—)dy=~——. (5
q(y)n<y_b> == 0

The problem was solved numerically by using both methods
from the previous section. The value of the tilting moment M
was computed in the first method according to the formula
(19) as follows:

n-l1 Xi+1
p+b
M=-2 i S In
Dla <p - b>

i=1 Xi

(20— b*)dp
p2~b2

The following formula was used in the second numerical
method

n—1 b
M=~-2 Ai+—=
3 {lo(
—q; i+.l_)_1 SXi+1 In /p+b (sz‘bz)dp
i+1 A » (p—b p >
i p°=b

2 2
n<p+b> (20°—b >pdp}. 52)
p—b P b

The integrals in (51) and (52) can be computed in terms of
elementary functions, namely,

2 2__ 2
Sln p+b\ (20"~b")dp _ /pz_bz 26+ oln pt+b ‘
o—b p2 o—b

(51

giv1—qi Sx”l I
A,

o

1
3

Sln p+b\ (20°—b*)pdp
p~—b

p—b o2 b
5 .
*3 B(p\ p? — B>+ 2b%n(p +A/ p* - B?).
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P
Table 2
n bla ’ Method 1‘ Method 2 ’ Average Exact
M M M M
0.2000 1.0028 1.0017 1.0023 0.99996
0.4000 1.0079 0.9959 1.0019 0.99878
0.6000 1.0012 0.9839 0.9925 0.98930
0.8000 0.9491 0.9368 0.9429 0.94084
10 0.9000 0.8658 0.8609 0.8633 0.86243
0.9400 0.7991 0.7982 0.7986 0.79830
0.9800 0.6677 0.6707 0.6692 0.66942
0.9900 0.5989 0.6027 0.6008 0.60115
0.9990 0.4392 0.4429 0.4411 0.44138
0.9999 0.3449 0.3479 0.3464 0.34661
0.2000 1.0012 1.0000 1.0006 0.99996
0.4000 1.0024 0.9971 0.9997 0.99878
0.6000 0.9941 0.9866 0.9904 0.98930
0.8000 0.9443 0.9389 0.9416 0.94084
20 0.9000 0.8638 0.8617 0.8627 0.86243
0.9400 0.7986 0.7982 0.7984 0.79830
0.9800 0.6685 0.6701 0.6693 0.66942
0.9900 0.6000 0.6020 0.6010 0.60115
0.9990 0.4403 0.4422 0.4412 0.44138
0.9999 0.3458 0.3473 0.3465 0.34661
0.2000 1.0007 0.9998 1.0003 0.99996
0.4000 1.0010 0.9976 0.9993 0.99878
0.6000 0.9923 0.9875 0.9899 0.98930
0.8000 0.9430 0.9396 0.9413 0.94084
30 0.9000 0.8633 0.8620 0.8626 0.86243
0.9400 0.7984 0.7983 0.7983 0.79830
0.9800 0.6688 0.6699 0.6693 0.66942
0.9900 0.6004 0.6017 0.6010 0.60115
0.9990 0.4407 0.4419 0.4413 0.44138
0.9999 0.3461 0.3471 0.3466 0.34661
0.2000 1.0005 0.9998 1.0002 0.99996
0.4000 1.0003 0.9979 0.9991 0.99878
0.6000 0.9914 0.9880 0.9897 0.98930
0.8000 0.9424 0.9399 0.9411 0.94084
40 0.9000 0.8630 0.8621 0.8625 0.86243
0.9400 0.7984 0.7983 0.7983 0.79830
0.9800 0.6690 0.6697 0.6694 0.66942
0.9900 0.6006 0.6016 0.6011 0.60115
0.9990 0.4408 0.4418 0.4413 0.44138
0.9999 0.3462 0.3470 0.3466 0.34661

Numerical computations were performed according to both

‘methods for different values of n and various ratios b/a. The

dimensionless quantity g* = Hlgl/{ac) is plotted on Fig. 2.
The conventions are the same as with Fig. | except for the
curve identification which is now related to Table 2. For ex-
ample, six dots in the curve pattern now correspond to b/a =
0.94, The dimensionless tilting moment M* = M/M, is pre-
sented in the Table 2. The quantity M, = 4a’a/(3tH) cor-
responds to the tilting moment producing angular displacement
« when applied to a circular punch of radius a. Here we no
longer have that peculiar property that each method gives either
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upper or lower bound for the solution. It does not hold for
b/a = 0.2, though it appears to be valid for /¢ = 0.4. All
the numerical results presented in this article are in excellent
agreement with similar data received in personal communi-
cation from Professor Mastrojannis.

An asymptotic solution for a very narrow [(a — b)/a] <<
1 annulus can be attempted as above. Assume

0COS0

o(p,$) = — A,
V- (o-n)?

Here, as before, 2¢ is the annulus thickness and ry is its average
radius as defined in (36). Substitution of (53) in (8) yields

(53)

(54

(H)=a ﬁ SC____d_x____
R N e N

Here the new variables were introduced in the manner similar
to (38). In the limiting case of r — b we can deduce from (50)
that

4H S <y+b> ] x1(»)dy
a= ——> yin{E—=) —2p | 2258
bh* b { y—b ,/yz__bz

z_zﬁHS r01n<ﬂ _op| XD
RN IO R VI N

Substitution of (54) in (55) yields after interchanging the
order of integration and subsequent integration

(35)

1

o= FHO [m(—@—")—z}. (56)

o C

A similar procedure performed on (19) gives
M= —1*ro,. 57
We may now deduce from (56) and (57) that
01= 7r2r3’
2HM 16(a + b)

= —-21. 9
o2 () ‘5’

Taking into consideration that for a circular punch of radius
a we have
40’
My=7", 60
=1 H (60)
the following expression for the dimensionless moment can be
written

0 64a3[ln< @+ )>—2]
a—b

We are unaware of a similar result published elsewhere.

(61)

Discussion

An attempt can be made to obtain an approximate analytical
solution. We can multiply both sides of (27) by 4rdr/

A/ — b* and integrate with respect to r from b + ¢ to a.
The result is

a a 1
4 S xolr)rdr +i S
bte b

NEE N
X {ln <§iz> {yln
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(a+b)e
(a—b)2b

-b)(a+y)
(y+b)(a—-y)

S“l x+b\ xdx
7 bnx“b Y

z_xz}x(](y)dy

a+ble
(a—b)Zb]' 62

2W0 b
= H {a—b—2 In

By using indentity (30), the limiting case of ¢ — 0 can be
computed

4 Xo(¥)ydy 2wo(a—b)
with
y+b (a+y)(y—b)
T(y) =1
v n<y—b>ln<(a—y)(y+b)>
“ x+b\ xdx
— Sb In (m) m (64)

Taking into consideration that x, does not change sign in
the interval [b, a], we can use the mean value theorem and to
rewrite (63) as

1 2wola—b)
Pil+—=T(N|=—""7"777,
[ ! 7r2 ( )] wH
with an immediate consequence
2W0(a - b)

P= I .
71'H<1 +=5 T Y)>
T

We know about the value of Y only that it is located some-
where in the interval [b, al]. This condition allows infinite
variation of T, thus making (65) of little practical value. On
the other hand, formula (65) is exact in two limiting cases,
namely for b — 0 and » — a. This means that an additional
investigation can reveal an optimal value of Y, making (65)
useful.

Yet another solution can be deduced from (18) and (30)
which can be rewritten as

(65)

S" ln<y+b> XoWdy _mwo
b y—b /yz _p 4H
Taking into consideration that Ay does not change sign in

the [b, a], we can apply the mean value theorem to (66), with
the result

(66)

1 In<Y+ b) S” Xo(W)ydy mw, (67)
Y \Y-b/ ., /yz_bz 4H'
Comparison of (67) with (18) vields
Y
TWq (68)

P=—"Ft—r.
Y+b
Hil
Again, the main problem with (68) is the fact that we know
about the value of Y only that it is located somewhere between
b and a, which allows infinite variation. This does not preclude,

however, from finding some optimal value for Y which would
make (68) useful. This investigation is beyond the scope of

“this paper.

The complete solution, namely, the explicit expressions for
the field of stresses and displacements in the elastic half-space
due to the annular punch indentation, can be derived in terms
of the function x. Indeed, in order to obtain the field of normal
displacements, one has to compute the integral

27 pa , d d
I(p,0,2)= S S o{po, Po)eodpoddy
©r \/PZ + 05— 2000C08(¢p — Po) + 2

(69)
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Substitution of (9) in (69) yields, after interchanging the
order of integration and subsequent integration,

o S  B(x) = Px (x,90)dxdey

b 0t xt— 20xc08(¢ — o) + 7

A b= g (x)dx }x(y@)ydy

-2 =2 y-p

1(p,9,2) =% S

0
2L =6)

(70)
Here ) '
hn =3 (N e+ +2 -+ (o-02+2),
b =3 (Vo0 + 24 (o-x7+2),
ZZ 172
g(x)=x|:l+p2—_;:! (71)

Note that function g is inverse to both /; and /,. The method
of integration is described in (Fabrikant, 1989). The complete
solution is to be published separately.
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This paper contains an analysis of a two-dimensional annular region whose inner
boundary is that of either a hole or a perfectly bonded, rigid inclusion. Fast-con-

verging Green’s functions for a point load or a dislocation on the annulus are
determined using analytic continuation across the boundaries of the annulus.

1 Introduction

Problems of annular regions have applications to many dif-
ferent engineered structures such as pressure vessels, rollers,
and toughness test specimens, and their solutions have occu-
pied mathematicians and engineers for many years. In the first
book published on the theory of elasticity, Lamé (1852) in-
cluded the solution for the stresses in a pressure vessel under
uniform external or internal pressure (Timoshenko, 1953). The
general solution for the annulus was given by Michell (1899)
in his landmark paper on planar elasticity. The Michell solution
determines the Airy stress function for the annulus from the
Fourier expansions of the boundary stresses, given that the
solution is nondislocational (see Timoshenko and Goodier,
1970). Michell also showed that the stresses in the annulus are
independent of the elastic constants provided that the resultants
of the tractions on the inner and outer boundaries are zero.
An analysis of a ring test specimen loaded by diametrically
opposed compressive point loads was undertaken by Ripperger
and Davids (1947). Stresses at critical points in the loaded
annulus were determined by solving what was essentially the
Fourier series of the Michell solution. Modern analyses of the
annulus containing a crack includes the finite element method
(Ahmad and Ashbaugh, 1982) and the boundary collocation
method (Bowie and Freese, 1972).

Delale and Erdogan (1982) solved for the Green’s function
for a dislocation on the annulus with a Burgurs vector normal
to the boundaries of the annulus. This solution was used to
determine an integral equation for a crack on the annulus. By
solving the integral equation subject to the condition that the
normal and shear stresses along the crack are zero, the crack
opening displacement and stress intensity factors for the crack
were found.

This work derives the Green’s functions for a point load or
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a dislocation in an annular region. Two types of annular re-
gions are examined: that of the annulus whose inner boundary
is a hole and that of the annulus whose inner boundary is a
perfectly bonded, rigid inclusion. Thus two boundary value
problems are examined for the inner boundary: that of the
stress-free boundary, and that of the rigidly displaced bound-
ary. For the outer boundary, only the stress-free condition is
examined; however, the method is easily extended to solve for
the displacement free boundary.

Since the Green’s functions considered here are derived for
a finite body, the Green’s function for the point load must be
for a system that is in equilibrium. This condition is not nec-
essary for the displacement free outer boundary, and the two
problems, while similar, cannot be formulated together as for
the case of the inner boundary.

2 Formulation

The method of solution used here is that of analytic con-
tinuation across the boundaries of the annulus (Milne-Thomp-
son, 1968). The complex variable method of Muskehelishvili
(1954) is used to define the stresses and displacements in the
elastic plane in terms of the Kolosov potentials, ¢(z) and ¥(2):

o+ 0y =4 Re {® (2)], M
Oyy = O+ 200, = 2{Z®" (2) + ¥ (2) }, 2
2u(u+iv) =x(z) —2¢' (z) ~¥(2), )]

where oy, 0y, and oy, are the stresses and v and v are the
displacements in the x-y plane, «=3 —4» for plane strain and
k=(3—»)/(1 +») for plane stress where v is the Poisson’s ratio,
@ is the shear modulus, z is the complex coordinate: z=x+ iy
where i=+/ — 1, the bars denote complex conjugation, Re de-

" notes the real part of the function, and, following the common

notation, ®(z) =¢’(z) and ¥(z) =y’ (2).
The polar form of the stresses is:

o,+05=4 Re {®(z)], “@
099—0',,+2i0'rg=2€2i0{zq’,(Z)+\I,(Z)}y (5)
where 0 is the rotation of the stresses. If § is measured from

the origin, then z=re”, where r is the modulus of z, and &*?
=z/Z.
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The annulus is pictured in Fig. 1; the center region contains
either a hole or perfectly bonded, rigid inclusion. The boundary
condition on the inner boundary of the annulus containing the
inclusion is

— (d*\ [
2u(u+ivy=«xp(t) —td’ " -y " =2u(6 +iwt) (6)

where ¢=ae”, 8 is complex and represenfs a rigid body trans-

lation, and wis real and represents a rigid body rotation. Taking
derivatives with respect to ¢, Eq. (6) becomes

A Lz

Fig. 1 Problem configuration for the annulus

2
—f{a @ & P (L
o(1) -2~ | +=3" (=) +5 ¥ (] - 2piw=0. (7
«® (1) PTG TR ) T Ae=0 ()
Also, for the annulus containing a hole, we have at the inner
boundary

&\ &

O, +iog=®(t)+® " 7\ _Cg (<

o M o A 2
t t) o\t

where f(¢t) is the complex sum of the normal and shear stresses

on the inner boundary at the point ¢. Equations (7) and (8)

can be combined into one boundary condition for both the

hole and the inclusion,

2 2 2 2
— a —_ a2 +
wt(n+3(L) Lo (L) -5¥ (L) +i0=228
t t ] 2\t K+ 1

where a=1 for the hole, = —« for the inclusion and

Q= —(a—1)2pw/(x+1).

Similarly, the boundary condition on the outer boundary is
(b P (B*\ B[P
a(n+2(—)-=3' (5] -5¥(=

Wxe(7) ¥ \e) e
where, in this case, ¢=be®.

A Green’s function solution is sought for the annulus of
Fig. 1 for a=r=b. Since the strength of the singularity in the
Green’s function is known, define

®(2) =Po(2) +21(2) + 22(2), 11
¥ (2) =¥o(2) + ¥ (2) + ¥2(2), (12)

where &,(z) and ¥,(z) are the potentials for the known sin-
gular solution for the point load or dislocation at the point ¢
in the infinite plane, ®,(z) and ¥¢(z) contain reactive singular
sources at the origin, and ®,(z) and ¥,(z) are nonsingular
and are determined so that the boundary conditions are sat-
isfied.Then (9) and (10) become
— (& az—, A\ - (&
oz<I>2 (Z) + q)z / P q’z ; t2 ‘I’z /

=f(t) ©®)

S0, 9

=0, 10

=G,(2), (13)

Fig. 2 Analytic regions of the annulus
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- (b - (BN b — [P
®,(z) ”’2(72) -~ % <7> —7%(7) =Gy(1), (14

where
2 2 2
Go(t) = —ad, (z) — B, <‘17> +5't—${ <%2->'+“7§1 <%2>
2 ' ) 2
— ady(2) —$0<—‘-’t—> +f'?55 <§> +%§0<"7>
. otk .
—19+mf(t) 15)
and

— [\ b— (¥ b~ [P?
Gb(f)=—¢1(2)_q)1<7>+“t‘q)1,<7>+7‘1/1<7>
— [\ b _ [P\ b _ (P

—®y(2) —‘I>0<T> +7‘I>6 <7> +?“I’0<7>- (16)

The function &, is analytically continued into the regions S*~
and S°~ shown in Fig. 2 by defining

P77 (2) ze€ST

P(2)={®; (z) z€S"

837 (z) zeS" a7

so that ®3 (a*/7) and &5~ (b¥/Z) are analytic in §*. Also,
unless otherwise stated, ®,(z) = ®; (z) since the solution is in
the region S*. If the definition for ¥,(z) is chosen:

& (o fd
¥,(z) =2 1‘1’2‘ <;> +&;(z) —zd; (z)}, (18)
then (13) reduces to
a®y (1) =857 (1) = G,(1). (19)

Again, ¥,(z) may be defined so as to determine a solution on
the outer boundary.

b (= (¥ ,
‘1’2(2)=? 5 “z‘ +®,(z) —2P5 (2) ¢, (20)
and (13) becomes
&3 (1) — 5 (1) =Gy (2). @1

Equations (19) and (21) can be solved by considerations of the
Plemelj formula:

1 G, (¢t
1§ Gt/ )/adt+
t-z

1 £ Gy(®)

dt
2mid e, t—2

& (z)=——
2mi Cy
+F(2)+P(2) +po+piz, (22)

where C, is the contour =g and C, is the contour r= b, both
integrals are taken in the counterclockwise sense, F(z) and
P(z) are analytic functions in $~US*US?". The function
P(z) has the form

P(z)= anzn'*’p—nz_"-

n=2

23)

The function F(z) is arbitrary; it is chosen so that a more
convergent form of P(z) is obtained. The potentials &5~ ()

and ®5~ (z) are determined from (19) and (21). Next, Egs. (18) .

and (20) are set equal to each other to obtain the compatibility
condition of Milne-Thompson (1968)

— [P
(D'~ &) (22(2) —2%5 (2) ) — DB}~ (;)

+ A (‘-’z—2> =0. (24)

By expanding the terms in (24) into a Laurent series, a solution
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Fig. 3 Equilibrating loads for the point load on the annulus

for P(z) can be found depending on the choice of F(z). Con-
sequently, a first choice of F(z) =0 is best used to determine
the initial coefficients of P(z). By inspection, less convergent
coefficients can be deleted by choosing appropriate functions
for F(z). The final step of the solution is to determine ¥,(z)
from (18) or (20).

The constant /2 in Eq. (9) does not directly affect the so-
lution; it can be seen from (1) and (2) that &(z) can have an
additive imaginary constant without changing the distribution
of stresses in the body. However, when the compatibility con-
dition is applied, only the real part of p, can be determined;
the imaginary part depends on the choice of Q. If a consistent
choice of the two constants is made and then used when solving
for ¥,(z), no spurious moments will be added to the solution
and boundary conditions will be satisfied. When the final result
is found, any imaginary constants in ®(z) can be deleted,
particularly those that are inversely proportional to the inner
radius of the annulus.

3 Solutions
The singular potentials for the point load or for the dislo-

cation at the point { in the infinite plane are (Muskhelishvili,
1954):

A
®(z)=—, (25)
z—¢
BA At
Z)y=—" 3 26
(D= 26)
where
P.+iP
S for the point load
2wk + 1)
A= porib
X y h is] .
»——_ZWII(K-F D for the dislocation
(27)
and
—k for the point load
B= . . (28)
1 for the dislocation.

Here, P, and P, are the point loads and b, and b, are the
dislocations; the relation between these two solutions was
pointed out by Dundurs (1968).

3.1 Point Load Solution. The applied loads on a finite
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body must be in equilibrium if a solution is to be found.
Therefore, the point load Green’s function for the annulus
must be for a system of point loads that are in equilibrium.
Equilibrating loads are most conveniently placed at the center
of the annulus to counter the action of the applied point load
at the point {. This choice will not leave any extraneous loads
when a Green’s function is used to determine the stresses in
an annulus under applied boundary tractions. Since the trac-
tions must be in equilibrium, in the overall solution the loads
at the center will cancel.

For equilibrium, the following complex point load and mo-
ment are applied at the center of the annulus as shown in Fig.
3:

29
(30

P=— (P +iP)),
M= P Im({) — P,=Re({).
The potentials for these loads are (Muskhelishvili, 1954)

A
@0(2)= 7, G1)
kA IM1
‘I'o(Z)=——lZ— > (32)

where A is defined in Eq. (27) for the point load. In the case
of the annulus with a hole, boundary tractions are applied on
the inner boundary such that a net force and moment are
exerted on the annulus equal to the point loads applied to the
center. The function f(7) chosen for the solution here is

2 2 2
£ =<1>o(z>+$o<-”t—2> —%—5,; <”7> —”7%<"72> (33)

so that

f(t)—(x+1)A{ 2;2} {z—;—(x—%l)z—%}. 34)

This simple solution has a sinusoidal distribution of normal
and shear tractions for the point loads and a constant distri-
bution of shear tractions for the moment. This result is similar
to one previously obtained by Dundurs (1963). In determining
the Green’s function for a point load and moment in an elastic
embedded disk, he obtained the same distribution of tractions
for the limiting case of a disk with a free boundary. He con-
cluded his solution was a convenient Green’s function for the
disk as the tractions vanish for any problem where the applied
loads are in equilibrium.

The total solution for the equilibrated point load on the
annulus is given in the Appendix. The best convergence for
P(z) was achieved when the function F(z) in Eq. (22) was
chosen as

1 1 1

o= A{[ T E]
az<b2 @) (7 0\ Se=di/b
¢) (z—d¢/b%y

— a b - b 1
+Az B ( )§‘2<f——>m—)§} (33)

Note that when ¢=0 or b—o, P(z)=F(z)=0

3.2 Dislocation Solution.
tion is derived in the same manner as the point load Green’s
function. There is only one consideration to make: When the
Green’s function is used for an edge crack on a hole, displace-
ment continuity must be satisfied on a contour that encloses
the edge crack and the hole. This is done by using an appro-
priate Green’s function. By adding the solution for a dislo-
cation at the origin that is opposite in sign to the dislocation
at the point ¢, a Green’s function that enforces displacement
continuity is obtained (Comminou and Chang, 1985). The
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The dislocation Green’s func- .

solution for the dislocation at the center of the annulus with
free boundaries is:

(2)=—-A- +2A 36)

e a2
ili 1 41
v+ad* 2 z
When the Green’s function is used for the edge crack on a
hole, the potentials for the dislocation at the center are added
to the already determined potentials for the dislocation at the
point ¢ in the annulus. The entire solution is given in the
Appendix.

Yo(z)=—24 (37

4 Conclusion

Green’s functions for an annulus whose inner boundary is
a free surface or a rigid, perfectly bonded inclusion have been
obtained using the complex variable method of Muskhelishvili
(1954). Be carefully defining the analytic regions for an an-
nulus, the potentials describing an equilibrated point load and
a dislocation were found in the form of functions plus an
infinite series. By taking functions that are singular outside of
the analytic regions of the annulus and expanding them in a
Laurent series for the annulus, less convergent terms in the
infinite series were cancelled by adding and subtracting the
nonsingular functions from the function part and the infinite
series part of the potentials. The convergence of the infinite
series is dependent on the ratio a/b; this method is not ap-
propriate for analyzing thin-walled annuli. For problems con-
cerning thin-walled members, the reader is referred to Cheng
and Finnie (1989).

The resulting Green’s functions can be used to solve prob-
lems of an annulus with applied tractions on its free boundaries
that contains a crack. Future work will consider curved crack
propagation in an annulus acted on by concentric point loads.
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APPENDIX

Potentials for the Point Load and Dislecation
The Kolosov potentials for the point load are:

1 1 « 1 | | 1
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The Kolosov potentials for the dislocation are:
1 1 1 1 1
q)(Z)_A{z—f_a[z—az/?—z—azf/bz} 72— b
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where ¢ is the inner radius and b is the outer radius of the
annulus, ¢ is the point at which the point load or dislocation
is applied, z is the point where the stresses are measured, and
A is defined for the point load or the dislocation in Eq. (3).
The functions P(z) and Q(z) are Laurent series in z and are
defined as follows,

+

o

P(2)=Yp"+p_" (A5)
n=2
and
Q(z) = 2QnZH+Q—nZ_n (A6)
‘where )

A ) . @\l 41 {5\
pn—D{— (n"~Dfi <§'—?>§,,—fz'$: E’_’Jrﬁﬁg-(bZ) }
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Introduction

It is often observed in experiments dealing with bone im-
plants that the bond at an interface breaks before the formation
of cracks (Gharpuray et al., 1990). This may happen either on
the bone side or the implant side of the material used to provide
adhesion. Moreover, the subsequent cracks appear to emanate
from the interfaces that, after debonding, allow slip. This
suggests that it is worthwhile to analyze the interaction of an
edge crack with a slipping interface.

The problem is formulated using a continuous distribution
of dislocations which leads to a singular integral equation. The
singularity at the open end of the crack that touches the in-
terface is studied using the Williams technique. The integral
equation is solved and the stress intensity factor extracted using
a numerical method.

Formulation of the Problem

As shown in Fig. 1, let region 1 with shear modulus x; and
Poisson’s ratio »; be the half plane containing the crack and
region 2 with shear modulus u, and Poisson’s ratio », be the
half plane without the crack. The crack of length ¢ emanates
from the frictionless interface at an angle 4 to the positive x-
axis. The half plane 1 is loaded by a constant tensile stress T
at infinity, as shown in Fig. 1, while the two half planes are
pressed together normal to the interface. The boundary con-
ditions to be satisfied in this problem are:
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On the interface (x = 0),
U0, »)=uP(0, )

0120, ») =020, )

o0, ) =030, ) =0. )
Along the crack (0<r<c),
o'(r,6)=0

aS(r.0)=0. )

'><

EERERA

Fig. 1 Geometry of the problem for a finite crack

Transactions of the ASME
ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistributi&oﬁ%{égn% QS]R?I:QH'CQX% or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The crack is represented as an unknown continuous distri-
bution of edge dislocations. This is most easily formulated in
terms of the complex potentials ¢(z) and ¥(z), as defined by
Muskhelishvili (1953), so that

G+ 0gg =2[¢ " (z) + &' ()]
O — Oy + 2i0,9=26""[2" () +v ()]
2u(u+ iuy) = k(2) — 267 (2) — ¥(z) (3)

where z = x + iy = re®, and x = 3 — 4v for plane strain,
x = (3 — ») /(1 + ») for plane stress, with » denoting Poisson’s
ratio. '

The potentials for the discrete edge dislocation in the vicinity
of a slipping interface between two half planes can be obtained
from the concentrated force solution given by Dundurs (1962)
and the correspondence between concentrated forces and edge
dislocations (Dundurs 1968), and may be written as

$1(z)=b log(z —z,) — (1 — D)b log(z +2,) — Db log(z +Z,)

—(1-D) b(zo‘*‘—fo)
Z+2,
— bz, - _
¥1(2) = b log(z —z,) "z —(1-D)b log(z+z,)
— bz, B b(zo+20)
—Db log(z+2z,) + (1 D)z—+z—a+(1 D)7z+z
bz, bZo (2o+20)
- —_ - —_—— 4
Dz+z,, (1=D) (2 + 2, “
R b 0 _o
$20)=D(b~5) log e~z + D Z 222
i o bzet2z) bz,
Vx(R)=D(b—b) log (z—2,) —D p—, Dz~za
ng (Zo+z;)
—D === (5
D (ZMZO)Z ()

where z, specifies the position of the discrete dislocation in
region 1, and with b, and by denoting the components of the
Burgers vector,

_ by —ib)e”
BTG

_ palx; + 1)
paliy + 1)+ py(z + 1)
The subscripts 1 and 2 denote regions 1 and 2, respectively.

SEERS

H2.V,

Fig. 2 Geometry of the problem for an infinite crack
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By enforcing the condition of traction-free crack faces, a
singular integral equation of the Cauchy type is obtained as

c 2§ i0 —
S {__q(i)f +B(r)K1(q,r)+B(r)Kz(q,r)}dr+f(Q) =0
0

O=g¢g=c 6)

where B, and B, are now the unknown dislocation densities
and K,(q, 1), K, (g, r) are given in the Appendix. For the
specific loading condition investigated in this paper,

1 )
f@=5T +e*). ™

Equation (6) can be separated into its real and imaginary
parts to obtain two coupled singular integral equations which
must be solved for the unknown real-valued dislocation den-
sities B, and By. These equations can be written as

) 7o | BeoRe i K
0

™y r—q 27

+B,("Im [Kl—Kzner‘zzll Re [f(@)] @)
l S B—r(L)df'-f-i S {B.(rRe [K|—K}]
Ty r—gq 27 Jy

+ By(MIm [K1+Kzndr=“‘2:11 Im (@1 ©)

Since the crack terminates at an interface, the singularity at
the crack tip touching the interface may not be of order
—1/2. Hence, the crack-tip singularity should be determined
before the numerical solution of (8) and (9) is attempted.

Stress Field Singularities at the Crack Tip

The length ¢ of the crack in the problem indicated in Fig.
1 does not affect the nature of the stress singularity at the
interface, and hence in the singularity investigation the crack
can be viewed as of infinite length. The half plane with the
crack can then be treated as two wedges pressed against the
other half plane as shown in Fig. 2. Let 1 and 3 denote the
two wedges that make up the cracked half plane, with u; and
v, being their elastic constants, and let 2 denote the uncracked
half plane with u, and », being its elastic constants. The bound-
ary conditions that must be satisfied for the three regions are

ud" (r,—m)=ufd (r,—m)

o (r,— m) =09 (r,—m)=0

o4 (r, — m) = of (r,— ) (10
aiP(r, y—2m)=0
air, y—2m)=0 (11)
0(r, ¥) =0
o (r, ¥) =0 (12)
u(r, O=u (r, 0)
aP(r, 0)=0% (r, 0)=0
os(r, 0)=ofg (r, 0). (13)

The nature of the singularity can be determined by employing
the Mellin transform, as explained by Bogy (1971), or by simply
using the Williams (1959) technique. Convenient for the latter
approach are the elastic fields tabulated by Comninou (1977).

The results of the asymptotic analysis are as follows: The
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Fig. 3 Roots of A(Aja,y) for —1<A<0

stresses in the vicinity of the crack tip touching the interface
are of the form

ay=rif0), r—0. (14)

The exponent A is determined by the condition that the de-
terminant of the homogeneous system that follows from the
boundary conditions (10)-(13) vanishes. Omitting the multi-
plier 2[uz (& + 1)+ u1 (k2 + 1)] sin® (A7), the determinant is

Ao y) = 2M2 + N)(1 — e)’sin’y [N2+N) siny - cos2y]
+2M2+N(1 + a)’sin® v cos® y
+ 202 + N1 — esin? y {cos[2(1 + AWl
+cos[2A7 —2(1 + N)v1}
+ M1+ a)sin2y {sin[2(1 + )yl
—sin[2A7 — 2(1 + N)v1}
—4sin[(2 + N)ylsin[Ar — (2 + N)y] {cosAT

+cos[N(r —2y)]} (15)
where v is the angle the crack makes with the interface, and

azﬂz('ﬂ +1)—pla+1)
paies + 1)+ p(ie + 1)

The first observation that can be made is that A depends on
the single composite parameter «. This is not a coincidence,
but rather follows from some general properties of frictionless
contact along a straight interface (Dundurs, 1975). Although
complicated in A and v, it is seen from (15) that the expression
for A is a simple quadratic in «. Thus, it is easy to obtain the
loci of A = constant in the «, v plane by selecting the values
of A and v and computing the corresponding value of «. The
results of the computation are shown in Fig. 3 for
—1<Re(M\)<0. The question of complex roots is left open
since the study of real roots in this range appears of greater
concern.

The computations reveal that only a single real root
— 1 <A< exists in the physical range O<y<w, —1=a=1)
of the problem. Thus, there is no singularity at the crack tip
for the mode when the crack faces move in a direction parallel
to the interface while for the mode perpendicular to the in-
terface, the stress singularity has the order shown in Fig. 3.

It may be of interest to note that the singularity at the open
end of the crack is not directly related to the singularities of
two wedges that are pressed against a surface. If two wedges
with angles that add to & are a finite distance apart, the orders

962 / Vol. 58, DECEMBER 1991

of the two singularities at the vertices are those given by Dun-
durs and Lee (1972) and are generally different. As the two
wedges are allowed to approach each other, we have what
might be called an interaction between two geometric singu-
larities, the apparent result being that the resulting common
singularity is associated with an entirely different value of A
even in the case of v = #/2.

For the special case when the crack is perpendicular to the
interface, or v = /2, A(\ja,7/2) factors as

AN,/ 2) = A\ ) - Ax(Ajor) (16)

where
Aj(\;0) =cos(Am) + o —2(1 —a)h— (1 — a)h?
Ag(\;e) = cos(hr) — 1 = 2(1 — o)A — (1 — )A2.

The roots of A, correspond to crack-tip singularities for the
symmetric or mode I crack, and those of A; correspond to
crack-tip singularities for the antisymmetric or mode II crack.
It is found that A, has roots for — 1 <A<0, whereas A; does
not, which means that the mode [ crack for y=7/2 has no
singularity at the crack tip touching the interface.

It is of interest to note here that when y=x/2 (or 6=0 as
in Fig. 1), the two coupled equations in By and B,, (8) and (9),
decouple to two equations, one each in By and B,. Employing
the method used by Erdogan and Biricikoglu (1973) to find
the singularity at the crack tip at the interface gives the same
result as obtained from (15). From the equation for By,

A(\a)=0 a7
and from the equation for B,,
Ay(M;) =0. (18)

The same result is also obtained in the study by Dempsey and
Sinclair (1981).

Stresses Near the Crack Tip and Stress Intensity Factors

Once the zeros of A are obtained, stresses near the crack tip
at the interface are obtained in a straightforward manner in
terms of a free constant by back substituting into the simul-
taneous equations previously obtained. The normal stresses
across the interface are found to be always positive on one
side of the crack and negative on the order; thus, the crack
will always cause separation of the interface. The only excep-
tion to this rule is for the symmetric mode I crack normal to
the interface where normal stresses across the interface are
always compressive if the free constant is chosen to be negative.
Separation at the interface is not considered here, and hence
stress intensity factors are given only for the special case of
the symmetric mode I crack.

Once the crack is assumed to be a mode I crack normal to
the interface, equation (9) becomes trivial and equation (8)
gives the Cauchy singular equation to be solved as

L {;_;_Z(I_Dyw—”} By<,)dr+—_“12:1 T=0
1

T Jo (g—1r q+r (q+r)3
0<g=c. (19)

This equation is solved numerically using the method de-
scribed by Gerasoulis (1982). At first the limits of integration

. are changed to (—1, 1) by the substitution

1 1
q=5c(s+1), r=5c(t+1). (20)

Then, assuming square root singularities at both ends of the
crack, the unknown dislocation density may be expressed as
B,(1)=g(n(1-1)~", @1

where g(t¢) is regular in (—~ 1, 1). The function g(¢) is then
approximated by piecewise quadratic polynomials and the re-
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Fig.4 Stress intensity factors for a crack normal to a slipping interface
for different combinations of materials

sulting system of linear simultaneous equations is solved to
get g(t) at selected collocation points in the interval (-1, 1).
However, an additional condition is required to solve the sin-
gular integral equation. This is taken as

&(-1)=0 (22)

in order to remove the square root singularity at the tip of the
crack touching the interface.

Once equation (19) is solved for the unknown dislocation
density B, (¢), stress intensity factors are calculated from the
expressions given by Erdogan (1983) as

2
Kr=—"% lim [2(c— 1] B, (5. 23)
K1+ 1 r—¢
On substitution for B, (r), (23) becomes
K t=1
r_gt=1 24)

™Ne N2

The resulting mode I stress intensity factors for different
values of material constants are shown in Fig. 4. It can be seen
that for @ = ~ 1 (i.e., po/u; = 0 or the edge crack in a half
plane), the expected value of K; = 1.12 (Paris and Sih, 1965)
is obtained. For the case of @ = 1 (i.e., uy/pu; = o or when
the half plane not containing the crack is rigid), the stress
intensity factor obtained is 1. This is as expected since the full
rigidity of the abutting half plane causes normal displacements
to vanish, and the problem reduces to that of a Griffith crack
due to symmetry.
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A Micromechanics Analysis of
Cracks in Unidirectional Fiber

Jalees Ahmad

Battelle Memorial Institute,
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Composites

The elastic problem of a crack normal to a bimaterial interface is addressed in the
context of unidirectional fiber composites. The structure of asymptotic crack-tip
stress fields is obtained numerically. The numerical results are then analyzed to
formulate criteria for assessing cracking normal to the fiber, interface splitting, and

fiber pull-out.

Introduction

Failure in fiber composites is often a result of damage which
starts close to an existing notch or a crack. The objective of
the present work is to investigate how the concepts of linear
elastic fracture mechanics (LEFM) of homogeneous materials
can be exploited in characterizing crack-tip damage in (non-
homogeneous) fiber composite materials. Specifically, the
plane-strain problem of a crack with its tip at or close to a
bimaterial interface is considered. The crack resides entirely
in one material (designated as material 2 in Fig. 1) and is normal
to the interface. Both materials 1 and 2 are assumed to be
elastic and isotropic.

The problem depicted in Fig. 1(a) has been addressed in a
number of articles. For example, see Zak and Williams (1963),
Bogy (1971), Fenner (1976), and Cook and Erdogan (1972).
Using the eigenfunction expansion method and Mellin trans-
form, these articles provide the form of the crack-tip stress
and deformation fields as r — o. The key result of these
investigations is that as the crack tip is approached, the stress
field under opening mode (Mode I) loading is of the following
form:

o= Qr(r)" " 'g;(6,0,8) )
in which « and 8 are the bimaterial constants of Dundurs

(1969) and 0 < N, B) =< 1 is the smallest real root of the
following equation:

2N (o —B)(B+1)— o+ B2+ (1~ BFcos(At) = 0. @

The functions g; are unobtainable in closed form (unlike in
the homogeneous case), but can be found numerically. Qy, the
intensity of the singular crack-tip stress field, is determined
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using the boundary conditions for a specific problem. Note
that Q; would be called the Mode I stress intensity factor (X))
of LEFM if the two materials were the same. In that case,
both « and 8 would be zero and N would be equal to 1/2.

Values of K for specific boundary value problems of a crack
whose tip is close to the interface (Fig. 1(#)) have been given
by Cook and Erdogan (1972), Isida (1970), and Erdogan and
Bakioglu (1976). In this case, the crack-tip stress field is exactly
the same as for a crack in a homogeneous solid (Williams,
1972), that is

ay=Kpr %Gy(0). (3)

Material

Material Material

_..’_x

Fig. 1 The plane problem of a crack normal to a bimaterial interface
with crack tip (a) at the interface, and (b) close to the interface
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Outer boundary of K~dominant region

Quter boundary of nonlinear material zone
(inner boundary of K-dominant region)

Fig. 2 The K-dominant region (shaded)

.Lines of Symmetry

s N
'yl

® 1
H
— [ 1
2a—~

Fig. 3 The boundary value problem solved by finite element method
(FEM) with d = 0.0 (Problem A) and d < a (Problem B) and zero normal
displacement at X = + o

In fracture mechanics, a macroscopic characteristic length
must always be associated with the asymptotic crack-tip fields.
This characteristic length (c¢) is the shortest of the nonzero
distances from the crack tip to any of the boundaries of the
solid containing the crack, and to the nearest point of load
application. In a bimaterial system, the nearest boundary could
be the bimaterial interface. For a given boundary value prob-
lem, the length ¢ may be used to scale the intensity (Q; or K})
of the crack-tip stress fields. But more generally, ¢ helps define
a radial distance r, << ¢ beyond which Eqs. (1) and (3) no
longer accurately represent stress fields. For the homogeneous
material case, r, (Fig. 2) is often referred to as the outer bound-
ary of K-dominant region. The validity of Egs. (1) and (2)
prevails over an annular region which encompasses the fracture
process zone of dimension L,, and the inevitably present zone
of inelastic deformation, r, (Fig. 2). As long as r, is large
compared to smaller scale heterogeneities (e.g., interface thick-
ness, interface irregularities, and grain sizes of materials), the
condition for the validity of Egs. (1) and (2) may be stated as:
(ro = rp) >> L,,. Later in this paper these concepts are called
upon to discuss relevance of the numerical results.

In the present paper, we investigate the efficacy of Q; for
analyzing the behavior of cracks in bimaterial systems. We
first focus on finding the outer boundary of Q-dominant region
for the specific boundary value problem shown in Fig. 3 using
the finite element method (FEM). Then, the results are gen-
eralized to other geometrical configurations by normalizing
the r, for various material combinations by a characteristic
length (c). Next, the numerical results are used to assess the
relative tendencies of cracks to propagate in self-similar fash-
ion, cause splitting of the interface, or cause fiber pull-out.

Numerical Study

Numerical solutions for both Problem A and Problem B
(Fig. 3) were obtained by the displacement finite element
method. Eight-node isoparametric elements of general quad-
rilateral shape were employed. The quadratic shape functions
for these elements can be found on page 131 of Bathe (1976).
The elements contain four corner and four midside nodes.
Element stiffness matrices were generated using 3 X 3 Gaussian

Journal of Applied Mechanics

Table 1 Summary of numerical resuits
- - pylp
Case a p 1y f Q ro/c (ulo.g)
A-1 0.00000 0.00000  0.5000 3.128 1.2650 107! 1.000
A-2 -0.81818 -0.23377 0.6672 4.420 0.0712 1074 10.000
A-3 -0.98020  -0.28006  0.7061 29.750  0.0010 10710  100.000
A-4 0.81818 0.23377  0.2464 14,380  4.3915 0.6 0.100
A-5 0.98020 0.28006  0.0852  119.800  7.1271 0.8 0.010
A-6 0.72843 0.20812  0.2942 9.854  3.7362 0.5 0.157
A-7 -0.72843 -0.20812 0.6471 3.473 0.1452 1073 6.365
B-1 -0.72843  -0.20812 0.5 3.128  0.9366 0.1 6.365
B-2 -0.72843  -0.20812 0.5 3.128  0.6557 0.1 6.365
Y
15°

———l (©0™) fe—

4a.

F+—(CHI0™)

A o
—-L:z:ln"‘a——

e tCHE 2 107 ]

Jo )

4b.

{CHE 11071 —=]

[e—wcna™
K2 & 107 o

4c.
Fig. 4 Finite element mesh close to the crack tip

quadrature and assuming plane-strain condition. The global
stiffness equation was solved using the Gauss elimination
method. The finite element discretization domain is bounded

by the dashed lines shown in Fig. 3.

For Problem A, solutions were obtained for the seven dif-
ferent material combinations designated (A-1 to A-7) in Table
1. In each case, the crack length (a) was taken to be equal to
the material 1 width (b). Uniform displacement (A) was ap-
plied at a distance of 10 times b (H/b = 10.0). The material
combinations in Table | are given in terms of Dundurs’ pa-
rameters, defined as:

my— pm
azﬂz 1L — @)
Py + ity
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gt =D = m(m=2) 5
My + gty
where, for plane strain m; = 4 (1 — »;), and for plane stress

= 4/(1 + »). p and v represent the shear modulus and the
Poisson’s ratio with the subscripts indicating the material. Note
that in all cases the crack is taken to be in material 2. Figure
4(a) shows the finite element discretization around the crack
tip. The wedge-shaped elements were formed by collapsing the
eight-node general quadrilateral elements. No attempt was
made to enforce crack-tip stress singularly by relocating the
midside nodes. The radial dimension of the crack-tip elements
was taken to be 107! times the characteristic length (c), which
for Problem A is the same as the dimension b. As seen later,
this degree of mesh refinement is sufficient to accurately model
the crack-tip stress and deformation fields.

Surrounding the crack-tip elements are rings of elements
with each consecutive group of three rings representing a dec-
ade of radial dimension (Fig. 4(b)). The radial dimension of
each successive ring within a group is 2, 6, and 10 times the
outer dimension of the previous group of rings. This mesh
design allows for smooth element size transition from the crack-
tip region to the outer domain while maintaining a maximum
element aspect ratio of 4. The outermost ring group culminates
with its outer boundary shaped as a rectangle (Fig. 4(c)) of
dimension ¢ X 2c, and fits into the far-field mesh which con-
tains a uniform grid of elements of size (b x b/3). Overall,
the mesh contains 426 elements with 1383 nodes, each with
two degrees-of-freedom.

For uniform remote stress (o), the Irwin (1957) exact solution
for colinear cracks (with H — o0) gives K; 1.12838 ¢

7wa. Using the computed crack opening displacement, v (r,
), at r/c = 107° obtained by FEM corresponding to uniform
apphed stress along the edge and same material constants, K,

1.13244 ~/7a. The 0.36 percent difference from the exact
solutlon is attributable to numerical error and to the fact that
the FEM result is for a large but finite H/(a + b). The problem
with uniform applied stress (rather than displacement) was
analyzed primarily to assess the accuracy of the FEM solutions
of the other cases in Table 1 using the discretization shown in
Figs. 4(a) through 4(c).

For cases (A-1) to (A-7), one can define dimensionless quan-
tities Q and f as follows:

Qr=0,,(r,0) (r)' " (2m)""? (6b)
J= (pmy+pam,) l(})(,;r;r) (7a)
where
<£2+m1— 1> <M+m - 1>
gir?: B 2N s )R- (0)

Both the stress normal to the crack line, o,,(r, 0), and half
the crack opening displacement, v (r, ), are, of course, limiting
values as r — 0. Equations (6b) and (7b) provide the means
to obtain Q; values using the FEM integration point stress and
nodal displacement solutions, respectively. The value of A used
in these equations can be found by either solving Eq. (2) or
by using near-tip FEM stress versus r solutions. The difference
between numerically determined and the exact value of A was
found to be within 0.2 percent.

The A, f, and Q solutions for cases (A-1) through (A-7) are
given in Table 1. If the Poisson’s ratio for the two materials
is taken to be the same and equal to 0.3, Cases (A-2) to (A-
5) then represent materials with modulus ratio (u;/u,) of 10.0,
100.0, and 0.1, and 0.01, respectively, as indicated in Table
1. Cases (A-6) and (A-7) represent cracks in a metal matrix
composite with silicon carbide (SiC) fibers (E = 413.7 GPa,
v = 0.3) and titanium aluminide (Ti-24Al11MO) matrix (£ =
65 GPa, » = 0.3). In Case (A-6) the cracks reside in the fiber
and in Case (A-7) the cracks are in the matrix with fibers intact.
The results in Table 1 can also be obtained using the method
of Erdogan and Bakioglu (1976).

Figure 5 shows numerically obtained values of the functions
gy of Eq. (1) for Case (A-1). Since this is the homogeneous
material case, the functions are also available in closed form.
The difference between the exact and the numerically computed
values is less than 0.5 percent. Figure 6 shows the variation of
the logarithm of normalized stress component (o) with the
logarithm of normalized distance from the crack tip (7) along
6 = 1.7 deg. The deviation from linearity close to the crack
tip is because the numerical value of crack-tip stress in the
FEM analysis must remain finite. The departure from linearity

i o at ¥ = 0.1 for Case (A-1) is because of loss of Q (or, K)
O=0ye 112 — (6a) dominance. Thus, the outer boundary of the dominant region
Ap(mipz + mypi) Am"(a) (r,) for (Case A-1) is 0.1 times the characteristic length. In
where determining r,, ~5 percent deviation between computed and
0.6
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exact stress solutions was allowed. Recall that for this case, Q
and K are synonymous.

The crack-tip stress field structures for the bimaterial cases
are shown in Figs. 7 to 12. As expected, the g,, function,
corresponding to the oy, stress of Eq. (1), is discontinuous at
the bimaterial interface (6 = 90 deg). The g,, and g., functions
are continuous, and thus satisfy the condition of continuity
of traction normal to the interface. As they should be, g, and
g,y are zero at the crack surface (0 = 180 deg) and g,, is zero
along the symmetry line (§ = 0 deg). The variations of & with
rfor Cases (A-2) to (A-7) are shown in Fig. 6 and the r, values
are given in Table 1.

The finite element mesh design for Problem B is similar to
that of Problem A. Figures 4(a), 4(b), and 4(c) show the
mesh in the crack-tip region. The characteristic length ¢ now
represents the distance d (Fig. 3) between the crack tip and the
interface. The smallest element size around the crack tip for
Problem B is 107'° times the distance d. For Case (B-1), the
mesh contains 471 elements with 1522 nodes. The mesh for
case (B-2) consists of 579 elements with 1864 nodes.

In both Cases (B-1) and (B-2), the crack lies entirely within
material 2. Thus, the crack-tip stress fields are expected to be
the same as for a crack in a homogeneous solid (see Eq. (3)).
The finite element results agree with Eq. (3) to within 0.5
percent. For both Cases (B-1) and (B-2), the extent of the K-
dominant zone (r,) is found to be 0.1 times the characteristic
length (see Fig. 6). Note that the characteristic length for case
(B-1) is 10 times that for Case (B-2). Also, the characteristic
length for Case (A-1) is 10 times that for Case (B-1). Thus, as
long as the entire crack lies within the same material, the ratio
of the K-dominant zone size (r,) to the characteristic length
(¢) remains unchanged.

Summary of results for Cases (B-1) and (B-2) is included in
Table 1. The symbols fand Q are retained only for consistency
with Problem A results. These values were calculated by using
m, = my, uy = uy, A = 0.5and § = 0.0 in Egs. (6) and (7).

The Q; (= K) values were found using Eq. (7b) together with °

the finite element results for crack opening displacement.

Analysis of Numerical Results

The solutions of Problem B (crack tip close to the interface)
indicate that stresses at any point on the interface are not
uniquely characterized by the stress intensity factor (K;). The
outer boundary of the K-dominant zone, defined by r,, is
limited to ~ 10 percent of the distance between the crack tip
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Fig. 13 Variation of normalized Q-dominant zone size with A

and the interface. Thus, when the crack tip reaches the inter-
face, r, becomes zero and K; no longer exists. As expected,
for the same remote strain, K; for a given geometry decreases
sharply as a crack residing in the more compliant material
approaches the interface with a less compliant material (see
results for Cases (B-1), (B-2), and (A-7)). The K; would increase
sharply if the crack was approaching an interface with a more
compliant material. But, in either circumstance, the loss of K-
dominance is gradual and K ceases to exist when the distance
between the crack tip and the interface becomes zero. Also,
in both circumstances, the stresses at the intersection of in-
terface and the plane of an approaching crack increase mon-
otonically, becoming infinite when the crack front intersects
the interface. A single parameter (Kj) cannot uniquely char-
acterize stresses at the interface as a function of distance from
the crack tip. But, full-field solutions (such as those obtained

DECEMBER 1991, Vol. 58 / 969



by the finite element method in the present work) can be used
to determine the stresses at the interface.

For a given bimaterial pair, when the crack tip is at the
interface (Problem A), the stresses within the Q-dominant zone
(including those at the interface) can be uniquely characterized
by a single parameter (Q;). But, even for a crack propagating
through a bimaterial system, such as an idealized unidirec-
tionally fiber-reinforced composite, a single parameter (Q; or
K;) cannot characterize crack-tip behavior for all crack-tip
locations. A unified crack-tip characterization would require
establishing a connection between K; and Qrdominated stress
fields. A pragmatic way to accomplish this is discussed in later
paragraphs. But first, it is worthwhile to comment on the
remarkable dependence of the size of the Q-dominant zone
(r,) on the elastic properties mismatch between the two ma-
terials and crack location, as shown in Fig. 13. The size of the
(Q-dominant zone (normalized by characteristic length) dimin-
ishes sharply with increasing N (crack about to enter a less
compliant material), and increases relatively slowly with de-
creasing A (crack about to enter a more compliant material).
As the end values of A (0 and 1) are approached, r, approaches
the characteristic length (¢) and zero, respectively.

In addition to the size of Q-dominant zone, structure of the
crack-tip stress fields (characterized by g,,, g,,, and g,,) changes
dramatically with elastic property mismatch, as seen by com-
paring Figs. 5 and 7 to 12. For instance, the remarkably dif-
ferent structure of crack-tip stress fields in Figs. 10 and 11
corresponds to the same material pair (Ti-24A111MO SiC) with
the crack located in titanium aluminide in one case and in
silicon carbide in the other. The only nontrivial similarity among
the various cases is that g,, directly ahead of the crack (f =
0) remains unchanged at 1.0/+/27%. The most noticeable dif-
ference among the various cases may be the relative size of the
jump in g,, at the interface (6 = 90 deg).

Enforcing the strain (e,,) and o, and o, continuity at the
interface, one gets:

0y (r,90+)
/(1,90 —)

Qi 0,(r,90)
=q+2B8-a)———— (8
> Bt + ppthy ¢ )Uyy(”go_) ®

where the (+) and (—) signs indicate the material 2 (with crack)
and material 1 (no crack) sides at the interface, respectively.
For the homogeneous case (o« = § = 0), Eq. (8) yields the
continuity of g, at § = 90 deg. Within the Q-dominant region,
the stress components in Eq. (8) may be replaced by the cor-
responding functions g; (0, «, ). Then,

:.u'lm2gyy(90 + ,Ol,B) - P«Zmlgyy(90_ aa’ﬁ)
parmy —4) = py(my — 4)

®

XX

Equations (8) and (9) may be found useful in assessing the
effect of thermal expansion coefficient mismatch between the
two materials giving rise to readily calculable oy, stresses at
the interface.

The fact that g,, at § = 01is independent of elastic properties
of the materials yields the following two potentially useful
asymptotic relations:

Q= (2m)ea,(r,0) ¢ (r)' (10)
and
Q= (21) e, (r,0) s (1) M@ an
where ’
B(g) = (12)
my—(4—my)eg
and
— gxx(oiaaﬁ) 172
=== (27m) g (0,cr, 13
= (0,0,0) Q7)o 8 (0,0,) (13)

and e, is the Y-component of strain. In the following para-
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graphs, significance of the above observations is presented first
in the context of cracking normal to fiber direction, then in
the context of interface failure.

Cracking. Recall that Q;represents the propensity for Mode
I crack extension, or crack driving ‘‘force,”” only for a crack
normally intersecting the interface of a given bimaterial system.
Therefore, it has the undesirable feature that the same nu-
merical value of Q; corresponding to different bimaterial sys-
tems does not imply the same crack driving force. It is
worthwhile to investigate if a more useful representation of
crack driving force can be found. If one hypothesizes that the
propensity for crack extension by cleavage is governed by an
‘‘average’’ value of the first invariant (I;) of the stress tensor
over the Q-dominant region along # = 0, an interesting result
is obtained. The choice of 7 (instead of, for example, 0,,} is
to acknowledge the fact that there is more triaxial stress con-
straint ahead of the crack tip in the homogeneous case than
in the bimaterial case. The value of g,, at § = 0 being material
independent, 7, includes a representation for hydrostatic stress.
Specifically, consider the average first invariant defined as
follows:
(14)

a

1 S’O
=——\ I, (r,0)dr
2()’0—1'1,) ) :

where

Il(r90)zoxx(rso)+Uyy(r90)+0zz(r’0)- (15)
The radial distances r, and 7, are the same as in Fig. 2. Using
Eq. (1), Eq. (14) may be expressed as follows:

A

Q) [H” “ mn} a6)
2N 27(ry—1,) 4

where n has the value 1 for plane strain and 0 for plane stress.

In deriving Eq. (16) from Eq. (14), the material independent

value 1/+/2x for g,, at 6 = 0 has been used.

Following the hypothesis that equal 7, in different bimaterial
systems means equal propensity for crack extension, one can
express the relative propensity of a bimaterial crack to that of
a crack in a homogeneous solid of material 1 as follows:

c-2c, an
where
CRE LR (18)
AN =Ty Ini =Ty
Table 2 Summary of results for cracking
Case F g F L,
A-1 1.1332 1.00 1.0000 1.0000
A-2 0.3510 0.88 0.3097 0.6463
A-3 0.0482 0.80 0.0425 0.5542
A-4 3.6186 0.73 3.1932 1.4597
A-5 12.3878 0.52 10.9315 3.2878
A-6 2.8099 0.81 2.4796 1.3301
A-7 0.4765 0.90 0.4205 0.6828
B-1 0.7382 1.00 0.6515 1.0000
B-2 0.5409 1.00 0.4773 1.0000
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The distance r,, represents the smaller of the r, (outer dimension
of Q-dominant zone) for the bimaterial crack and for the
homogeneous case. The stress intensity factor (X)) in Eq. (17)
is for the same geometry (including crack length) and boundary
conditions as for Qy, but in a homogeneous solid with elastic
properties that of material 1 (the material without a crack).
The nonlinear zone size (r,) corresponds, to material 1 of the
bimaterial system and must be small compared to r,,. For the
corresponding homogeneous case, the nonlinear zone size is
ry, which must also be small compared to r,,. Since r, in ho-
mogeneous material is 0.1 times the characteristic length (c),
and because ¢ must be the same for the bimaterial and the
corresponding homogeneous material problems, 7, must al-
ways be less than or equal to 0.1 times c. So that Q; and K/
correspond to the same remote strain, one can use Egs. (11)
to (13) to define the following normalizing parameter (Q,):

Qo=®ecpy(a) " Nw/2 (19)
which for the homogeneous case becomes K, and is given as:

4y

Ky=——ttee

(m— 22

In Egs. (19) and (20), €5, represents remotely applied normal
strain. Then, one can express Q; and K; in terms of dimen-
sionless functions F(a/b, H/b, «, ) as follows:

Qi=F(a/b,H/b,a,)-Q,

20)

e(ma)'’?,

(21
and

K;=F(a/b,H/b,0.0,0.0)+K,. (22)

Substituting Egs. (19) to (22) in Eq. (17), the following
expression for the relative propensity is found:

2e(m—2) F(a/H,b/H,o,p)
m,—(4—m)g F(a/H,b/H,0.0,0.0)

Cr=Coe ()** 7N (23)

Using the finite element analysis results presented earlier, the
values of the functions F and 2 in Eq. (23) are given in Table
2. To evaluate C,, one needs (in addition to Table 1) r, and
Iy,
If the nonlinear zone sizes r, and r, are interpreted to be
due to plastic deformation, small-scale yielding estimates of
these can be found using the following relation based on the
von Mises yield criterion at § = 0:

Or
2w

where g and »n have been defined in thé context of Eqs. (13)
and (16) earlier, and oy, is the yield strength in uniaxial tension
of material 1. The plastic zone (ry) for the homogeneous case
is found by using A = 0.5, g = 1.0 and substituting Q; by K.

In the limit as the nonlinear zone size goes to zero, Eq. (18)
reduces to:

172
o — n _
148 ~F——emo(4—m) (g +1) (24)
Go1 16

147 ,_
Co = T ",})x 0‘5- (25)
Substituting Eq. (25) into (23), one gets
C,=C, Fa** ™ (26)
where
— 1+z -2
C,= — 27
2N m—(4—my)g @7
— F(a/H,b/H,a,(3)
F=—r—r——" 28
F(a/H,b/H,0,0) %)
and
== 29)
rﬂl

Equations (23) and (26) are relevant for a crack normally
intersecting a bimaterial interface. For a crack approaching
the interface, one gets the trivial result, C, = F.

As an example, to analyze a crack traversing through the
titanium aluminide-silicon carbide composite considered ear-
lier, r,, would be 103 times the smaller of the fiber radius and
half the fiber spacing. That is, the smaller of the r, for Cases
(A-6) and (A-7). The geometry-independent parameter C, would
range between 0.683 (Case (A-7)) and 1.333 (Case (A-6)), its
value being unity for the homogeneous case. The function F
would of course depend on geometry and (depending on crack-
tip location) on « and (3. The values of F and C, for the cases
considered in the present work are given in Table 2.

In a global sense, one may define a pseudo-elastic stress
intensity factor (K%) for a given unidirectional fiber composite
with crack normal to fiber direction as

K =CK;
which, using Egs. (20), (22), (27), and (28) gives

(30
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__m(+EN2?
"7 Nm, - (4—m))z]

0.5-
(;”-) “F(a/H,b/H,a,p)-cma)"* (31)
n .

in which all material constants (u;, m,, g, a, 8, and N) are
dependent on crack-tip location. Depending on the crack-tip
location, r,, is a fraction of either the fiber diameter (D) or
the fiber spacing (s). For a crack in a homogeneous material,
K7 does reduce to K; of Eq. (22).

Interface Failure. The stress state at the interface cannot
be described by the asymptotic stress field of Eq. (3) corre-
sponding to a crack approaching the interface. The dominance
of this field is limited to ~ 10 percent of the distance between
the crack tip and the interface. However, the asymptotic stress
field of Eq. (1) can be useful in studying the interface stresses
close to the crack tip. In this context, the following observa-
tions are offered. First, the asymptotic stress field along the
interface (§ = 90 deg) is not always shear dominated. When
the crack is in the more compliant of the two materials (Cases
(A-2), (A-3), and (A-7)), g, along the interface is the lowest
of the g;. When the crack is in the less compliant of the two
materials (Cases (A-4), (A-5), and (A-6)), g, along the interface
is higher than g,,, comparable to g,, in the more compliant
material, and smaller than g, in the less compliant material.
It is also observed that along the interface, both g, and g,
show a weak dependence on A except in the neighborhood of
A = 0.5. What does change with A\ more significantly is the
ratio of g,, in one material to the other at the interface. As
seen from Eq. (8), for a given bimaterial system this ratio is
uniquely related to the ratio of g, and g,, at the interface.

Analysis of the numerical results for Cases (A-1) to (A-7)
also indicates that within the Q-dominant region, the directions
of both the maximum J, (second invariant of the deviatoric
stress tensor) and the maximum shear stress remain essentially
unchanged compared to the homogeneous case. The maximum
shear in all cases occurs along the interface (§ = 90 deg). The
magnitude of maximum shear stress at the interface decreases
monotonically as A increases. Assuming the Poisson’s ratio to
be 0.3 for both materials, the maximum J, in plane strain
occurs at # = 87 deg for the homogeneous case (A = 0.5) and
when A > 0.5. For A < 0.5, maximum J, occurs along the
interface. Thus, the directions of maximum J, and maximum
shear stress do not provide a particularly discriminatory basis
to study interface failure.

Based on the above observations, it may be deduced that
the tendency for shear failure of the interface (fiber pull-out)
is higher when the crack resides in the less compliant of the
two materials. The tendency for interface separation (splitting)
is higher when the crack resides in the more compliant material.
One may postulate that the tendency for splitting is directly
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proportional to g, and the tendency for pull-out is propor-
tional to g, at the interface. However, as discussed earlier in
the context of cracking, the degree of hydrostatic tension at
the interface may also play an important role in determining
the interfacial failure mode. A quantity that provides a smooth
and monotonic variation of the degree of hydrostatic tension
over the entire range of A is the ratio of the two g,, values
along the interface. Figure 14 shows the variation of this quan-
tity with interfacial shear and normal stresses. Accordingly,
one may postulate that the tendencies for the intersecting crack
should be addressed in formulating criteria for self-similar
crack extension.

The finding that the Q-dominant zone becomes smaller with
increasing N\ suggests that for A > 0.5, direct consideration of
nonlinear deformation field around the crack tip may be nec-
essary for accurate assessment of cracking and interface fail-
ure. Also, for composite systems which show evidence of
reaction or diffusion zones in the interfacial region (whose
width cannot be considered small in comparison to D and s),
direct consideration of interfacial region properties may be
warranted.
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Conditionally Averaged Response
Formulations for Two-Phase
Random Mixtures

A technique known as a projection or a smoothing, which has been used successfully
to derive formulations on the mean (or unconditionally averaged) field response
of specimens with a random substructure, is extended to obtain formulations on
conditionally averaged response measures for two-phase mixtures. The condition in
the averaging refers to the location of the field point, in one or the other of the
phases. The obtained formulation has the structure of a theory for interacting
mixtures of nonlocal continua. The formulations are then investigated in a two-
scale microscale/macroscale limit, specifically we determine the conditions necessary
Sfor the obtained formulations to reduce to local formulations which can be inter-
preted to provide bases for physical theories. It is argued that for weakly coupled,
two-phase mixtures for which both phases are connected over distances that are
measured on the macroscale, the mixture theory-type formulation is local in the
limit whereas the mean-field formulation is not. In the presence of strong coupling,
or for mixtures in which one of the phases is connected only for distances measured
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School of Engineering and Architecture,
The Catholic University of America,
Washington, DC 20064

Fellow ASME

on the microscale, both type formulations are local in the two-scale limit.

Introduction

In a series of papers, Beran and McCoy (1970a,b) and McCoy
(1972a, 1973) presented formulations expressed in the mean,
ensemble averaged, field responses for material specimens
which on one scale of observation—a microscale—are modeled
as classical, linear continua with property measures described
by stochastic processes. By classical continua are meant those
expressed by local balance and constitutive laws. The deri-
vations were formal, using a procedure that may be termed a
projection. The obtained formulations were identified with the
same local balance laws as apply on the microscale and with
nonlocal effective constitutive laws, Details were presented for
the cases of the statical response of linearly elastic solids,
(Beran and McCoy, 1970a) for electrical conduction, (Beran
and McCoy, 1970b) and for the propagation of elastic waves
in one (McCoy, 1972a) and three (McCoy, 1973) dimensions.

For specimens with geometries which are observable on a
second scale, much larger than the microscale, one can argue,
using the prescriptions provided for calculating parameters in
the effective constitutive laws, that these parameters are in-
dependent of the specimen geometries and of the details of

any specimen forcings. This independence allows for the de-,
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termination of the parameters through canonical experiments
in which only mean-field responses are to be measured. The
formulations can thus be interpreted to provide physical the-
ories expressed in the mean response measures. Further ar-
guments, this time that the range of the nonlocality of the
constitutive laws are observable on the length scale defined by
the heterogeneity, can be used for the two-length scale exper-
iments to approximate the effective constitutive laws with ones
that are local. The results of this approximation are intuitively
satisfying effective modulus formulations. The mean-field re-
sponse, which varies on the macroscale, is now interpreted to
be a spatially averaged response. The formulation has affected
a separation of length scales in which the smaller scale material
heterogeneity appears in a formulation of a response measure
which varies on the larger scale of the specimen geometry, via
parameters which are canonical in not depending on any ex-
periment description which applied to the larger length scale.
This separation of length scales is crucial for the development
of computationally useful predictive algorithms of the response
of composite materials, for example.

For specimens which are weakly heterogeneous, the infinite
series prescriptions for calculating the parameters of the ef-
fective constitutive laws can be truncated giving theories that
are specific; i.e., require only a limited number of specific
statistics of the microstructure heterogeneity. For these spec-
imens the arguments that the range of nonlocality of the ef-
fective constitutive laws is measured on the microscale was
explicitly demonstrated and, moreover, it was shown that the
microscale length is made precise by two-point correlation
functions defined on the material heterogeneity (Beran and
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McCoy, 1970a,b). Using these specific formulations it was
possible to investigate the nature of the physics described by
them. Thus, for example, Beran and McCoy (1970¢) demon-
strated that a strain gradient theory did not represent a con-
sistent generalization of the classical theory of linear elasticity
for materials with weakly heterogeneous random substruc-
tures. As another example, McCoy (1972b) demonstrated that
elastic solids with weakly heterogeneous random structures
would not support ‘“‘optical branches” of waves of lengths
measured on the macroscale. The conclusion of McCoy (1972a,
1973), however, that the concept of a dynamical effective mod-
ulus theory applied only for long wavelength—low frequency
propagation and that the proper dynamical effective moduli
and mass density are equal to the statical effective moduli and
the averaged mass density, respectively, are not dependent on
a weakly heterogeneous assumption.

In this paper we return to a number of issues related to the
macroscale response of material specimens with a randomly
heterogeneous microstructure. This time we restrict the micro-
scale heterogeneity to a mixture of two phases and extend the
projection procedure to obtain formulations expressed in con-
ditionally averaged response measures, the condition being that
the observation point lies in one or the other of the two phases.
Reflecting the formal nature of the derivation procedure, which
depends only on the algebraic structure of the underlying field
equations, the formulations are accomplished using an abstract
operator notation. Once completed, however, the abstract for-
mulation is considered in the context of a specific application
to make it more intuitive. In this way one can identify it with
theories of mixtures of nonlocal continua.

With the abstract formulation expressed in conditionally
averaged response measures in hand, we next demonstrate the
recovery of the unconditionally averaged response measure
formulation obtained by the projection procedure, as usually
applied. The demonstration follows from the recognition that
the projection to obtain the unconditionally averaged response
refers to a space with fewer degrees-of-freedom than does the
projection to obtain conditionally averaged responses. Thus,
the formulation expressed in the unconditionally averaged re-
sponse can be achieved by a further projection of that required
to obtain the formulation in the conditionally averaged re-
sponse. Turning this statement around, the formulation in
terms of the conditional averages can be said to be more com-
plete. If not for the fact that this more complete formulation
is also more complex, the suggestion might be to eschew the
formulation in terms of the unconditional average and always
first obtain the conditionally averaged measures to subse-
quently calculate the unconditionally averaged response if this
is desired. That one does not do so is simply a matter of
computational convenience.

The derivation of the formulation expressed in conditional
averages and the recovery, therefrom, of the earlier result is
independent of any questions of length scales. Questions of
length scales were introduced in the earlier studies when con-
sidering the interpretation of the formulation on the mean-
field response as a physical theory, which required that it be
self-contained. It is the possibility that one can ignore the
prescription for calculating the parameters in the effective con-
stitutive laws and elect instead to obtain them by accomplishing
physical experiments requiring the measuring of the mean-field
responses only, which is central to the step by which a math-

ematical formulation can also be interpreted as a physical

formulation. The existence of two widely separated length
scales and its consequence, that the parameters in the effective
constitutive laws are canonical in not depending on specimen
measures which are observable on the larger scale, provided
this possibility for the earlier formulation. We, therefore, in-
troduce the questions of length scales in the context of the
formulation expressed in the conditional averages and of the
recovery of that expressed in the unconditional average. An
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interesting conclusion obtained is a possibility of locality in
the two-scale mixture formulation limit, while the formulation
expressed in the unconditional average remains nonlocal. Since
nonlocal formulations are in general less convenient for com-
puting than are local formulations, the formulation in terms
of conditional averages might be the more convenient one even
if one is interested in ultimately predicting the unconditionally
averaged response. More fundamental than convenience, the
possibility exists that the mixture theory formulation could be
interpreted as a physical theory while the effective constitutive
law formulation might not.

For what type two-phase microstructures would the mixture
theory formulation become local in the two-length scale limit
while the effective constitutive law theory remains nonlocal?
The answer to this is first in the strength of the coupling of
the described physics for each of the two phases, and then in
the definition of length scales on the heterogeneity. Thus, to
retain nonlocality in the effective constitutive law theory in
the two-length scale limit requires weak coupling in the de-
scribed physics which implies strong heterogeneity in the ma-
terial parameters. Assuming weak coupling, the questions of
length scales and how they are defined arise. Thus, one can
distinguish between geometric length scales and connectivity
or topologic length scales. As discussed in the paper, it is
possible for these two type lengths to differ widely. For weakly
coupled two-phase microstructures for which the topologic
lengths for both phases are measured on the macroscale; i.e.,
the scale determined by the specimen geometry and forcing,
while the geometric lengths define the microscale, the mixture
theory formulation is local and the effective constitutive theory
formulation nonlocal in the two-length scale limit. The reason
is the conditions for which a nonlocal effective constitutive
theory obtains in the two-length scale limit are just the con-
ditions required for two coupled, but identifiable, solution
modes. The mixture theory formulation has a structure that
enables description of the two modes in a local context. The
effective constitutive theory can only describe them in a non-
local formulation. For strongly coupled two-phase microstruc-
tures or weakly coupled microstructures for which the topologic
lengths of one of the phases and the geometric lengths are
measured on the microscale, both formulations could be local
in the two-length scale limit. ““Could be’’ because for such
microstructures there remains a possibility of a ‘‘tunnelling”’
which could result in a nonlocal effective constitutive law the-
ory.

The lack of connectivity of one of the phases over distances
that are larger than a microscale length, essentially blocks or
localizes the solution mode that is primarily associated with
this phase. The phenomenon is related to the localization of
the response of a dynamical system comprised of weakly cou-
pled subsystems. In the present context, localization of the
response is not achieved since the connectivity of one of the
phases, and hence of a solution mode associated with it, is
assumed to extend over macroscale lengths. Thus, only one
solution mode is blocked and the local effective modulus theory
describes the unblocked mode. The localization of the response
of weakly coupled dynamical systems is of current interest in
a number of studies of structural acoustics (Hodges and Wood-
house, 1983; Pierre and Dowell, 1987). In these studies the
localization is interpreted to a classical mechanics analog of
an Anderson localization (Anderson, 1958).

Since the projection procedure and the extension presented
herein do not have the status of rigorous mathematics, the
arguments presented and the conclusions obtained therefrom
require further investigation. In a study to be reported sub-
sequently, Gillette (1991) has considered the issues raised in
the context of a two-phase mixture of acoustic media using
asymptotic and computational analyses. This more specific
study is correspondingly less formal. The advantage of the
formal study is in the suggestion of generality of a derivation
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procedure which uses only the algebraic structure of the un-
derlying formulation. The objectives of asymptotic, numeric,
and/or rigorous analyses which might follow would be to ex-
plore the limits of validity of the formally obtained results.

The structure of the paper is as follows: In the next section
we briefly review the projection method to obtain a mathe-
matical formulation expressed in the unconditionally averaged
response field, Then, in the following section, we introduce
the restriction to a two-phase microstructure and extend the
projection method to obtain mathematical formulations ex-
pressed in conditional averages. A demonstration that the
mathematical formulations are consistent and that those ex-
pressed in conditional averages are simply more complete fol-
lows next, followed by a section treating the two-scale limit
and the interpretation of the derived formulations as physical
theories. A final section of remarks on the studies required to
add a degree of mathematical rigor to the formal results of
the present study concludes the paper.

A Formulation on the Averaged Response Field

Restricting consideration to a linear system and introducing
the notion of a reference material, we assume that the point-
by-point response of the material specimen on one scale of
observation, which we term a microscale, is governed by the
symbolic equation

u=1uy+ GebCu. 149]

Here, u denotes the response field; #y denotes the response
field in the reference material assumed to be deterministic; 6C
denotes a local operator that represents the ‘‘interaction’’ of
the response field and material heterogeneity; and G, denotes
a nonlocal operator that describes the ‘‘propagation’ of the
effects of the local interaction due to material heterogeneity,
to points removed from the center of interaction. The ‘‘forc-
ing’’ of the problem appears via u,, the response field in the
reference material. The G, operator is also defined for the
reference material; algorithmically it is described by a Green’s
function and hence incorporates homogeneous boundary con-
ditions applied to the material specimen. Randomness enters
the formulation through the local interaction operator, 6C.

The tensorial rank of the response field, the nature of the
local interaction operator, and the dimensions of the space on
which the formulation applies all depend on the application.
As an example, we make reference to determining the response
of a randomly heterogeneous, linearly elastic solid. The gov-
erning equations are obtained from the requirements of equi-
librium, compatibility, and a generalized Hooke’s law.
Neglecting inertia effects and employing a dyadic notation we
write,

Vv -7(x) = f(x), (2a)
7 Xe(x) X v =0, (2b)

and
7(x) = C(X): €(x). 20)

These equations are to be solved subject to prescribed con-
ditions on the boundary of the specimen. Equivalent integral
and integro-differential equation formulations can be obtained
on introducing a (homogeneous) reference material, by writing

Cx) = Co+ 6C(x), 3

and on defining a dyadic Green’s function, Ge(x, x’). This

function gives the displacement u at the field point x, that
results from an arbitrarily directed point force acting at the
source point x’.

The Green’s function is to satisfy homogeneous boundary
conditions, as dictated by the original problem specification.
Using this Green’s function, the following integro-differential
equation can be directly written on the displacement field of
the specimen

Journal of Applied Mechanics

u(x) = ug(x) — g Go(x, x): (V§=(0CK"): e(x’))dx’,  (4a)
Vv

where

e=%(Vu+uV). 4b)
In this equation, uy(x) is the displacement field that would exist
in the specimen made from the reference material; the forcing
of the specimen is described by uy. The integration is over the
region of the specimen.

An integral equation formulation written on the strain field
is obtained from Eq. (4a) on taking a symmetric derivative on
both sides and on accomplishing an integration by parts. We
write this equation as

e(x) = eo(X) + S GS(x, x'): (6C(x"): e(x' Ndx’, (5)
Vv

where ¢y(x) is the strain field in the reference specimen and
G (x, x') is a two-point quartic field, obtained from the
dyadic Green’s function Gy(x, x’). For a precise definition of
G§(x, x’) in terms of G(x, x) the reader is referred to McCoy
(1981), for example. We note that G§(x, x) must be understood
in a generalized function sense. A comparison of the specific
Eq. (5) and the symbolic Eq. (1) shows the algebraic structure
of the two equations to be the same. We shall carry out the
manipulations to be accomplished on the level of the symbolic
equation since it is only the algebraic structure of the underlying
formulation that enters these manipulations.

A formulation on the average of the field response across
an ensemble of random materials specimens can be obtained
from Eq. (1) by a technique that can be termed a projection
(Fishman and McCoy, 1980, 1981; Keller, 1962, 1964).

To proceed we first average, or project, Eq. (1) and write

{u) =uyg+ Go{6Cu)
=ug+ Go{OCY u) + Go¢6C'u’ ), (6)

where the angular brackets denote the averaging and a prime
denotes the fluctuating part of the indicated quantity. We can
write, for example,
{uy=~Pu
and
u'=({I—P)u, )

where P denotes the projection operator and 7 the identity
operator. Equation (6) is not a closed equation on (u), pre-
senting the familiar closure problem of all statistical continuum
calculations. In the projection method this problem is solved
by first operating on Eq. (1) using (/—P), to obtain

u’ =GodC’'{uy + Go{6CY u’ + Go(I—-P)6C'u’, ®)
which we interpret as an equation on the fluctuating, u’, re-
sponse field. The forcing in this equation is the G¢dC’{u)
term. Solving Eq. (8) would give #’ in terms of () which can
then be used to form {(6C’'u’) in Eq. (6). The result of these
operations is the desired closed equation on {u).

Accomplishing this program we write

u’ =NGWC’'{uy, ®
where the N operator is defined as

N=(I-G(8Cy —Go(I-P)sC") . (10)
Next, we form
(6C u'"y =(8C’NGC' »{u>, an
and finally write for the equation on
(u) = ug+ GoM(uy, (12)
where the M operator is defined as
M= (8C) + (6C'NGyC’>. %)
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To be noted is the obvious conclusion that, in general, the M
operator will be nonlocal. In the context of a randomly het-
erogeneous, linearly elastic solid assumed to be governing on
the subscale, Eq. (12) has the following explicit form,

ety =+ | G0x, %)

X <SC“’(x1, Xa): (€(x2)>dxz> dx;, (14)

where €¥(x,, x;) is a two-point quartic field. By association
with Egs. (2) and (5), it is clear that this equation is equivalent
to the following formulation,

- (r(x)) = 1), (150)
V X {e(x)) X v =0, (15b)

and
79> = [ €9, %) Cetmnyan. (150)

Equations (15) are readily identified with the equations gov-
erning a nonlocal, linearly elastic solid.

In the more general context, a comparison of Egs. (1) and
(12) allows the further conclusion that the equations that gov-
ern the averaged response field for a material with a random
substructure differ from those that govern the random response
field only in that a random, local, interaction operator is to
be replaced by a deterministic, nonlocal, interaction operator.
It is natural then to term M operator in Eq. (12) an effective
interaction operator, and to term the formulation an effective
interaction formulation. The term effective constitutive law
also applies to the formulation.

It is obvious that the derivation of the effective interaction
formulation is formal. Any attempt at a strict mathematical
justification on the manipulations involved would necessitate
statements as to the nature of the operators that describe the
underlying physical process. Referring to Eq. (10), the presence
of the projection operator would seem to make clear that N
can only be made explicit in certain asymptotic regimes. Still,
the result of the derivation is physically suggestive of a nonlocal
continuum formulation expressed in the averaged field re-
sponse. We accept the derived Eq. (12) to provide a micro-
structural basis for physical theories of nonlocal continua,

Formulations on Conditionally Averaged Response
Fields

In the formulation of the last section no specific reference
was made to the fact that the material of interest is a mixture
of two homogeneous component phases. Further, the for-
mulation is expressed in terms of the unconditionally averaged
response field. In this section we consider a formulation suit-
able for a two-phase mixture, expressed in terms of condi-
tionally averaged response field measures that incorporate
restrictions that the observation point is located in one or the
other of the two component phases.

To accomplish the restriction to a two-phase material we
introduce two functions of position, denoted by g;(x); i=1,
2, and defined to equal unity if the point located by the position
coordinate x is in the / phase and equal to zero if the point is
not in the 7 phase. The restriction to a two-phase material is
incorporated by expressing the local interaction operation, 6C,
as : :

2
8C=

oCigi(x). (16)

i=1

We introduce this expression in a rewrite of Eq. (1), in a slightly
expanded form. Thus,

2
u(x) = ug(x) + Gy (%, x1) Y SCgi(x1)u(x1).

i=1

a7
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We next emphasize a distinction that the observation point for
evaluating the response field measure is in one, or the other
of the two phases by introducing a subscript to #. Equation
(17) then is equivalent to the following pair of equations'

2
ui(X) = o (x) + Go(x, X1) D 6C;g;(x1)u;(x1); XCi.  (18)
J=1

The notation xC i denotes that the observation point x is to
be located in the 7 phase. For any single manifestation of the
ensemble Qf mixtures, u,(x) and u,(x) are defined only over
disjoint portions of the total space covered by the mixtures.
Note that according to Eq. (18), the values of u;(x) for x points
that do not lie in the portion of space for which u;(x) is defined
do not enter the formulation. Qur objective in this section is

to derive a formulation expressed in

Cui(x) ) = CuiX) dxci= U (X) dxcis (19)

conditional averages of the response field taken over suben-
sembles that have the observation point in the appropriate
single phase. The conditions that apply in a particular average
will be indicated by a subscript to the variable being averaged,
unless otherwise indicated. While for any single manifestation
a particular #;(x) is defined only over a portion of the total
space covered by the mixtures, the average of u;(x) is defined
over the total space.
Taking conditional averages of Eq. (18), we write

2
Ui (%)) =uo(x) + Go(x, X1) D BCHEH (x4 (x1) Yxcr  (20)
j=1
Equation (20), one for each #, apply for all points covered by
the mixtures. Note the condition for averaging the interaction
terms at the point, x;, is that the observation point, x, be in
one or the other of the two phases? On writing

u;(xy) = Cui(x1) ) +uf (xy) 21

where the average here is conditional on x,Cj, Eq. (20) be-
comes

2
Cup(x)) = uo(x) + Go (x, X1) D BCH({&(x1) Yxc K Uj(X1))

j=1
+Lgi(x)uf (x1)dxci).  (22)

The two-point average (g;(x1))xc;, can be identified with the
conditional probability that the interaction point, xy, is in the
J phase given that the observation point, x, is in the / phase.
Equations (22) are the analog of Eq. (6) of the last section.
They do not constitute a closed system on {u;(x)) due to the
presence of {g;(x1)uj (1) dxci. Accordingly, we proceed as
before and derive equations that govern u/ (x), the fluctuating
component of the single-phase response measures.
Subtracting Eq. (22) from Eq. (18), we obtain

2
ui (%) = Go(x, x1) D BC;(8] (xi1xCi)Cui (1)
Jj=1

+ (I=Pecigi(x)uf (x)); xCi,  (23)

where
g (i lxCi)=g; (1) — (g (x1) dxci (24)
and the projection operation is an averaging that incorporates

' A subscript could be introduced to the Gy(x, x;) operator allowing for the
possibility of a different reference material depending on the phase in which the
observation point is to be located. This added flexibility might have some utility
in future calculations, but does not appear to add anything to our treatment.

2The average (g (x)u;{x1) dyci is a two-point probability measure. To em-
phasize this we can write

& (xn) i (x1) Y xci= < &i(x) &5 (X)) Ui (X) dxci
= (&> " g(x) g () (),
where the averages on the right-hand side of the last equality are unconditional.
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the condition that the observation point be in the / phase.
Equations (23) are to be interpreted as an equation to determine
the u/ (x), each defined in the appropriate phase, in terms of
the “‘known’’ forcing,

2
F(x)=Go(x, x1) D 0Cig] (%, IxCi)uy(x)y. (29

Jj=1

The forcing is defined for all points covered by the mixture,
in any single manifestation. The functional expression for F(x)
depends on the phase in which the field point, x, is located.

The solution of Eq. (24).is formally accomplished by a pair
of operators that are the analog of the N operator of the last
section. We write

u{ (x) =N;(x, x| )F(x1); xCli, (26)

emphasizing in our expanded notation that the N, are nonlocal,
in general. Using Egs. (20) and (26), we form
2
(XD uf (1) Yxci= 2 0Ci{&(x1)N;(x1, %2) Go(x2, X3)
k=1

&k (16 CJ) e ue(x3)y,  (27)

to substitute in Egs. (22). The closed system of equations
expressed in (u;{x)) is written

2
Cui(x)y =g (%) + Golx, x1) D BC;Mi;(x1, X3 X)C1;(%2) )
= ©8)
where

M;i(x1, X25 X) = {gi(X1) Yxcif (X1 —X3)
2
+ D 0C gk (X1)Ni(x1, X3) Gy (x3, X2) 8/ (X2{X3Ck)dscin (29)

k=1

where 6(x) is the Dirac distribution. The coordinate denoted
by x; in Egs. (29) is a dummy variable. The nonlocal operator,
M (x1, X2; %), is amapping of a function (;(x;) ) to a function
of x;; the mapping depends on the location of the point pair
X1, X, relative to the field point x. There is no counterpart of
this dependence in the formulation expressed in {(u(x)), the
unconditionally averaged field response. We shall return to
this difference presently.

Equations (28) are a significant new result of this paper.
These demonstrate that for a two-phase mixture one can obtain
a closed formulation expressed in conditionally averaged re-
sponse fields in much the same manner as earlier demonstra-
tions that one can obtain a formulation expressed in the
unconditionally averaged response field. Moreover, the for-
mulation obtained can be recognized to have the ‘‘structure”
of that for a mixture of ‘‘interacting continua,’’ (Bedford and
Drumheller, 1983) a recognition that is possibly more trans-
parent in the context of a specific application.

In the context of a randomly heterogeneous, linearly elastic
solid assumed to be governing on the subscale, Eqgs. (28) have
the following explicit form

2
(X)) =eo+ XGS“’(x, x)): chs”(x,, Xo; X)<€/(X2) ) d%s;
j=1

i=1,2, (30)

where the Cﬁf)(xl, Xy; X) are three-point quartic fields. The
presence of the observation point x, along with the dummy
source points x; and x, introduces a complication to a direct
identification of Eqgs. (30) with a continuum theory formu-
lation. To eliminate this problem we average, or smooth, the
equations over a localized region of x. This is suggested by an
observation that the dependence of the quartics on the precise
location x, relative to x,, Xx,, is limited to [x[ values that are
within a correlation length of these points. This observation
follows from their definitions and the footnote following Eq.
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(20). Assuming, then, the remaining terms in Eq. (30) vary
slowly with changes in x on this scale, the quartics can be
replaced by their local averaged values which are independent
of x. The smoothed equations can then be'seen to be equivalent
to the following formulation

V o{ni(x)) =f(x)— V'SCY?(X, x1): (Kea(x1)) — Cer(x1)))dxy,

YV «Anx) =f ()= 7+ gcs?(x, x1): (Cea(x1)) ~— Cey(x1)))dxy,

(30a)
V {e(x)) X Vv =0,

V<{e(x)) X 7 =0, 305)

and
ri0) = [, %)+ CBox, x): <,

70 = (B0 )+ C0x, x0): <etmdsi. (300

Equations (30a) have the interpretation of momentum balance
laws for two ‘‘interacting,’’ linearly elastic continua. Equations
(30b) and (30c¢) have the interpretation of compatibility and
effective constitutive laws for the two continua. It is clear that
nonlocal operators are necessary to describe both the inter-
action of the continua and the effective constitutive laws. We
note that the coupling terms in Eqs. (30a) are in the ratio of
the volume fractions of the component phases, i.e., {g;). This
can be concluded either directly from the definitions of C{
and C or from multiplying the first of Eqs. (30a) by {g),
the second by {g,) and by adding. Comparing the result with
Eq. (15a) shows that for consistency, the coupling terms must
vanish in this sum,

A condition on the location of the field point in one or the
other of the two phases is not the only one that might be
imagined in defining partial response field measures. Thus,
for example, one might also investigate a class of experiments
in which the forcing of the two-phase mixture is a singular,
or point, forcing. The response field u(x, x;) can, then, be
interpreted as a function of both the source and the field points.
Conditional averages based on either, or both, of these points
being in one or the other of the two phases can be discussed.
We write,

@ (x, X)) = X, %) dxci G1a)

and

ul (x, x5)) = ulx, X)) xci (31b)

XsCJ

as additional partial response field measures. Deriving deter-
ministic equations that these measures satisfy is rather trivial,
in view of Egs. (12) and (28), since the source point location
enters the calculations only as a parameter. Thus, we imme-
diately write
P (x, X))y = up(x, x;)

+ Go(x, X1 )MY (x1, x5 %) 9 (x, x5)),  (320)
and

(P (%, %)) = o (X, X5)

2
+Go(x, %1) D SCMEP (x1, 335 %, x,) U (X2, %,)>. (32D)
k=1

The MY and MY} operators are obvious extensions of the M
and My, operators of Eqs. (12) and (28), respectively. We note
that there is no coupling across the j index, the one indicating
the source point phase. We also note that the nonlocal map-
pings described by MY (x,, x5; x;) and MY (x;, X35 X, X,)
depend on x, and x, as well as on the dummy locations x,, x,.
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Recovery of Unconditionally Averaged Response Field
Formulation

The projections that resulted in formulations on condition-
ally averaged response measures can be termed incomplete,
where that on the unconditionally averaged {u) is complete.
We consider, next, completing the projections of the formu-
lations on the conditionally averaged response measures to
obtain that governing {u). Two such developments are con-
sidered; one starting with Egs. (28), written on the {u;(x)),
and one starting with Eqgs. (324), written on the (1" (x, x;)>.
The developments are different since there is a coupling be-
tween the equations governing the (u;), and not between those
governing the (u‘?).

The manipulations to obtain a formulation expressed in
(u(x)) starting with Eqs. (28) are similar to the developments
of the last two sections. Thus, the projection operation ex-
pressed in the equation

2
(u(x)> =D (&)X u(x)), (33)

i=1

is applied to Eqgs. (28) to obtain

2
Cu(x)) =y (x) + Go(x, x1) D BCM;(x1, X2)u;(x2)),  (34)
Jj=1

where

2
My(x1, X2) = D €&i{X) XMy (%1, X23 X). (35)

i=1

The presence of the (u;(x)) term in Eq. (34) presents the
familiar closure problem, which we address in the same manner
as previously. Thus, we write

Cui(x)) =Cu(x)) +uj (x)
and subtract Eq. (34) from Eqgs. (28) to obtain

(36)

2
ui (x) = Go(x, x1) D SCM; (x1, x23 X)[(u (X)) + uf (32)],
J=1

37

where
(38)

Equations (37) are now interpreted to determine u; (x) in terms
of {u(x)); to be used in Eqs. (36) to determine (u;(x)) in
terms of {u(x)); to be used in Eq. (34) to obtain the closed
equation on (u#(x)). The result is an equation with the alge-
braic structure of Eq. (12) with the following expression for
the effective interaction operator contained therein:

M (x1, X3 X) = M (31, X3 X) — M (31, X3).

2
M(xy, X3) = D BC;My(x1, X4) [B(xrxz)
P

2 2
+ 23> Ni(Xay x3)Go (3, %2)8CiMLi (X3, X3 x)}. (39)

k=1li=1

In this equation, Ny is the operator that inverts Eqs. (37) to
determine u; in terms of (u).

It is clear the Egs. (37) might not provide for a unique
prescription for u;, anymore than Eq. (8) might not provide
for a unique prescription for #’, in the projection method as
usually applied. This point is not an issue, however. What is
an issue is whether the formulism expressed in {u), which
results, does provide for a unique prescription for it. To answer
this question one must look to the resulting formulism as
obtained in the context of a specific application. McCoy (1971)
considered one investigation in the context of the equations
of linear elastostatics. We shall not address this question fur-
ther in this study, and simply assume that lack of uniqueness
is not an issue.
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The manipulations to obtain a formulation expressed in
{u(x, x;)) starting with Eqs. (32¢) follow a different route,
since the equations on the (" (x, x,)) are uncoupled. Thus,
we first formally invert Eqs. (32a) to write .

U (x, %)) = (I— GoM™) ~ug(x, x5). (40)
The projection operation
2
(X, %)) = ) (&) > (x, %)) (41)

i=1

is now applied to Eqgs. (40) to obtain an equation to govern
{u(x, xs) ) of the same algebraic structure as the formal inverse
of Eq. (12), i.e.,

(u(x, %)y = (I— GeM) "y (x, X5). (42)

Equating the two we obtain an operator equation to determine
the effective interaction operator

2

(I=GoM) ™" =3 4gi(x) > (U= GoM ™ (x1, 223 %)) ™\ (43)

i=t

In the next section we consider this derivation of the for-
mulation on the mean-field response, {#(x) ), via intermediate
formulations on conditionally averaged responses in a two-
length scale limit. The objective there is to gain insight as to
the properties of the effective interaction operator and their
dependence on the configuration statistics of the two-phase
mixture. We close this section by considering the further pro-
jection of Egs. (32b) on the conditionally averaged (¥ (x,
X)), to obtain a formulation with the algebraic structure of
Eqs. (28) on the conditionally averaged <{u;(x)>. The manip-
ulations directly follow those above, and we obtain the fol-
lowing operator equations to determine the M;;(x;, x2; X),

2 ~1
<1— 6025(:,-1\41-)

j=1

2 2 -1
=Z<gk<xs>>(1—60}]aQM,§!‘>(xl,xz; x, xs)> . (44
k=1

j=1

A Two-Scale Limit and the Interpretation of Derived
Formulations as Continuum Theories

An asymptotic regime of important technological interest
applies for a two-length-scale scenario in which the scale for
measuring variations in 6C is small when compared to the scale
for measuring the specimen geometry and variations in the
specimen forcing. In this section we investigate the derived
formulations in this regime. Our principal interest is the be-
havior of the effective interaction operators in the two-scale
limit—how do they simplify and on what do they depend—
and in what sense can we interpret the obtained formulations
as bases for continuum theories.

The issue of interpreting the obtained formulations as bases
for continuum theories represents a change in perspective,
which warrants comment. To this point in our treatment the
objective of the calculations presented can be characterized to
be the solution of a well-defined mathematical problem; de-
termine the average (conditional or not) response of an en-
semble of two-phase material specimens. The solution
procedure is in two steps. The first step was to derive from a
stochastic description of the equations governing the response
in each manifestation of the ensemble, a deterministic descrip-
tion of equations governing the averaged response of the en-
semble. The second step would be to solve the formulations
derived in the context of a particular physical experiment. To
make the derived formulations specific requires one to invert
certain stochastic field equations. The solutions of these equa-
tions determine the effective interaction operators that appear
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in the formulations that govern the averaged response. The
change in perspective is now to eschew the stochastic field
equations in terms of which the effective interaction operators
are defined. Instead, we now seek to determine these opera-
tors—or actually to determine the values of the constants that
make a suitable parameterized representation of these spe-
cific—‘‘experimentally’’ by matching physical data with pre-
dictions of the formulations that govern the averaged response.
It is to the extent to which this perspective can be validated
that allows the formulations on the averaged response to be
interpreted in terms of physical theories.

The efficacy of this new interpretation will depend on the
class of physical experiments over which the effective inter-
action operators are invariant and on the ease with which these
operators can be parameterized. Thus, with reference to Eq.
(12) as a basis for a continuum theory on the unconditionally
averaged response field, its derivation suggests that the M
operator is invariant under changes of the specimen forcing,
uy, but depends on the specimen geometry, through Gy Ac-
tually, the M operator also depends on the nature of any forcing
that is applied at the boundary, through G,. While the lack
of dependence on M on the specimen forcing would allow for
some predictive capability of Eq. (12) interpreted as a theory,
a conclusion that the effective interaction operator changes
along with a change in the specimen geometry certainly is very
restrictive. Fortunately, it can be argued that this dependence
is unimportant for many experiments in the two-scale asymp-
totic regime. The key to these arguments is in an assumption
(Beran and McCoy, 1970a,b) that the range of the nonlocality
of the M operator is to be measured on the smaller, i.e., micro-
scale on which variations in 8C are measured. Then, the ar-
gument is that the dependence of the M operator on specimen
geometry will only be significant within a layer of the specimen
boundary surface which is also to be measured on the mi-
croscale. Ignoring this layer, M depends only on the material
properties of the constituent phases and on the microstructure
geometry. The operator can truly be termed a ‘‘material’’
operator. We note that the two-length-scale condition can also
be used to argue an ergodicity that equates the statistical av-
erage of the response field with a spatial average, thereby
obtaining a completely deterministic interpretation. We also
note that to zeroth order in this asymptotic limit, the effective
interaction operator is local. The interpretation of M as a
material operator and its approximation as a local operator
are thus closely tied.

A direct demonstration that the nonlocality range of M is
to be measured on the microscale requires an explicit repre-
sentation of the operator. In earlier studies (Beran and McCoy,
1970a,b; McCoy, 1972a, 1973) this was considered by writing
Eq. (10) as

N=(I-Go(8CY) " (I— (I-Go<8CY) ~'Go (I~ P)6C") ™!,
(45)

which formally can be written

N=(I-Go(8C)) ™' D (1= Gi(8C) ~'Go (I~ P)8C")".
n=0

(46)

Using Eq. (46) in Eq. (13) results in the desired explicit rep-
resentation as an infinite series in which the substructure ge-
ometry appears via multipoint moments of all orders, defined
on the variations in 6C’. Moreover, the series collects terms
in powers of the strength in the variations in §C’, enabling its
truncation for weakly inhomogeneous substructures. While the
entire analysis suffers from lack of mathematical rigor, it can
be used to suggest the validity of some general conclusions in
the limit of weak homogeneity. The conclusions reached in the
earlier studies were in agreement with the desired intuitive
arguments, and, moreover, provided a precise method for de-
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termining the length of the microscale. Thus, the statistical
moments, or correlation functions, defined on 8C’ served to
define it.

The results of the last section can provide for an indirect
investigation of the nonlocality range of M, which is not limited
to the asymptotic regime of weak inhomogeneity. Consider
the derivation of the formulation on the unconditionally av-
eraged response for an ensemble of specimens subjected to a
point forcing based on formulations on the conditionally av-
eraged responses for two subensembles of specimens in which
the point forcing is located in one or the other of the two
phases. Equation (43) provides the prescription for obtaining
the effective interaction operator for the unconditionally av-
eraged formulation in terms of the effective interaction op-
erators for the conditionally averaged formulations. The
question we pose is the following: Assuming that conditions
apply such that the effective interaction operator for the con-
ditionally averaged formulations can be approximated as local
in the two-scale limit, does it necessarily follow that the ef-
fective interaction operator for the unconditionally averaged
formulation can also be approximated as local? Clearly the
answer to this question must be no. Indeed, the prescription
of Eq. (43) would appear to require that it is necessary that
the effective interaction operators in the conditionally averaged
formulations be approximately equal to each other as well as
be approximated by local operators for the effective interaction
operator for the unconditionally averaged formulation to be
approximated by a local operator.

One can speculate on two-type microstructures for which
this would be so. One would be a two-phase mixture in which
one of the two phases can be identified as inclusions dispersed
throughout the second-phase matrix. At distances sufficiently
removed from the point forcing, it is intuitive that the response
in any specimen in the ensemble will not depend on the forcing
location phase. In the two-scale limit, the response of the single
inclusion in which any point forcing is located itself will result
in what would appear, at a sufficiently large distance, to be a
point force acting in the matrix. This scenario implicitly accepts
that the above-referenced, sufficiently large distance is to be
measured on a scale of the size of the inclusions, and assumes
a sufficiently large separation distance between inclusions so
as to exclude the effects of what might be termed a tunnelling.
Sufficiently large, in this last reference, is to be measured on
a different, much smaller scale than that determined by inclu-
sion size.

The second type microstructure for which the effective in-
teractions in the conditionally averaged formulations would
be approximately equal would be one in which the two phases
are strongly coupled. By a strongly coupled two-phase mixture
is meant one in which the transport, of whatever flux quantity
is being modeled, across the interface separating the two phases
is of the same order as the transport across a surface within
either of the two phases. A weakly inhomogenous two-phase
mixture would be strongly coupled by this definition. Thus,
the properties of a weakly coupled two-phase mixture cannot
be addressed by investigating the explicit series representation
for M which follows from the representation in Eq. (46).

However, for weakly coupled two-phase mixtures for which
both phases are connected for separation distances that are
measured on the scale of the specimen, the effective interaction

. operators for the conditionally averaged formulations can dif-

fer greatly according to the phase in which the forcing point
is located. By a connected phase over some distance is meant
that two points in the phase separated by the distance can be
joined by a continuous curve that lies completely in the phase.
For weakly coupled mixtures of two phases which are con-
nected over distances which are measured on the scale of the
specimen, then the effective interaction operator for the un-
conditionally averaged response can be expected to remain
nonlocal in the two-scale limit.
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Left to be investigated is whether the mixture theory-type
formulation, which applied for conditional averages based on
the location of the observation point and for an arbitrary
forcing, contains nonlocal effective interaction operators in
the two-scale limit for weakly coupled, two-phase mixtures of
connected phases. We can investigate this issue indirectly by
considering the projection of the formulation for the condi-
tionally averaged response to a point forcing where the con-
dition requires the phases of both the forcing and observation
points to obtain the formulation for the conditionally aver-
aged response where the condition requires only the phase of
the observation point. The investigation follows a reasoning
similar to the above, but concentrating on Eq. (44) instead of
Eq. (43). A conclusion that locality in the formulation for both
the forcing and observation point phases specified implies lo-
cality in the formulation for only the observation point phase
specified, for the two-phase mixture of interest, follows from
the stated restriction to a weak coupling. The weak coupling
limit implies that the important flux paths connecting the forc-
ing point and the receiving point are to continuously lie in a
single phase. Thus, the off-diagonal M{¥’ and M;; operators
are to be far less significant than are the operators with identical
indices. Thus, in the presence of weak coupling of phases,
locality in those M{’ operators that significantly influence the
transport of flux through the specimen in the two-scale limit
implies locality in those M;; operators that have a significant
influence.

The nonlocality identified with reference to Eq. (12) in re-
ducing from an extended formulation in which the forcing
phase is specified is not significant with reference to Eq. (28).
The reason is that the nonlocality identified with reference to
Eq. (12) required a mixture for which the coupling terms in
Eq. (28) are necessarily weak. Moreover, the operators in the
direct terms in Eq. (28) do not contain the nonlocality identified
with reference to that in Eq. (12). Referring to Eq. (39), there
is a nonlocality introduced in the infinite series sum that is in
addition to any contained in the various M operators that
appear therein.

The fact that a weakly coupled local mixture theory applies
for the conditionally averaged response in the two-scale limit,
whereas the formulation on the unconditionally averaged re-
sponse must remain nonlocal for the identified conditions, is
a significant conclusion of this paper. Not only can a mixture
theory formulation be obtained from projecting a more fun-
damental description on the microscale, its importance as a
predictive model can be argued even for experiments in which
the partial response fields, i.e., the conditionally averaged
fields, are not directly measurable. The importance is in the
convenience of the formulation, i.e., weak coupling and local,
when compared to the nonlocal formulation required for the
full-response field, i.e., the unconditionally averaged field.
Possibly more important than convenience, however, are the
questions to be raised when interpreting the obtained for-
mulations as bases for physical theories. We refer back to the
discussion of the tie between locality of an effective interaction
operator and its interpretation as a ‘‘material’’ property.

What about the significance, or utility, of a strongly coupled,
local mixture theory? As a predictive model for partial response
field measures for an experiment in which local balance and
constitutive laws apply on a microscale, this formulation can
be useful. If, however, there is no interest in the partial response
field measures themselves, but only as an intermediate step to
obtaining an estimate of the full-field response, the utility is
less. This is because the condition of a strong coupling implies
locality is a properly obtained formulation to govern the full-
field response.

Concluding Remarks

The mathematical arguments presented have been formal,
and none of the resulting formulations have the status of rig-
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orously derived mathematical results. Providing such a status
would clearly require more detailed statements of both the
underlying physical process to be modeled and the nature of
the heterogeneity. Again, we make reference to Gillette (1991).
Although to my knowledge a mathematically rigorous ap-
proach to the questions addressed has not been attempted, the
foundation for this would appear to be available.

Homogenization deals with the partial differential equations
encountered in studying the physics of heterogeneous materials
with a periodic structure, in the limit of the characteristic length
of the period vanishing. The subject has a long history, tracing
back at least to Poisson (1822). Modern treatments are given
by Babuska (1976), Bensoussan et al. (1978), and Sanchez-
Palencia (1980). These treatments are applicable to hetero-
geneity that is deterministic, as well as periodic. Keller (1977)
is generally credited with suggesting the application of two-
scale asymptotic analysis to heterogeneity that is described by
stochastic processes. A specific recent application of this type
analysis to a heterogeneity that need not be deterministic is
the derivation of Biot’s equations of poroelasticity (Biot, 1956),
by Burridge and Keller (1981). Like the present paper, the
above-referenced applications of two-scale asymptotic analysis
to random heterogeneity does not address questions of the
nature of the convergence of the approximations introduced.
It is in answering these questions that the derivations would
be elevated from an exercise in formal mathematics to rigorous
analysis.

Elevation of an homogenization to the status of rigorous
analysis would begin with a precise identification of two widely
different length scales. While this step may be relatively
straightforward in the context of material heterogeneity which
is deterministic and periodic, the identification of the micro-
scale is far less certain for material heterogeneity which is
stochastic. Further with regard to a stochastic homogenization,
our ability to identify the microscale would appear to be greater
for experiments in which material heterogeneity results from
a dynamic process. The dispersion of an additive by the small-
scale structure of a turbulent flow field would be an example
of such an experiment,

For material heterogeneity which is stochastic and for which
the identification of an underlying dynamic process is not
possible, the situation is much more problematic. Transport
processes in composite materials, or through porous media,
would fall in this category. In the context of such experiments,
it would be necessary to determine whether the microscale
lengths are properly identified with the geometric properties
of material heterogeneity, or with the topologic properties, or
with both. Characteristic lengths given by multipoint moments
or multipoint probability functions would be useful measure
of the former, but not the latter. Consider, for example, one
such characteristic length to be the separation distance between
two points, in a two-scale medium, required for the events
defined on the phases of the two points to be statistically
independent. Denote this length by /. For a reasonably well-
mixed composite material, / would most properly be identified
with the size of the inclusion phase; for a porous medium it
would be most properly identified with a pore size. Thus, / is
a geometric length. Now consider another characteristic length
to be the separation distance between two points such that
there is a vanishingly small probability of connecting any two
points in the neighborhoods, of dimension /, of the two spec-
ified points by a line that remains entirely in one or the other
of the two phases. This would be a topologic length, and it is
hard to see it determined from any multipoint probalibity
function.

The calculations and arguments presented in this paper sug-
gest that for a certain class of two-phase materials, the proper
structure of the homogenized equations would depend on
whether the topologic lengths of one or of both phases can be
described as macroscale lengths.
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We can cite two experimental studies by Plona (1980) and
Johnson and Plona (1982) that relate to the calculations pre-
sented in this paper. First, Plona demonstrated the existence
of two compressional modes of momentum transport in a
water-saturated porous solid composed of sintered, fused, glass
beads. The second compressional mode observed by Plona
confirmed a prediction of the above-referenced theory of Biot
(1956). In the second study, the experiment was repeated both
for the case in which the glass beads were fused and for the
case in which they were not. Only one compressional mode
was observed in the absence of fusing, with a wave speed that
corresponds to neither of the two wave speeds that corre-
sponded to neither of the two wave speeds observed for the
fused beads. Further, no shear mode was observed when the
beads were not fused. Superficially these results would appear
to be in agreement with the arguments presented. Thus; the
fluid contained in the pores of the manufactured medium is
singly connected, independent of the fusing of the beads, and
would provide for a mode of momentum transport by com-
pressional waves. The singly connected solid frame formed by
fusing the glass beads would provide for two possible modes
of momentum transport, by compressional waves and by shear
waves. Thus, the three modes observed when the beads are
fused are to be expected. In the absence of the fusing, the
beads are, in principle, not connected, which might be argued
to eliminate the modes of transport which are primarily through
this phase. Since the volume fraction of the beads was 38
percent, however, which is typical for a dense packing of
spheres, it would appear to be unlikely that the solid phase
cannot support any momentum transport by itself. Rather, the
reason for observing the second compressional mode and the
shear mode probably is a result of the ‘‘interface’’ between
the water bath and the ‘‘porous material’’ sample. That is, the
reason for not observing the waves is probably not because
the waves cannot be supported in the absence of the fusing;
it is because the experimental arrangement did not excite them.
This does not explain the strong dependence of the wave speed
of the single wave observed on the fact that the beads were
fused, however.
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propagating in an orthotropic medium are obtained. The approach deals with the
methods of linear algebra to transform the equations of motion into a first-order
elliptic system whose solution is sought under the assumption that the local dis-
placement field may be represented under a scheme of separated variables. The
analytical approach has enabled the distinction between two kinds of orthotropic

materials for which explicit espressions of the near-tip stress fields are obtained.
Some results are presented graphically also in order to compare them with the
numerical solution given in a quoted reference.

1 Introduction

A number of powerful analytical approaches for the solution
of a propagating crack problem in an anisotropic elastic me-
dium are available.

Among the most notable of these there is the Stroh’s for-
mulation (1962) which provides an elegant method of treating
steady-state problems in anisotropic elasticity.

A modified version of the Stroh’s method has been applied
by Atkinson (1964) and by Atkinson and Head (1966) to de-
velop the steady-state model of a propagating crack in an
anisotropic medium.

One of the most general features, common to plane elas-
todynamic solutions for moving cracks through an elastic solid,
is the representation of the spatial dependence of the elastic
fields in the neighborhood of the crack tip, under a scheme
of separated variables.

This result has been well established by Freund and Clifton
(1974) in the case of a crack moving nonuniformly in an iso-
tropic medium.

A work that directly relates to the present analysis is that
of Achenbach and BaZant (1975) in which the above repre-
sentation has been used to obtain elastodynamic near-tip fields
for traction-free cracks running in isotropic and orthotropic
materials. For the case of isotropic materials they found the
closed-form solution for the spatial dependence of the elastic
fields, whereas a numerical approach was used for the ortho-
tropic case.

In the present paper the problem of a crack propagating at
a time-dependent velocity in an orthotropic medium is revisited
to obtain closed-form expressions for the near-tip elastic fields.

In solving the problem, use is made of an approach recently
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proposed by Piva (1987) and by Piva and Viola (1988) to
transform the equations of motion into a first-order elliptic
system which is then solved following the initiative of the
previously cited authors.

In addition, the method of solution allows to distinguish
between two kinds of orthotropic materials for which signif-
icant differences on the near-tip stress field are pointed out.

2 Mathematical Preliminaries

Consider an infinite orthotropic elastic body and a crack
moving with a time-dependent speed c(¢) along the x-axis of
a Cartesian coordinate system O(x, y, z) whose axes are of
elastic symmetry. By referring to coordinates (x, y) attached
to the moving crack tip and following the considerations re-
ported by Achenbach and BaZant (1975), the system of equa-
tions governing the elastodynamic displacement field in a
deleted neighborhood of the crack tip may be written as

& u v u

e AL

ax* g 6x3y+a ay* 0. (1a)
8% &u 8%

2B ety =

Fi% A (')xaijo‘1 ay* 0, (16)

where u = u(x, y, ) and v = v(x, y, f) are the displacement
components and

__Ci2tCes o= Ces
= 2. &= N
e (1—-My) e (1—My)

Ci2+ Cep Cn

28,= , 0= .
e (1-M3) T cee(1~MB)

The coefficients c; are parameters related to the elastic cos-
tants, M3 = c*(£)/v}, M3 = ()03, v} = cp/p, B =
ces/p, and p is the mass density.

The stress-strain equations for an orthotropic elastic body
are
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du v
Oxy = C1) a‘*'clz 5;,
ou v
0,y =Cp3 5—); + ¢y 5, (2a,b,c)

(2430
Xy 66 ay -ax s
in which oy, oy, and o,, are Cartesian stress components.
According to a previous paper (Piva, 1987), the system of
equations (la,b) may be rewritten as
P aP
I—+A-—=0, 3
ox ay @
where Iis the 4 X 4 identity matrix, ®isa 4 X 1 matrix valued
function with real entries ®; (k = 1, 2, 3, 4) (which are related
to the displacement components as follows):

%
&, du du dv dv\r

¢: = _’ _! _—7 o 3 4
o, <6x ay’ ax’ dy “)
&,

and A is a 4 X 4 constant matrix, given by

0 o 268 0
“10 0 0

A=128 0 0 o )
0 0 -1 0

The characteristic equation of (5) is
m*+2am* +a,=0 (6)
in which
2a,=a+a;— 488, a;=ao.
In the subsonic case, Eq. (6) provides four distinct (either
complex or purely imaginary) eigenvalues which occur in con-
jugate pairs.

In order for all roots of (6) to be purely imaginary, the
orthotropic material must satisfy the conditions

a, >0, a1 > a,
and two eigenvalues m; = ip, and m, = ip, can be chosen
with
2
pr=lai— (@t —a) 1'%, py=lay + (@i - a1,

positive constants.
In this case, Eq. (3) may be transformed to (Piva, 1987)

av o
I—+B—=0, 7
ox ay 0 )
where
0 — D 0 0
_ p-! e p-lup_ P10 0 0
¥=P"'®, B=P'AP=|") 0 0 » {8a,b)
0 0 P2 0
and
28p? 28p%
0 Bplz 0 szz
a—p oa—p;
28p, 28p,
pP= a—-p% 0 a—p% 0 ®
—D 0 —P2 0
0 1 0 1

When the elastic properties of the material are such that
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a,>0, la;l <~ as,

Eq. (6) has complex roots. Without loss of generality, it is
always possible to choose the eigenvalues

my=-y1+ivy, Mmy= —My, v2>0
where a bar denotes complex conjugation, with
n=lNa+a)/2]'", va=[Na—a)/2".

In this case, Eq. (3) may be rewritten as

I— +C= =0, 10
ox a (19)
with
Y1 —v2 O 0
_ 0 0
V=R &, C=R'AR=|T? M . (llab
0 0 -y -y (D
0 0 7 2

The matrix R, which enters into (11a,b), is

=28qs —28q; 289, —28q;
Rr=| %9 26q: 26q -26q| (12)
— 72 —7 -2 3!
0 1 0 1

where the following contractions have been used:

m
oa+m

q1t+igqy= 2 g3+ iqs=my(q +iga).

In what follows, the integration of Egs. (7) and (10) will be
performed by referring to a system of moving polar coordinates
(r, 8) attached to the crack tip and assuming, as suggested by
Achenbach and BaZant (1975), that the local displacement field
may be represented as

u(r,9,t) =r"T(HyUud),v(r,d,H=r"T(t) V(),

in which v, U(#), and V() are the unknowns.

The solutions will be sought under traction-free conditions
on the surface # = =+ of the crack—and symmetry or skew-
symmetry conditions for the displacement field accordingly,
as mode I or mode II fracture are respectively studied.

(13a,b)

3 Purely Imaginary Eigenvalues

Substituting (13) into (4), and using the chain rule of dif-
ferentiation with respect to polar coordinates, leads to

o =r""1T(1)f (), (14)
where
v cos ¢ U(d) —sin ¢ U’ (F)
fy=1" sin ¢ U(9) +cos & U’ (J) (15)

v sin ¢ V(&) —sin & V') |’
v sin & V(&) +cos & V' (§)

in which a prime denotes differentiation with respect to the
argument. Hence, from (8q) it follows that

V=T R(S), h(I) =P f(H). 16)
The system (7) may be decomposed into two independent
systems
oy

a\I,(i)
Zr _._é;_

ax

A4 A4 0 —p
m_ { ¥ @_ [ ¥3 - j
) ’"<\I/2>"I’ _<\I/4>’B’ <Pi 0 >
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The general solution to (17) is obtained by introducing new

variables
tg o
=rlgi(3"?, 9=1g"" (‘%‘), i=1,2,
i

(18a,b)

with
gi(9) =cos? & + (sin® 9)/p?. - 19)

In view of (18a,b) and (19) the functions ¥“(x,y) defined
above become

¥ (r, 8)=r1""T()HD (8), i=1, 2, (20)
where
H(')(ﬂ)—-{g,[ﬁ(z})]} h"’[ﬁ(z?)] @n
and h0[6(9,)] follows from (16b).
Using the chain rule of differentiation, one obtains
(i) (G- 0
6§/x =Cos ia:ri __su;iz?i 8;I/§i , (22a,b)
¥ sin §; 0¥V . cos & 9¥H
ay Di or; ripi 99

Inserting (20) into (22a,b), substituting into (17), multiplying
the result by 277, and considering the limit as r — 0, gives
dHY
R(I) —
dd;

where R{? and R{" are the following orthogonal matrices
R(i)“' sin 0,’ CcOos 1.9,' R(,‘) _ [cos 0,’ - sin 19,'
- sind; )’ 2 " \sing; cosd /)

—cos ¥
(24a,b)
In view of (24a,b), the system (23) reduces to

dH? _ 0, 0 -1

whose solution can be represented as
; HE  — HYN (cos(y— D¢
(D (.9.) — Y i
HY () (H(l) H(l)> <sin('y— N
The constants of integration Hy; M = j(i)(O), Jj=1,2,wil
be determined in order to satisfy the appropriate boundary
conditions. Combining (15) with (165) and (21), the expressions

for the functions U(f) and V() introduced in Eqgs. (13a,b), as
well as for their derivatives, are obtained as follows:

(y=DRYHD (8,0 = 1,2, (23)

25

y—1
26pigy 2
U(s) = R C)) [HID) sin 0+ p HY (9) cos 9]+
(Oly—_,?l)
20p.gs 2
——2—2('” HP () sin ¢+ p,HP () cos 8], (26)
v(o—p3)
'y—l
208p
U' ()= : [H(8) cos & —p HY() sin 8] +
y—1
2Bpa8y 2
+~% [HP? (8) cos & — pHP®) sin 9], 27)
P2
'Y__l
g
V() =——7(—§) [HP () sin 8 —p HP () cos 9]+
-1

g 2
+¥ [HY () sin 8 —pHP (9) cos 9], (28)

Y1
V(9 =g 2 (z9)[p1H(l)(z9) sin 3+ HY cos 9]+

+g2 2 (19)[p2H(2)(z9) sin 3+ H? cos 9], (29)
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In order for the solutions (25) to satisfy the symmetry con-
ditions
U’ (0)=V(0)=0,
for the mode I fracture or the skew symmetry conditions
U)y=v'0)=0, @3
forl the mode II, it has to be valid that H{’ = H? = 0 or
HY = H = 0, respectively.
In order to apply the traction-free conditions on the surface

of the crack, the relevant stress components are obtained by
combining (20) with (8a) and putting into (28,¢). The result is

30

1 r! 1
oy =Ceet” ' T(1) g 2 (DHP(9) _,
+lg 2 (HHP M), (32
=o' T(O)[he1 7 *(9)HD () 1
+hey 2 (HHP(], (33

in which

2 Cp C 280°
11=,Ux< '82_1>,12='2+"1“2 < Bplz>,
a—pm Co6 Co6 \O— D1

23 Cp  Ci2 2517%
L=p,\ ———-1), j=—+— .
e (01 - ) ¢ Ce6  Co6 <Ol ‘17%

The traction-free conditions oy,(+ ) = g,(+T) = 0on the
surface of the crack yield a system of homogeneous equations
for the unknown costants HQ’ and H¢® or H¢l and HP, for
the mode I or mode II, respectively. The necessary and suf-
ficient condition to avoid the trivial solution is

D(M,) sin 2yr=0, (4

where D(M,) = [l — bl; is the Rayleigh function for the
orthotropic medium. When the crack velocity is subsonic and
smaller than the Rayleigh wave velocity, the smallest root of
(34), allowing the strain energy density to be integrable in a
neighborhood of the crack tip, is y = 1/2.

The constants of integration are then determined, up to an
arbitrary multiplier, and satisfy the following relations

HE 4L HE 12
HY ™ i HY
for mode I and mode II, respectively.

Hence, the asymptotic expressions of the relevant stress com-
ponents (32) and (33) become

K;(?) 14 28
= | L/ #) cos —
» = JamrD (M) [ W31 () 2

(35a,b)

g (9)cos %3} . (36)

LK (1)

19
—1/4 . 1
=——t | g M)sin —
i’ N27rD (M,) : (D)t 2

~ g2~ V4() sin %] @37

for mode I fracture and

LLK () | —1/4 .Y
= #) sin —
2erD(My) | ! (9) sin i
_ 0
—g () sm;2 ., (38)
KII(I) i —~1/4 02
= [,/ J)cos —
y \/E-ED(Mz) i 20382 ( ) 5 ]
~ g 9)cos 2, (9)

for mode 11, where the usual definitions of the stress intensity
factors K;(¢) and Kj;(¢) have been assumed. The expressions
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Fig. 1 Variation of D(M,) for steel aluminium
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Fig. 2 Variation of D(M,) for graphite epoxy.

for the displacement components may be obtained through
(26) and (28) with appropriate values of the functions H;'(6),
ihj=12.

It is worth noting that the asymptotic expressions (36)-(39)
are highly influenced by the behavior of the Rayleigh function
D(M,). In Fig. 1, this function is represented for a steel-
aluminium composite whose elastic coefficients, under plane-
strain conditions, are

c
U _3.952, 224,155, 2= 1.959.
Ce6 Ce6 Ces
In Fig. 2, the above function is represented for a distinctly
orthotropic material, i.e., for a graphite-epoxy composite for
which

S _3.504, 2-29.822, 2= 1.723.

Ce6 Ce6 Ce6

1t should be noted also that the trends are similar; an increase
of orthotropy reflects into a remarkable increase of the values
of the Rayleigh function.

In order to compare the above obtained analytical results
with the numerical solution given by Achenbach and BaZant
(1975), the stress component o,, was derived and combined
with Egs. (36), (37) and (38), (39) to get the polar stress com-
ponents gy and g9 for mode I and mode II fracture, respec-
tively.

The quantities Ugg(r/C66’)/0)l/ 2 and a,g(r/c“'yo)“ 2 have been
graphically represented in Figs. 3-4 versus the angle 6, for two
values of M3 in mode I and mode IT fracture.

Journal of Applied Mechanics

20

MZ= 0.2
125 k=c,, /¢y

gﬂﬂ(r /CEG%)VZ

Fig. 3 Angular variation of s in mode | fracture (according with Fig.
2 in Achenbach and Bazant, 1975)

The constant v,, one half of the specific energy of crack
extension, was obtained (see Eq. (47) of Achenbach and Ba-
zdnt, 1975) as follows:

(p1s—palt)

K3(¢) , mode I
_J4eDM)
o 2 2
8 bp;  lpi 2
- K7 (t), mode II.
2 csD (M) [a—p% o] K

According to the nomenclature of the quoted paper, the
curves have been represented for several values of the ratio &
= E./E,, = c11/cx. Taking E = min{cyy, ¢}, the values of
G/E = ce/E and E,,/E = ¢,/E were chosen as those for
an isotropic material; i.e., as (I — 2»)/2(1 — ») and »/(1 —
v), respectively, where v is the Poisson ratio. Solid lines have
been plotted for » = 0.3 and dotted lines, corresponding to
the isotropic case (k = 1), have been represented for several
values of the Poisson ratio. It appears that the results are in
accordance with the corresponding ones reported in Figs. 2-
3 of the above-mentioned paper.

The effects due to the increase of material anisotropy are
shown also in Figs. 4-5, which refer to graphite-epoxy and
steel-aluminum composites. The dimensionless stress compo-
nents oge(27r) /K (2) and o,4(27r)2/K (¢) have been repre-
sented versus the angle § for several values of M3 in mode 1

- (solid lines, K(#) = K;(¢)) and mode II fracture (dotted lines,

K(t) = Kp()).

4 Complex Eigenvalues
The system (10) can be decomposed as
v vt

W+ Ci(v1, v2) 3

=0, i=1, 2, (40)
in which
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Fig. 4 Angular variation of 4, in mode Il fracture (according to Fig. 3
in Achenbach and Bazant, 1975)
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0, ¥ 27er K(Y)

Fig.5 Angularvariation of ¢, in mode | and mode 1! fracture for graphite-
epoxy and steel-aluminum composites
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Fig.6 Angular variation of ¢, in mode | and mode Il fracture for graphite-
epoxy and steel-aluminium composites

w_ (V1) go_ (¥ _(m -7
¥= (\PZ) s = <\{I4> ’ Cl('Yl» 'Y2) <72 ’Yl) )

and Gy {1, v2) = Ci(—v1, 72)- ) )
The general solution to (40) is obtained by introducing new

variables

ks

n=rig (M, g=1e” i, i=1,2, @D
where
gi(9) = (cos® 9+ sin? 9+ eqyrl sin® ), fi(9)
:__1@“_2";__ 42)
cost+ ey sin &
with

-1, i=1 -
e,-={1, i—y P=ld) 7

Combining (11a) and (14) with (41a,b) and (42a,b) gives the
following local representation

YO (r, 9)=r7"'"T() G (). (43)

Using again the chain rule of differentiation, the system (40)
becomes
dG(l') .
—= (y- LG,
as, (v— DI

whose solution may be expressed as

; G — G\ [costy— 13\ .
W9y — [ OO0 02 Y J -
T <Gé§’ 6ty ) \singy—ny9,)> '=h 2 @)

By referring to the matrix of transformation (12), the expres-
sions for the displacement functions U(8) and V(6), as well as
for the derivatives, may be obtained in the same way as in the
case of imaginary eigenvalues.

The expressions (2b,¢) for the relevant stress components
become

(44)
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Fig. 7 Variation of D,(M,) for materials 1 and 1}

oy = cost” ' T(1) [gz%_l(t?)[le(f)(t?) +d,GP (9]

-1
-1 2 DG (9) -G ()1, (46)
y—1
Oy =Cesr” ' T(1) {ng(ﬂ)[daGﬁz)(ﬁ) - d,GP (9)]
-1
+8 2 (DG () +dGP ()],  @7)
with
c c c
dy =289, =2, dy="2-28g, =2,
Ce6 Cés Ce6
and

d3=20G,—v,, dys=28q,~,.
In view of the traction-free conditions on the surface of the
crack, the solutions (45) are nontrivial if and only if
D, (M,)sin2yn =0, (48)

where D, (M) = d\d; ~ dyd; may be thought again as the
Rayleigh function for the orthotropic medium. Similarly, to
the previous section, the appropriate solution to (48) is v =
1/2 and the following relations hold

d, d.

1 4 ~(1 1 2 (1

Gy =2 6fY, 6y = -2 G,
3 1

for mode I and mode II, respectively.
Equations (46) and (47) then take the following explicit forms
Ki(1)

d
=" g7 "(8) | D,(M))cos —*
=3 2D, (M) {gl ( )[ 1(M>)cos

2

d
+ (dld,g + dbdy)sin El:| +

+&7 "4 () [Dl (Ms)cos %%— (dids+ dyds)sin %B , (49)
_ K () (5 +d3)

D) s
—~1/4 2 —1/4 1
Oyy = F)cos == — d)cos — |, (50
® 2N 27rD (M) l:gz @) 2 g () 2] (30)
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Table 1

/e | Cplss | €12/%6
Material 1 2.0 1.5 1.0
Material II 3.0 3.0 2.0
for mode I fracture and
Ku() (B +d3) | _1 3
=—— 19 —Z
Oyy 2\/2_7I'I'D1(M2) g2 " (d)cos 2
~ g )cos %] (s1)
KII(t) —1/4 01
= ) | Dy (M =
Oxy 22arD: (M) {gl (9)| D, (M;)cos >

o
— (dydy+ dydy)sin 7‘] +

+g2~1/4(0) I:Dl (M,)cos %'F (d\dy+ d,dy)sin %}} » (52)

for mode II fracture.

It should be remarked that the angular variation of the above
stress components differ substantially from those shown in
(36)-(39). The Rayleigh function D, (M>) is shown in Fig. 7
for two kinds of orthotropic materials whose elastic coeffi-
cients are such that the eigenvalues of Eq. (6) are complex
conjugate. Due to the difficulty of finding experimental results
concerning such materials, fictitious elastic parameters, which
allow the condition la;| < +/a; to be satisfied, have been
taken as in Table 1.

It is evident the different behavior of the function D{(M,)
with respect to that shown by the function D(M,) in Figs.
1-2.
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Dynamic Response of an
Orthotropic Half-Space With a
Subsurface Crack: In-Plane Case

Scattering of elastic waves by a subsurface crack in an orthotropic half-space sub-
Jected to a surface line load of arbitrary angle of inclination is studied. Green’s
Sunctions are developed and used along with the representation theorem fo reduce
the problem to a set of simultaneous singular integral equations in the Fourier
transformed domain. Solution to these equations is then obtained by expanding the

unknown crack opening displacement (COD) in terms of Chebyshev polynomials.
Numerical results are given for specific examples involving orthotropic materials.

1 Introduction

Scattering of elastic waves by subsurface cracks has been
the subject of intensive study in the recent years because of its
importance in seismology and nondestructive evaluation (NDE)
applications. Achenbach and Brind (1981a,b) studied the
response of the crack normal to the free surface in an isotropic
half-space. Achenbach and his co-workers (1983, 1984a,b) later
extended their previous studies to obtain the stress intensity
factor and resonance effects for cracks parallel and inclined
to the free surface. Yang and Bogy (1985) studied the response
of an interface crack in a layered half-space. Gracewski and
Bogy (1986a,b) extended the work of Yang and Bogy (1985)
to obtain the response of an interface crack in a layered half-
space submerged in water. In most of these studies response
due to continuous surface loads was considered; only Gracewski
and Bogy (1986b) considered the response due to arbitrary
wavefronts and Gaussian beams. Corresponding problems of
surface-breaking cracks also received due attention (Datta
(1979), Mendelson et al. (1980), Stone et al. (1980), Kundu
and Mal (1981)). Antiplane problems, because of their relative
mathematical simplicity, have been the subject of intensive
investigation (Bostrom (1987), Kundu (1987a) and references
therein). Problems of subsurface multiple cracks have also been
investigated mostly numerically in the recent years (Zhang and
Achenbach (1988) and references therein).

Although most of the attention of the investigators have
been devoted to the isotropic materials only, recent widespread
use of composite materials warrant the investigation of the
response of orthotropic or anisotropic materials with cracks.
Helmholtz decomposition, which simplifies the two-
dimensional problems for isotropic materials, is not valid for
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composite materials. Although for static problems involving
orthotropic materials a parallel decomposition was developed
(Georgiadis and Papadopaulos (1987)), no such simplifying
decomposition has been developed for dynamic problems yet.
So these problems have to be solved in terms of displacements
in the frequency domain. Kassir and Bandyopadhyay (1983)
studied the response of a central crack in an infinite orthotropic
medium. Kuo (1984a,b) studied the response of cracks at the
interface of two dissimilar orthotropic or anisotropic half-
spaces. Ang (1988) solved the problem of a crack in an
orthotropic layer sandwiched between two orthotropic half-
spaces. In all these studies the external loads were applied only
at the crack surfaces.

Traditionally, internal cracks are considered to be open so
that it does not transmit any traction. Although analytically
we can solve a problem assuming a relation between tractions
and displacements across the crack plane (Achenbach and Nor-
ris (1982), Thompson and Fiedler (1984)), finding such rela-
tions experimentally for a particular problem can be very
difficult or even impossible.

In the present paper, response of a subsurface crack parallel
to the free surface in an orthotropic half-space is considered.
The incident wave field is generated by a line load on the surface
acting at an arbitrary angle. Crack surfaces are considered to
be smooth and stress-free—in other words, contact and
transmission of stresses across the crack is neglected. A
corresponding antiplane problem was solved by Karim and
Kundu (1989). The solution to this in-plane problem will help
us understand the ultrasonic nondestructive evaluation of
nonisotropic materials and composites which are becoming
increasingly more common. This solution can act as a Green’s
function for computing the acoustic material signature (AMS)
of an orthotropic solid with crack. Comparing AMS of cracked
and uncracked composites, internal cracks may be detected.
This application is currently under investigation.

In the analytical formulation a coupled set of integral equa-
tions are obtained from the frequency domain representation

"theorem (Mal (1972)). Alternatively, these relations can be

obtained by using Betti’s reciprocal theorem (Neerhoff (1979)).
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Fig. 1 Geometry of the problem; an orthotropic half-space containing
a subsurface crack

In these integral equations, unknown COD’s are expanded in
a complete set of Chebychev polynomials. The unknown coef-
ficients of these expansions are obtained by satisfying the stress-
free boundary conditions at the crack surfaces. As a sample
problem, the surface response of a cracked half-space at dif-
ferent points is studied.

Surface response computation for a line load excitation is
computationally more difficult. This is due to the fact that
unlike a plane wavefront, in this case, the incident field is
expressed as an infinite integral over the wave number.

2 Problem Formulation

A homogeneous, orthotropic, linearly elastic solid, which
occupies the half-plane y > 0, contains a subsurface crack
parallel to the free surface as shown in Fig. 1. The crack with
traction-free surfaces, having a length of 24, is located at a
depth A. The in-plane line load, T = 8(x)f(¢), is applied at
the origin of the xy-coordinate system as shown in the figure.
The applied load makes an angle # with the vertical direction.
The Fourier transform of f(#) is given by F(w).

To solve this problem of our interest we need to solve two
fundamental problems (1) a flawless half-space subjected to a
line load at the boundary, and (2) the Green’s functions cor-
responding to internal unit loads in x and y-directions. The
representation theorem is then used along with the Green’s
function to obtain scattered displacement field.

2.1 Flawless Half-Space Subjected to a Line Load at the
Boundary. The geometry of this problem is very similar to
Fig. 1, the only difference is that there is no crack. The time-
harmonic in-plane stress field of time dependence, e™*’, acts
as a line load at an angle of inclination, 6, at the origin.

Constitutive equations of the material can be written in the
reduced matrix notation as

(k, j=1,2,6) O

where a repeated subscript indicates summation and Cy; is the
stiffness tensor. For orthotropic materials, Cig, Cyg, Cs1, and

O = ijéj

C, are equal to zero. The engineering strains, ¢;, in Eq. (1)

are defined by

E1=Uyx, €=V, €6=u7y+ Uyx (2)

where u and v are displacement components in the x and y
directions, respectively, and a comma (,) indicates partial de-
rivative. Equations of motion of the problem are given by

Ba)
(3b)

Ciithy e+ Cogltyyy + (Cra+ Cop) U,y = pll -
Coov,y + Ceelsxx +(Cra + Cp)tly 0y = pUsy

Journal of Applied Mechanics

(Xpr Yp)

’
A (b)

Fig. 2 A line load in a half-space: (a) line load in horizontal direction,
(b) line load in vertical direction

where p is the density of the elastic material.
Solutions of these coupled equations in the Fourier trans-
formed domain (w) can be written as

1 [
e =5 | (4a)

2
D Ak
j=1

1 [~ & .
V(x,y)=gg > A8 ke (4b)

—» T
where p; is the jth root with negative real part and/or positive
imaginary part of the following equation

CuCeap’ + P* (K2 Ch + 2C1nCok® + Cppper® — K2Cy Cop + Cespr?)
+(p2w4—k2C6600)2“k2011p0)2+k4011C65) =0. (5)

A; are the unknown functions of & and w. They are determined
by using boundary conditions and are given in the Appendix,
and

. K*Cii = p}Cos— pos”
7 ikpj(Cra+ Ces)

2.2 Green’s Function: A Line Load in a Flawless Half-
Space. A number of Green’s functions are available in the
literature (Xu and Mal (1987) and references therein) for
isotropic materials, in terms of displacement potentials. But
none of these can be used for orthotropic materials directly.
So, in this section, two new Green’s functions are developed
for unit load in the x and y-directions.

The geometry of this problem is shown in Fig. 2. A time-
harmonic line load is acting at a point P(x,, y,) as shown in
the figure. Unit loads along the x and y-directions can be
considered as a body force corresponding to a delta function
o(x — xp, ¥y — ¥, . Equations of motion for this problem
should be the same as Egs. (3), with the additional body force
term in Eq. (3a) for a unit load in the x-direction and in (3b)
for a unit load in the y-direction. Solution to these equations
can be written as

(no summation on j). 6)

UaG(x,y)=51— S {B:e"lly"p' + CEen2v !
T J_

2
+>] D,‘-"e"f'y} D dk (Ta)

Jj=1
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1 (o]
Valxy) =5 S {Bije"l'y‘yp' +CESFer2 !
2 .
+> D;?Sjeﬂﬂ} X%l dk (7h)
i=1 '
where o = 1 for a unit load in the x-direction and 2 for a unit
load in the y-direction and

St==x8 j=1,2

P24 (Crat Cop)

Bf=-
! 2Css (@106~ aras)
o _PIRn(Cin+ Cap)
' 2C (@105 — azas)
By=Ci = T4 ®

2(13

with ““+’ for y > y,and “-"" for y < yp Expressions of
a, through ag are given in the Appendlx B%, C% are obtained
by using the fact that for a unit load in the x—derCthI‘l there
will be a unit jump in o while U%, V°, and oS, are continuous
across the y = y, plane. Slmllarly, for a unit load in the y-
direction there will be a jump in ¢, while , and of are
continuous. These conditions give rise to two 4 >< 4 matrices
which are then inverted to obtain B%, C%. Constants DY (a,
J = 1, 2) can be obtained from the boundary conditions and
are given in the Appendix. Superscript Gin U, Vand ¢ indicates
that displacements and stresses correspond to the Green’s func-
tions.

2.3 Application of Representation Theorem. From the
frequency domain representation theorem (Mal (1972)) one
can obtain the scattered displacement field (U° (x,, ¥,), V¥ (x,,
Yp)) in the form

. d+a
lf(xp,yp)=S [p(x—d)oglyp+ ¥ (x—d)a3l,_4ldx  (9a)

d-a
d+a

Vs(xpyyp)zg [¢(x_d)0g|y=h+\//(x_d)o/%ly=h]dx

d—a

(9b)

where 6%, 0§ (o« = 1, 2) are the stress fields corresponding to
a unit load acting in the wa-direction; in other words, they are
stress fields corresponding to the Green’s functions obtained
from (7a) and (7). ¢(x — d) and Y(x — d) are crack opening
displacements (COD) along the x and y-directions, respectively,
and are defined as

ox—d)=U(x—d,h")~U(x~d,h™)

Vix—-d)=V(x—-d,ht)-V(x—d,h™).
Combining Egs. (1), (7), and (9) and after some simplifications
one can write

(10

d+a o
U (pop) =5 § d(x—d) § Fy (k) |y P dkdx
d—a

d+a oo
+o- s Y(x—d) S Fy(k) |, _4e*Pdkdx  (11a)
T Jdg—q

—»

1 d+a oo - )
V=5 S p(x—d) S Fi(k) 1, - * 0 dledx
d—-a

)S Fy(k)1,_ O Pdkdx  (11b)

1 d+a
+—- -
27[' Sd*a lp(x
expressions of functions F;(k), j = 1, 2, 3, 4 are given in the
Appendix.

The scattered stress field can be obtained from the displace-
ment field of Eq. (11). To satisfy the stress-free boundary

990 / Vol. 58, DECEMBER 1991

conditions this stress field should be equal to the negative of
the incident stress field that can be obtained from Eq. (4).
Hence,

a

—iCZIS kFl(k)|y=yp:hS o (x)e* %) gy dk

a

S“’m kFy (k) 'y:yp=h §7H

S‘” dF; (k)
w  O0Yp

K[/ (x) eik(X~xp) + ikddxdk

a
S ¢(x)eik(x~xp)+ikddxdk
pV-a

y=yp=

® AF,(k
+C22S 4 (k)

p Sa ‘//(x)eik(x—xp)—kikddxdk
- yp —-a

y=yp=Hh

= - S (A1 (kCyy + CoaSip1) &

+ Ay (ikCyy + CSy p2) e Y™ pdk  (12a)

a
¢(x)elk(x~xp)+lkddxdk
y=yp=h "4

3Fz(k)

Sm aF (k)
e Oy

a
+ Ces S ¥ ()"0 + Mgl

y=yp=h "9

—ic“S kFy (k) |- y:hg o (x)e* P+ *gxd
~ic“j KFy (k) 1, - y,,_,,f Y (x)e P Mgk

— o —a

= — S {A,Ces(py + ikSy) "

+ AsCes (D2 + ikS,y) €720 ™ pdk.  (12b)

In the above equations the only unknowns are the crack open-
ing displacements ¢ and y, which are obtained in the next
section.

3 Computation of the Crack Opening Displacement
Functions

In order to evaluate the crack opening displacements, ¢(x)
and Y(x) are expanded in a complete set of Chebyshev poly-
nomials,

$(x) =2 [%- Gan(x) i o2tL

2 ¢2n+1(x):|

Y(x)

Z [12— Yan(x) +i 522 ¢2n+1<x)} (13)

where
s, (x) =sin{2n arcsin(x/a)}

Yon(x) =sin{2n arcsin(x/a)}
ban+1(x) =cos{(2n + l)arcsin(x/a)}

Yan+1(%) = cos{(2n + Darcsin(x/a)}. (14)

To obtain the unknown coefficients o, and +,, both sides of
Eq. (12a) are multiplied by ¢,,(x,) then integrated from x, =
—ato x, = a, and both sides of Eq. (12b) are multiplied by
Ymlxp) then integrated from x, = —ato x, = a. After some
algebraic manipulation an infinite set of linear equations is
obtained to solve for «a, and ,.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



< * Fi(k
S Kot + Lniva) =i (K) -| A sin(kd— k)
n=1 0 y=hy,=0
= F(k) .
Z (Mopntn + Noyn) =12 (k) 5) X Z Loty (ka) Jdie— S k sin(kd — kx)
n=1 h=even }'=h,yp=0
h - [® Fy(k
where X 3 indtk)aei | 8 cos (kd - kx)
A=ty | (ALKCo+ CaSip = ‘ o
' I (ka) X > lvwlu(ka)}dk (20a)
+ A, (ikCyy + CpSypy) ) —’"k— e*idk n=even
® Fy(k
o _ \ Vi(x,0)= —j 1 )' sin(kd — kx)
Salk)y =1y S {A1Ces (D1 + kS )€™ 0 y=h.y,=0
+ AxCoapr+ ikSp) ) 228D gragy 16
F (k aF;(k
[ Cyim 22 ‘( ) +% Cn —;—(l ]J,,,(ka)],,(ka)dk
y=yp=h Vo y=yp=h
F,(k oF,(k
~ Cyim 2( ) +22 Cn OFatk) Juw(ka)J, (ka)dk
y=yp=h ay” y=yp=h
D P
oF, (k F3(k
=S [ o 55 T — Cyo i A }Jm(ka)Jn(ka)dk
yp y=yp=h y=yp=h
oF; (k . Fy(k
M= | [ wp e | Cam T }Jm(ka)Jn(ka)dk an
y=yp=h y=yp=h
and J,, is the Bessel function of first kind of order m, and
i for odd m o
= Fi(k
b {—i for even m. X > towl,(ka))dk+i S 3]({ ) cos(kd — kx)
Matrices K, L, M, and N are all symmetric. In addition, when n=odd y=hyp=0
m + n)is even, then K,,, = N,,, = 0, and when (m + n)is ind ® Fy(k
E)dd, thgn Ly = My = 0. ( ) X > {owli(ka))dk+i S —"7((—) cos(kd — kx)
Equations (15) have an infinite series in their expressions. n=even 0 y=hyp=0
However, they can be terminated after a finite number of terms [ ® Fu(k) )
without introducing any significant error (Kundu (1985)). Then X Z {Yndu (k) Ydke — S . sin(kd — kx)
oy, y» can be obtained from a finite set of linear equations. n=odd 0 y=hyp=0

3.1 Computation of Surface Displacements. The total
displacement components U and V are given by
U=U'+ U
V=V (18)

in which U’ and V' are displacement components in absence
of any crack given by Eq. (4), whereas the scattered field
components U° and V* represent the change in U’ and V' due
to the presence of the crack. U° and V* are given by Eqgs. (9a)
and (9b), respectively. After some mathematical simplifica-
tions one can write the displacement components U and V at
any point B(x, 0) on the surface in the following manner

. 1 *® )
U (x,0)=ﬂ S (A +Az)e*dk (19q)
i 1" ikx .
V'(x,0)=ﬂg ASESdk  (j=1,2) (195) -
and
Us(x,0)=iS i) cos(kd — kx)
0 y=hyp=0

-3

X >} {ony(ka))dk
d
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X >, {yalu(ka)}dk. (20Db)
n=even
Then Egs. (19) and (20) are added to obtain the total surface
displacement.

3.2 Computational Aspects. The next task is to compute
the integral expressions in Egs. (16), (17), (19), and (20). Nu-
merical techniques to obtain such integrals and methods used
to verify convergence and accuracy of the computer programs
were discussed in several previous papers by the authors (Kundu
and Mal (1985), Kundu (1986), Kundu (1987b), Karim and
Kundu (1988)).

4 Results and Discussions

The method discussed above has been implemented in a
FORTRAN program. Results are given for a graphite-epoxy
composite specimen which is used widely in aircraft industries.
Response of the cracked half-space to different impact loadings
are shown in Figs. 3 through 8. The following function is
considered as the loading function:

16PA(1—1)"* O=<t=<r
f()= { =zt

@D
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whose Fourier transform is given by

-3
{%}IH(#-%H. (22)

In the above equations, P defines the peak value of the plate
surface excitation load. In subsequent calculations, Figs. 4
through 8, P is set equal to 10. 7 is the duration of the impact
load. Sharpness of the impact time history can be increased
by either decreasing 7 or increasing P. Results are given for 7
= 2 micro seconds. The following material properties of the
graphite-epoxy composite (Kuo (1984a)) are used for all sub-
sequent analyses:

F(w)—43
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Cy,=138.4408 GPa
Cy=14.5365 GPa
Ci2,=3.0530 GPa
Ces=5.8565 GPa

(23)

For the sample problem considered in Figs. 4-7, the half-crack
length is taken as 1 mm, depth of crack 4 is taken as 0.5 mm,
and distance of the crack center from the point of application
of the load is taken as 2 mm. These dimensions are of the
same order of magnitude as generally obtained in impact tests
(Joshi and Sun (1985)).

It is shown in Figs. 4-7 that spectral values of surface
displacements become very small after 1-MHz frequency for
the excitation load considered here. So numerical computations
are carried out up to 1.2-MHz frequency at an interval of
0.04MHz. The crack opening displacement (COD) along the
crack length is shown in Fig. 3 for 0.04-MHz frequency and
F(w) equal to 10. For any other value of F(w), all graphs in
Fig. 3 should be appropriately scaled. F(w) is set equal to 10
only to make sure that COD values along the y-axis are not
too small and the computer doesn’t use any scaling factor along
the y-axis while plotting these curves.

The left column shows the variation of displacement along
the x-direction (U) while the right column shows the same in
the y-direction (V). Three rows correspond to three angles of
inclination (#), which are 0 deg (top row), 45 deg (middle row),
and 90 deg (bottom row). In each plot two curves are drawn,
the thick curve shows the COD of the sample problem described
above, while the thin curve is for a similar problem where the
load is shifted horizontally just above the center of the crack
(d = 0 mm). From the problem geometry and the direction
of applied load it is obvious that for d = 0, the problem is
symmetric for § = 0 deg and antisymmetric for § = 90 deg.
Hence, for § = 0 deg, one should expect symmetric ¥ and
antisymmetric U, whereas for # = 90 deg, V and U should be
antisymmetric and symmetric, respectively. This is what we
get in our computation also. However, in the COD plots (thin

p=7.44 gm/cm’,

Journal of Applied Mechanics

curves of Fig. 3), both U and V appear to be symmetric for 9
= 0 deg (top row) and 0 = 90 deg (bottom row). This is
because the modulus or absolute value of COD amplitudes are
plotted in these figures; hence, both symmetric and antisym-
metric curves appear to be symmetric in the figure. For a 45
deg inclination (middle row) and other angles of inclination
(not shown), COD plots are neither symmetric nor
antisymmetric.

In a few more words let us explain clearly what is meant by
antisymmetric U and V. If the horizontal displacement is
positive (towards right) at a point ( + x, 0) and negative (towards
left) but of the same magnitude at another point (- x, 0), then
we call it an antisymmetric U. So antisymmetric Ureally means
a horizontal motion of the half-space which is symmetric about
the y-axis. Hence, we get antisymmetric U for the symmetric
loading (0 = 0, d = 0). Since U displacements are parallel to
the crack faces, the problem of overlapping or penetration of
crack faces does not arise for symmetric or antisymmetric U.
However, for antisymmetric V, this problem definitely comes.
This is due to the fact that for an antisymmetric V, if the
vertical component (V) of the crack opening displacement is
positive for, say x > 0, then for x < 0, V should be negative,
meaning penetration of crack faces one into another. However,
as mentioned in the next section, under Concluding Remarks,
if the crack has some nonzero width, the crack faces may go
through antisymmetric vertical displacements without touching
each other. Similar types of symmetric and antisymmetric COD
plots are obtained at other frequencies as well, but because of
the page limitation, those plots are not presented in this paper.

In Figs. 4 through 7, thick and thin curves indicate the
surface response of an orthotropic half-space with and without
cracks, respectively. Left and right columns give spectral am-
plitudes and time histories, respectively. In Figs. 4 and 5,
variations of u and v on the surface of the half-space are shown.
Top and bottom rows indicate the displacements at x equal to
5 and 15 mm, respectively (see Fig. 1). It should be noted here
that for both Figs. 4 and 5, the percentage difference between
the peak values of surface displacements with and without the
subsurface crack is more at x = 5 mm than that at x = 15
mm. Intuitively also one should expect it, since the effect of
crack decays as the distance from the crack increases.

Horizontal (1) and vertical (v) displacements at x = 5 mm
are plotted in Figs. 6 and 7 for three different angles of in-
clination 8, which are 0 deg (top row), 30 deg (middle row)
and 90 deg (bottom row). It can be seen in these two figures
that as the external load changes its orientation from vertical
(0 = 0 deg, top row) to horizontal position (8 = 90 deg, bottom
row) u increases and v decreases. Qualitatively, we can justify
these results since a horizontal force should produce more
horizontal displacement, whereas a vertical force should pro-
duce more vertical displacement as long as the Poisson’s ratio
of the material is less than unity.

It should also be noted here that the peak displacement
increases with the presence of the crack. This is because a
cracked half-space is more flexible than an uncracked half-
space; hence, a cracked half-space gives larger displacement.
In Figs. 4 through 7, the difference between surface motions
of cracked and uncracked composites is found to be very small.
However, this difference can be significantly increased for a
smaller value of # and a larger value of @ as shown in Fig. 8.

To investigate the effect of the crack length (2¢) and depth
(h) on the surface motion, the vertical component of the surface
displacement at x = 5 mm is plotted in Fig. 8 for § = 45 deg
and d = 0. The top row is forg = 1 mm and # = 0.5 mm,
the middle row is for ¢ = 2 mm and # = 0.5 mm, and the
bottom row is for 4 = 1 mm and 2 = 0.25 mm. The left
column shows the surface displacements for an orthotropic
half-space whose material properties are given in Eq. (23), and
the right column shows surface motions in an isotropic (epoxy)
half-space. Material properties of epoxy are taken as follows:
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C,1=5.81 GPa

02225.81 GPa
C,=2.90 GPa
C56= 1.45 GPa

p=1.20 gm/cm®. (24)
It can be seen in this figure that increase in the crack length
(middle row), as well as decrease in the crack depth (bottom
row), increases the difference between the surface motions of
cracked and uncracked half-spaces. A comparison between the
left and right columns shows that a crack in an isotropic solid
(right column) alters the surface motion comparatively more
than a crack along the fiber direction in a composite solid (left
column). So it is relatively easier to detect a crack in an isotropic
solid. Intuitively, one can explain this observation in the fol-
lowing manner: A crack in an isotropic material makes it
anisotropic, since due to the presence of a crack, the gross
stiffness of the material perpendicular to the crack length de-
creases, whereas its stiffness along the crack length remains
unchanged. Similarly, in a fiber-reinforced composite solid, a
crack which is parallel to the fibers does not change its stiffness
along the fiber direction, but reduces its gross stiffness in the
perpendicular direction. So the stronger direction (the fiber
direction) remains equally strong but the weaker direction (per-
pendicular to the fiber) becomes more weak after the crack is
introduced. Since elastic waves propagate more quickly and
easily along the fiber direction, material properties in that
direction should have a stronger effect on the surface motion.
So a slight change in stiffness in the direction perpendicular
to the fiber does not have much effect on the surface motion
as can be seen in Figs. 3 through 7. However, when cracks are
too big or too close to the surface, their effects can be clearly
observed as in the middle and bottom rows of Fig. 8.

5 Concluding Remarks

In this paper the surface displacement of a cracked ortho-
tropic half-space is computed when it is excited by an impact
load of arbitrary inclination at a point on the surface. The
nature of computed results qualitatively agrees with the ex-
pected form. However, we could not compare our results with
any other published result since no analytical or numerical
results are available in the literature for any problem with
geometry and loading similar to this one.

In this analysis traction-free crack surfaces are considered;
in other words it is assumed that the crack surfaces do not
come in contact with each other. However, under dynamic
loading the crack surfaces should come in contact with each
other and introduce nonlinearity in the problem. Under certain
situations these crack surface tractions may significantly alter
the surface displacements computed here. However, under
some other real situation, such as a subsurface crack of nonzero
width being excited dynamically by an ultrasonic signal, the
crack surfaces may vibrate and yet may not come in contact
with each other. The assumption of stress-free crack surfaces
is justified under such situations. Then the response computed
with this simplifying assumption should be close to the actual
response.

In most of the results presented in this paper the difference
between cracked and uncracked half-space response is found
to be very small. The possible reason behind it has been qual-
itatively explained at the end of the previous section. However,
this difference significantly increases if the crack length is
increased or the depth of embedment of the crack is decreased.
It is also observed in this paper that the effect of the crack is
relatively stronger in an isotropic solid.
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APPENDIX

Expressions of 4;, D}, (o, j = 1, 2), (f = 1 to 6) in Egs.
4), (7), and (8) are given.in this section. Values of functions
Fi(k), (k = 1to4)in Eq. (11) are also defined here.

_ ~aplF(w)cosh + ayF(w)sing

A
Ayl — Q12
+ a5 F(w)cosl — ay F(w)sind
A=t (w) 1F(w) (Al)
a1y — Apdy)
where
ay = IikCy; + CpSipy
ay,=ikCy + CpSyps
ay = Ce(p1+1kS))
= Ces(D2+1kS3) (A2)
and

_anpRi—apR,
andy — apdy

D;

— a21R1 +a; R
Di - 114%2
a1 1dy; — Q134

D= apRy—apky
(B el
118y — Q1207
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Do @Ry +a; Ry

a11822 — a0 (A3
where .
R, = — By e"Vra, — C{ e"’?ra,,
R, =Bi e”Vray + Cy e"?ray,
R;= —B; e’Vra, - C; e"?ray,
" Ry=Bj e’Vray + C; ePPray, (Ad)
a=p (K Cyy — Ceap5 — pu”)
ay=p2(K*Cy1 - Ceapl — po®)
ay=CnCes (P%“P%)
ay= —ik(Cia+ Ces) (AS)

as=p1(P3Cin+ K*Cyy — po’)

as=p2(PICia+ K*Cyy — por)
Fi (k) = Ces (Bf 11?770 4 p,Cf 2270 + Dip,e”V
+Dipse™?) + ikCeg (BY S1e°17 77" + Cff SyeP2" !
+ DI’V + DS,e"?)
Fy (k) = ikCy (BireP1Y 70" + Cf €2V ~%0! 4 DlePV
+D3e") + Cpp (Bi Sip1e”1? 2! + Cff SyppeP2 7!
+DiS\p\e”¥ + D}Syp,e”?)
Fy(k) = Ce( B3 pe”1V 70! + pyCf 227 + Dip, e
+D3pyeP?) + ik Ces (B3 S1P1Y 775! 4+ CF 8¢~
+ D18,V + D§S,e?)
Fy(k) =ikCy (B &1V 770! + C5 22777 + D}V + D3e??)
+Cn(BF Sipi!"? 70 + CF Sapye™?? !

+D2S\p\ &Y + DiS,pre”?).  (A6)
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With a Hole Under Uniform Heat

A general solution of the mixed boundary value problem with displacements and
external forces given on the boundary is obtained for an infinite plate with a hole
subjected to uniform heat flux. Complex stress functions, a rational mapping func-
tion, and the dislocation method are used for the analysis. The stress function is
obtained in a closed form and the first derivative is given by such a form that does

not contain the integral term. The mapping function is represented in the form of
a sum of fractional expressions. A problem is solved for a crack initiating from a
point of a circular hole on which the displacement is rigidly stiffened. Stress dis-
tributions and stress intensity factors are calculated.

Introduction

Florence and Goodier (1960) analyzed thermal stresses due
to uniform heat flux for an infinite plate with a hole of ovaloid
form by using the dislocation method. The writers analyzed
thermal stresses due to a uniform heat flux for an infinite plate
with a kinked crack (Hasebe et al., 1986) and a circular hole
with a crack (Hasebe et al., 1988a) by using a rational mapping
function and the dislocation method. Further, a solution of
the displacement boundary value problem under uniform heat
flux was given by Hasebe et al. (1989).

The first purpose of the present paper is to obtain a general
solution of the mixed boundary value problem for thermal
stresses in an infinite plate with a hole due to uniform heat
flux. Without losing generality, the boundary condition is given
for the situation that a part of the boundary is free from
external forces and the rest of the boundary is constrained by
vanishing displacements. Complex stress functions and a ra-
tional mapping function represented in the form of a sum of
fractional expressions are used for the analysis. A strict so-
lution can be obtained in closed form for the shape represented
by the rational mapping function. The mixed boundary value
problem for the thermal stress is more difficult to solve com-
pared to the boundary value problem for the external force or
the displacement. It seems that a general solution of this prob-
lem has not been obtained.
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The second purpose is to solve a problem for a crack ini-
tiating from a point on a circular hole where displacements
are constrained. This problem is a model of a crack initiating
from a point on a rigid stiffening ring or a circular rigid in-
clusion. It is assumed that the heat flux does not flow through
the surface of the rigid ring and crack. The case without a
stiffening ring is the same problem as for a crack initiating
from a circular hole (Hasebe et al., 1988a), which is an extreme
state where the rigidity of the ring is equal to zero. Another
extreme state is the case when the ring is rigid. The stress state
for an elastic ring must be intermediate to these two states.

The stress distributions and the stress intensity factors are
obtained for the heat flux in an arbitrary direction. The dis-
tributions of temperature and heat flux are the same as those
in Hasebe et al. (1988a).

Mapping Function and Temperature Analysis

The infinite region with a circular hole and a crack as shown
in Fig. 1 is analyzed. The conformal function that maps the
infinite region to the outside region of the unit circle is ex-
pressed as follows (Bowie 1956):

1 1
= = 1
Z ZSinz'y {§‘+ +cos2y+({+1)

¢
2\ 0.5 ~2iv\ 0.5
x<1+e—£> <1+e§7> } )

In Fig. 1 and Eq. (1), a is the radius of the circular hole, ¢
is the crack length, v is a parameter with regard to the crack
length, and ¢/a =cosy/(1 — cosvy). The rational mapping func-
tion is formulated as follows (Hasebe et al., 1987; Hasebe and
Ueda, 1980):
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lZ—plane]

lz—plane]

Fig. 1 Analyzed region under heat flux and the associated unit circle

N
Eps

z=w({)= Eo§+— )]

where E,s=FEy/2, and N=24. The heat flux and the temper-
ature are expressed by the complex temperature function ¥(¢)
(Hasebe et al., 1986, 1988a),

v () N (o R
dx—igy=—k o (D)’ Qr_IQB—'—_li_w,(g_)l (gx—igy)
- 1 R

o(5,?) =3 MO+l @)

where £ is the thermal conductivity; g, and g, are components
of the heat flux in the x and y-directions; g, and g4 are com-
ponents of the heat flux in the orthogonal curvilinear coor-
dinates expressed by w({); O(f,¢) is the temperature. For the
uniform heat flux ¢ through the unit area, y({) is given as

follows:
(Eoge—"s }fj’ e"3> @

where 8 is the angle between the direction of heat flux and the
x-axis (see Fig. 1).

v(§) =

Method of Analysis

Using the complex stress functions ¢(¢) and ¥({) which are
regular in the region S* outside the unit circle, the stress com-
ponents are expressed as (Muskhelishvili 1963)

o' ()
(6

(o{d’ (0} O

o, +0,=4Re {

")
@’ (9 )

0, — 0+ 207y, =2

gg+a,=0,+0,

o’ (§)
I£1%07 (5)
The boundaries on which the external forces and the displace-

ments are applied are denoted by L and M, respectively. The
boundary conditions on L and M are given by

Og—0,+ 2t = (0y— 05t 2iTy).

¢<a)+,(—())¢>()+¢(o)-z§(px+z'py)ds onL (6
nqs(a)—(—())qs(o) @) =26 (u + iv)

~26e’ {y(0)e (Dds  onM ()

where ¢ is { on the unit circle; p, and p, are external forces in
the x and y-directions, respectively; ds is an increment of the

Journal of Applied Mechanics

integration contour along the boundary; v and v are the x and
y-components of the displacement, respectively; G is the shear
modulus. Using Poisson’s ratio » and the coefficient of thermal
expansion «y, k, and o’ are expressed as follows:

k=3—-4y, o’'=({+»)ay for plane strain

(8)
k=0B-v»)/(1+v),

The second term in the right-hand side of (7) gives the dis-
placement due to uniform heat flux. The mixed boundary value
problem where p,, p,, u and v are given (Hasebe, 1979; Hasebe
et al., 1988b) and the problem for thermal stress can be ana-
lyzed separately. Hence, without losing generality, p,=p,=0
and u=v=0 may be given in (6) and (7). Since a traction-free
boundary exists, y({) is given by analytic continuation as fol-
lows:

o’ =0y for generalized plane stress.

iy —ﬂf—) o' (©). ©)

Substituting (2) and (4) into the second term of the right-
hand side in (7), and integrating it, the term log { will be
obtained as a part of the result. This log { is the dislocation
of displacement. To remove this dislocation, the following
functions are considered (Florence and Goodier, 1960):

¢i(H)=Alog¢,  ¢1({)=Blog{
where B=A, because the dislocation of the resultant must be
removed when (10) is substituted into (6). The value A required

to remove the dislocation of displacement is (Hasebe et al.,
1986, 1988a),

aeqGR N = .
T EOQZ1 Eye™®+ e — Ense '5) ()

(10

where
R=(1+v)/(1-») for plane strain
(12)
R=1+vp for generalized plane stress.
The stress functions to be obtained are expressed as
A=)+ 2 V() =v1(D) + YD, (13)

) From (6), (9), (10), and (13), the boundary condition on L
is

b2 (0)— $2 (6)=0

because p,=p,=0; in (14), the superscripts + and — indicate
the values of ¢,(¢) on the unit circle approached from the
region ST and S, respectively (see Fig. 1). From (7), (9), (10),
and (13),

(14)

k3 (0) + @5 (0) = — (1 + k) Alogo — 2Go’ Sl\//(o)w’ (o)do
aquR

EoEys 5 1
— —i5_2 s
o (1+)[ =R

N E, ) E,
+ Ege B, +=2 o | =5
E ( e Sk $k—o

k=1

—Z (Eoe o 7 e'5>Ek[10ga log(g'k—o)}] +const.  (15)

Therefore, a Riemann-Hilbert problem for (14) on L and (15)
on M is obtained and its solution is (Muskhelishvili, 1963)
x(5) S H(o)
2mi Jay x{0) (=)
in which H(c) represents the right-hand side of both (14) on

L and (15) on M. However, since the right-hand side in (14)
is zero, the integral in (16) is carried out on M. The function

62(8) = do+Q(Hx({), (16)
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Q(¢) is an unknown rational function and the Plemelj function
x($) is expressed by
xO=C¢-a"¢-8'" (17

where o and 3 are the coordinates corresponding to the junc-
tures of L and M (see Fig. 1); m=0.5—i(logk)/(27) where the
index 0.5 was determined from the condition of continuity for
displacements and discontinuity for stresses at the junctures
of L and M. The branch of x({) is chosen so that x($)/¢{—1
for ¢~ oc. The integral in (16) is described in Appendix A.

The function Q(¢) is determined from the regular condition
in S* for y(¢) in (9). Substituting (10), (13), and (16) into (9),
the irregular terms in S* can be written out as

s/ A B/

W' () § (D) o
=X(I/£)Q(I/9) + regular term= —g %B_ki —kZ:; ?—élikgl-

—Xx(I78)0U/t) +regular term  (18)

where By=Ey/w’ (34 ); ¢4 =1/%k; A= ¢35 (54) (Hasebe, 1984;

Hasebe et al., 1988b). The function Q(¢) is determined so as

to cancel out the first and second terms of the right-hand side
in (18), i.e.,

()= - ¢35 (5)

[V
Z (A +A) B (19)

Ex G G-

Finally, () is obtained by using the results in Appendix A
with (19) to give

Q)= -

- Ny (A + At By
oO= AKX 245 ey 8D
+2{%/§£ EZQe_ia{g‘z_X(f)(f-f-ma-%(l—m)B)}

_ “iop B0 s\ _Be (x(5) _1>
kZ <E°e Gt € >§k—§<x(§k)
EoEzs i5 l x'(0)¢—x(0)
+ ) e g,2{1'“((57 (O }

3 _is_Eo i
Ege '—E;ie Eijlogi—log(§— &)
1

k=
+ (r)Srki—ﬂ
X x@ -5

Since the first derivative of the integral term in (20) is given
by (35) in Appendix B, the first derivative of ¢(¢) is expressed
in a form that does not contain an integral term. Using
Ar=9¢5(1) (k=1, 2, ...N), and solving 2N simultaneous
equations with respect to the real and imaginary parts of A,
the unknown constants 4, are determined. Since the first and
second derivatives of ¢({) are obtained, the stress components
are obtained without numerical integration. However, in order
to obtain the displacement, the numerical integration for the
integral term in (20) is required. From (20), a solution of the
boundary value problem subjected to external forces only is
given by o — 8 (Hasebe et al., 1986, 1988a). A solution of
the displacement boundary value problem is given by a—g8,
x(§)~ — kx(§1)s x(0)— — xx(0) and x ' (0)— — kx ' (0) (Hasebe et
al., 1989). A solution for the elliptical rigid inclusion with a
debond can be obtained by substituting £, =0, =0 (k=1,
2,...N),Ey=(a+b)/2and E,s= (a—b)/2 into (2) and (20),
where ¢ and b are the semi-axes of the ellipse.

(20)

Stress Distribution
Since it is assumed that the heat flux does not pass through
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Fig. 2 Stress distribution: x=2, c/la=1.0, §=0 deg

aaoR 113
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Fig. 3 Stress distribution: x=2, ¢/a=1.0, 6 =90 deg

the boundary, the distributions of the temperature and the
heat flux are the same as those in Hasebe et al. (1988a), in
which examples of the temperature and heat flux were shown
for the crack length ¢/a=1. In the present paper, the stress
distribution is also shown for ¢/a=1 and xk=2.

Figure 2 shows normal stress o,, tangential stress oy, and
shearing stress 7,5 on the boundary, as well as o, and ¢, on the
x-axis for 6 =0 deg. The normal stress o, attains a maximum
at point D for ¢,>0, and so a debonding initiates at this point
if it occurs. On the other hand, a crack possibly initiates and
grows in the x-axis for x>0 due to ¢,>0. Figure 3 shows the
stress distribution for =90 deg and o,=0,=0 in the x-axis
due to antisymmetry. The stress distribution for the heat flux
in an arbitrary direction can be obtained by superposition of
the stresses for §=0 deg and 90 deg.

Stress Intensity Factor

The stress intensity factors (S.I.F.) K; and Kj; are obtained
by using the complex stress function ¢(¢) and the mapping
function w(¢{) as follows:

Wre 2o (5
NP

where A is the angle between a crack and the x-axis; {; is the
coordinate at the crack tip. In the present case, A\=0and {3= 1.
The following nondimensional S.I.F. are used:

k K+ iKy

qGR [ (¢ 2y
where C'=Qa+c¢)/2.

Figure 4 and Table 1 contain the values of F; for §=0 deg
and Fy=0 due to symmetry. The values of ¢/a and a/c are
plotted as the abscissa, and thus, S.I.F. are shown for the
crack length a, where 0 <g=< o. When 6=0 deg, F;>0 and so
the crack possibly grows. From Fig. 4, the influence of « on
the nondimensional S.I.F. is known. Since S.I.F. takes the

K- iKy= Q1)

Fr+iFy= (22)
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— 1.0
c/a

Fig. 4 Nondimensional stress intensity factor F;: 6 =0 deg

ale

Table 1 Nondimensional stress intensity factors F; for $=0 deg and
Fy; for =90 deg for x = 1.0, 2.0, and 3.0
Fir (6=0°) Frp (8=80°)
x£=1.0 x£=2.0 £=3.0 x=1.0 x=2.0 x£=1.0
0.01 0.1796 0.2091 0.2333 0.0580 0.0877 0.1145
0.02 0.2483 0.2896 0.3227 0.0767 0.1178 0.1549
0.04 0.3364 0.3895 0.4332 0.0954 0.1507 0.2003
.05 0.3663 0.4235 0.4705 0.0991 0.1586 0.2118
0.10 0.4630 0.5313 0.5875 0.0958 0.1710 0.2374
0.20 0.5283 0.5991 0.6564 0.0334 0.1185 0.1903
c/a 0.30 0.5326 0.5851 0.6461 | -0.0491 0.0374 0.1070
0.40 0.5120 0.5650 0.6078 | -0.1319  -0.0474 0.0169
0.50 0.4821 0.5256 0.5603 | -0.2086 -9.1273  -0.0688
0.60 0.4494 0.4842 0.5115 | -0.2776  -0.1097  -0.1470
0.70 0.4168 0.4439 0.4646 | -0.3383  -0.2640 -0.2166
0.80 0.3856 0.4080 0.4211 | -0.3911 -0.3203  -0.2777
0.90 0.3565 0.3711 0.3814 | -0.4368 -0.3635 -6.3311
1.00 0.3285 1.3383 0.3454 1§ ~-0.4783  -0.4121  ~0.3776
0.90 0.3022 0.3074 0.3097 |-0.5137 -0.4529  -0.4222
0.80 0.2718 6.2723 0.2707 | -0.5527  -0.4857  -0.4591
0.70 0.2380 0.2339 0.2284 | -0.5824 -0.5399  -0.5176
0.80 0.2008 0.1923 0.1833 |-0.6314 -0.5842  -D.5664
.50 0.1604 0.1482 D.1361 | -0.6675 -0.5263 -0.6132
6.40 0.1178 0.1027 0.0886 | -0.5964 ~0.6622 -0.6538
a/c 0.30 0.0743 0.0586 0.0441 | -0.7112 ~0.6850 -0.6810
0.20 0.0342 0.0287 0.0083 | -0.6999 -0.6828 -0.6822
0.10 0.0053 -6.0023  -0.0091 | -0.6419 -0.6342 -0.5354
0.05 |-0.0010 -0.0044 -0.0074 | -0.5847 -0.5814  -0.5824
0.04 |-0.8013 -0.0038 -0.0861 |-0.5703 -0.5677 -0,5688
0.02 |-0.0011 -6.002% -~0.9028 | -0.5378 -0.5366 -0.3371
p.01 |-0.0005 -0.0009 -0.0012 |-0.5186 -0.519¢ -0.5183
0.00 0.0000 0.0000 0.0000 | -0.5000 -0.5000 -0.5000

extreme value, the crack growth is arrested in a certain length.
If the fracture toughness value of a material is larger than the
maximum value, then the crack does not grow. Negative values
of Fy change to positive values when the direction of heat flux
becomes reversed, i.e., § =180 deg. Figure 5 and Table 1 con-
tain the values of Fj; for § =90 deg and F; = 0 due to symmetry.
When a/c=0, the value of Fj; converges to — 0.5 and this value
corresponds to the value of Fy for a crack only (Sih, 1962).
S.L.F. for the heat flux in an arbitrary direction can be obtained
by superposition of F; and Fj; for §= 0 deg and 90 deg.

Conclusions

The complex stress functions ¢({) and y(¢) for the mixed
boundary value problem are given by (20) and (9), respectively.
Since the first derivative of the integral term in (20) is given
by (35), ¢’($) is given by the form without integral term.
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Fig. 5 Nondimensional stress intensity factor F;: 6 =90 deg

Therefore, the numerical integration is not required for the
calculation of stress components. Substituting E;={;=0
(k=1,2, ... ,N),Ey=(a+b)/2and E,s= (a— b)/2into (20),
the solution is obtained for an elliptical hole with the semi-
axes @ and b. The solution of free or clamped boundary value
problems can also be obtained by a limiting operation for (20).
Shifting the coordinates of the junctures « and 8 in (20), the
position of clamped ends can be changed freely. Thus, both
acrack and a debonding initiated from a circular rigid inclusion
can be analyzed. Changing the coefficients of the mapping
function in (2), other shapes can be also analyzed. For example,
the case of a crack initiated from a rectangular hole is analyzed
by using the mapping function in Hasebe and Ueda (1980). A
mapping function of a comparatively arbitrary shape can be
found in the form of (2). The stress distributions and the stress
intensity factors for the heat flux in an arbitrary direction are
obtained by superposition of the results for §=0 deg and 90
deg. In this paper, the stress intensity factor K; is produced
by the heat flux for § =0 deg. Since K; has the maximum value
and K;—0 as ¢— o<, a crack is arrested at a certain length. If
the fracture toughness value of a material is larger than the
maximum value of Kj, then a crack does not grow. However,
if the fracture toughness value depends on temperature, then
the information of temperature distribution is necessary for
the crack growth. From the stress state before the crack ini-
tiation, a debonding occurs on the side that the heat flux meets
(x/a= — 1) and a crack initiates on the opposite side (x/a=1).
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Fig. 6 Contour integral around the branch lines a8 and 0¢;
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APPENDIX A

Integral of Equation (16)

Substituting the right-hand side of (15) into H(o) in (16),
changing the integral on M into the contour integral around
M, and using the residue theorem, the integral of each term
is obtained as (Muskhelishvili, 1963)

1 S é do
2mi Jy x¥ (0) (0= 8) (§x—0)

K 1 1
= - 23
(1+x)(§k—r)<xm x(m) @)
'I—SB o’do
27 Jy x(0)(6—%)
k| & _
=1+K[ ~{¢+ma+ (1 m)ﬂ}] (24)

x(§)
x (0){+x(0)
25
52 0) } @)

1 rf do K 1
2mi S x(o)(a—f)azzmifzx@)
where the following relation on M is used:
X" (0)= —xx" (o). 26)

The integral containing the logarithmic function is carried
out in the following manner. As shown in Fig. 6, considering
the contour integral around the branch lines «f and 0y,

Sﬁ logo—log(o— 1) , S logo—log(o— )
« X @0-0 s X @@-9
ka llogo ~loglo =1 SO llogo—log(o— {01~
o x(@)o—9) e x@=9
_ logo—log(o— &) do, @7)

x(0)(e =)
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where the integral between the contour O« and «0 is omitted
because they cancel each other. The superscript + refers to
the integral for 0, and — does for {;0. In this case,

[logo —log(o— ¢t + 2wi=[loga—log(c— ¢l ™. (28)
Arranging (27) by (26) and (28), the following expression is
obtained:
1+ S‘*l_cﬂf—log(a—yk)
« X (@0=0

Sk do
o x(a)(o—¥)

do—~2mwi S
K

27
=—— [log{—1 — ol
T flog{—log(¢—¢wl.  (29)

The integral of the right-hand side in (16) becomes the right-
hand side in (20) except the first and second terms by using
(23), (24), (25), and (29).

APPENDIX B

First Derivative of Integral Term in Equation (20)
The following differentiation is considered:

1[ 1 1|tV 1

do y(a)(o—o}“o—;[y(a)} (o) (o-1)?
(s“—a)(f—ﬁ)+a—m(oz—6)—§
x(0)(e=0?  x(o)(o—9)

(30)

where ({—a) ((—B)/x(D=1/y(¢). If (30) is integrated with
respect to ¢ from @ and b and arranged by using the following
expression,

Sb—ga——=f(s°) (31
2 X(0)(a—¢) ’
then
S +HHO()+G() =0 (32
where
m 1-m
H e -
O =t -
G(s‘)=[ 1 ~ 1 1 A
Y o-%) y@@@-) |G—a)c—~)
The solution of the differential equation (32) is
exp{§{H () () +IG(Dexp({H()dE de=Cp (34)
where C; is an integration constant. Noting that

exp[{H ({)dt] = Cox () (C,is an integration constant) and dif-
ferentiating both sides in (34) with respect to ¢, the following
equation is obtained:

d
@ X (O (D= —x(DG().

Through (31), (33), and (35), the first derivative of the in-
tegral term in (20) is obtained for a=0 and b= {;.

(35
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1 Introduction

The behavior of beams and slabs on elastic foundations have
been of great interest to structural and geotechnical engineers
for many years due to their extensive application in the analysis
and design of foundations. The majority of analytical work
in this area has been done by using the classical Winkler model,
such as Hetenyi (1946) and Westergaard (1948), where the
coefficient k, called subgrade reaction of the foundation, is
employed. Vlasov and Leont’ev (1966) developed a unique two-
parameter model using a variational approach; the mode re-
quired an estimation of the parameter v, which controls the
decay of stress distribution within the foundation. Jones (1977)
established a relationship between vy and the displacement char-
acteristics. Vallabhan and Das (1988) made further study on
the determination of y for various loading conditions.

In this paper, plates on elastic foundations are investigated
by using the Lagrange multiplier to establish a generalized
variational principle with two variational functions:
deflection w and foundation reaction p. The functional sta-
tionary values, expressed in terms of a group of differential-
integral equations, are equivalent to the basic equations and
boundary conditions. The variational principle approach with
these types of equations has not been shown in the publications
by Washizu (1975), Shames and Dym (1985), or Landau and
Lifshitz (1986).

In the first part of this paper, the principle of minimum
potential energy for plates on elastic foundations is introduced,
and the integral equation is employed as the variational con-
strained condition; in the second part, it is shown how the
generalized variational principle with two variational functions
can be established.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME-
CHANICS.

Discussion on this paper should be addressed to the Technical Editor, Prof.
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the first part of this paper, the principle of minimum potential energy is introduced
in which the integral equation is employed as the variational constrained condition.
In the second part, it is shown that the generalized variational principle with two
variational functions can be established. This represents, to the authors’ knowledge,
the first treatment of the variational principle with these types of equations.

2 Basic Equations and Boundary Conditions

As we all know, the basic equations of Kirchhoff’s thin plates
on elastic foundations are expressed as follows:

DV*Vw(x,y) —q(x.y) +p(x,y) =0 ¢}

w(x,y)= S S DP(Emk (x,y;E,m)dEdn @
)
where p is the foundation reaction, & is the displacement func-
tion at point (x, y) when a concentrated load is applied at point
(€, 1), and S'is the surface area of the plate under investigation.
The plate boundaryis C = Cy + C, + C;, where C, represents
built-in edge, C, represents simply-supported edge, and C;
represents free edge.
The corresponding boundary conditions are:

at built-in edge C;: _— ow W 3)
T on on’
at simply-supported w=w, M, =M,, ()]
edge C;:
at free edge Cj: M, 5)

Y = =  OMy
M,=M,, V,= Vann"'W,

R,=R, ©

where W is the plate deflection along the boundary, @Lis the
shearing force on the normal surface on the boundary, M, and
M,; are the bending and twisting moments, V,is the summation

and at the corner:

— M. —
of shearing forces Q, and —=, and R, is the concentrated

force at the corner point on the boundary.

3 Undetermined Variational Functions

The minimum potential energy of a plate on an elastic foun-
dation with two undetermined variables w and p can be ex-
pressed as

1 2,2 Pw dtw (wY
> SSSD{(V W) _2(1—”)[6;8'@2_ <ax6y dx dy
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M—-ds

1
—S Sqwdxdy+ig Spwdxdy+(§> an

5 s C2+L‘3

— @ I—/,, w dSﬁ Z En,k' Wyg. (7)
<3 k=1

In Eq. (7), w and p must satisfy the variational constrained
condition, i.e., Eq. (2). By applying variation to the funda-
mental II,, in Eq. (7), the functional variation may be repre-
sented in the following form:

anw=5 S (DV*viw—q)éw dx dy

&

1 d
+5 S S (pdw+ wop)dx dy + uD (§> V2w£5w ds

5
P
-D (§> — 9w ow ds+ (1 —u)D <§>C {[coszaa—xv:
+ 2 cosa sma-—+sn 6
axdy a g an?
+ | —cosa sina &w 62
2 9

+ (cos’a —sin 2%) —} — ]}ds

— 9 - -
+ (§> M, — éwds— (§> Vo 6w ds— Z Ry kdwy
3 k=1

cp+e3 an
rearranging and collecting terms,

6HW=S S (DY Vi*w—q)éw dx dy
N
1
+-2—S S (péw+ wip)dx dy
+<§> M,+D| uviw+ (1 )&' s(2) as
C2+L‘3 n lu I“’ anz an
3 o (d*w 1w
- V,+D| — 1- )
(&3{ [a viwt (-0 5 <asan os asﬂ} W ds
9 Pw 1 dw Lo
as [<3san o5 5?)‘”’]‘” = 2 Rusde

1
= § S(szvzw—q)éw dx dy+5 S S (pdw+ wép)dx dy

s §

2
+(§) M,+D| pV?w+ (1- y.)a ow ds
et an
- (g)c3 {V +D[é— V w
v L (Zr_Lon sy
#) ason  p, 0s was
w 1 ow
—Z {(l—u) (asan = 3S> +Rnk}awk ® -

1

where — = a—:, o is the angle between the normal to the
Ps

periphery and the x-axis as shown in Fig. 1,

and
w1 ow (§> d Fw 19w
Al——-—— =0 — d
<6san Ps as>k5wk as [<6san Os Bs dw |ds
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-(1-wD S

k=1

Fig. 1

3w 1 0w Pw

where A(a‘éﬁ - p—s E—>k represents the increment of <5;5’;

1 dw . .
- —;) at the corner point £ on the boundary C. It is assumed
Ps

here that there are i number of discontinuous corner points,
and dw; is the value of éw at corner point k. From the expres-
w 1 c')w;

ps 98

sions ¥V, R,, we can see that —(1 — p)

M,,, and that AM, is the increment of twisting moment which
is also equal to the concentrated force at the corner point of
the plate.

In order to simplify Eq. (8), we use the following relation:
1 1
-S§w6pdxd :—Sgpéwdxdy. )
2 J; 2 J;

Equation (9) can be proven in the following.

Substituting w from Eq. (2) in Eq. (9) where w must satisfy
the variational constraint condition, the left-hand side of Eq.
(9) becomes
211
2

5

-
S S p(if,n)k(x,y;ém)dédn} 8p (x,y)dx dy.

LS

Since the definite integration and the variables are not re-
lated, the above term can be expressed as

% S § § Sp(x,y)k(é,n;x,y))dx dy:

s L Vs

op (§.m)dE dy.

Since k(x, y; &, 9) = k(&, n; x, ), the above term can be

further expressed as
1 I _

2 S S S Sp(x’y)k(X,y;f,ﬂ)dx dy

s L s |

Exchanging the order of integration, the left-hand side of
Eq. (9) finally becomes

Sp (£,mdE dn.

1
2B [ [ | socemncerema dn]p(x,y)dx dy.  (10)
Now, substitute the variation of Eq. (2) with

(o) = | | eptemkcentmde dn

5

on the right-hand side of Eq. (9), which is equal to Eq. (11).
Thus, Eq. (9) is proved.
Now, substituting Eq. (9) in Eq. (8), we get

oll,, = S S(szvzw—q+p)6w dx dy

5

2
+S [M,,%—D[,U,VZW-F(I—,U,)G—}; }6<a—w>ds
ove on on
—§ {V,,+D[—a— V2w
o on
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+(1—) Fw Lan\ )
k dson psas W as

_Z (1 - DA 3w law 7o ls
K asdn Ps as nk | OW:
Since 6w is arbitrary, Eq. (8) is equlvalent to
szvzw—q+p=0;

(11

on the boundary C;

_ . 2
M,,:—D[uvzw-i-(l—u)———‘;}
on
Pw 19
#)
6s6n pxas

— 9*
M,= —D[Mvzw+ (1—p) 5;1-‘;5} and

— 3
V,= —D[— Viw+(1-
on

on the boundary G,

at the corner point k&

w1 aw
=—(l-wDA|—-——=).
(1=m <6San Ps as>

In the foregoing equations, w and p must satisfy Eq. (2).

Now we are able to derive the undetermined variables for
the generalized variational principle with two variational func-
tions w and p. The functional of the principle can be expressed
in the following form:

Hw,p=IIw+% Ss S {W(x,y)

- S S p(s,n)k(x,y;é,n)dsdn} Mx.y)ydx dy  (12)
where A(x, y) is the undetermined Lagrange multiplier and is
a function of the variables x and y; it is not a constant inde-
pendent of x and y. From Eq. (2), after the variational con-
straint is released, the integral equation is still a functional
constraint condition. Actually, Eq. (2) can be written as

G(xy)=w(xy) - S S P&,k (x.y;&,m)dsdy=0.

s

Thus, according to the variational principle, the use of the
Lagrange multiplier A(x, y) is appropriate.
The variation of Eq. (12) can be written in the following
form:
1

2 S S ANx,y)ow dx dy

oI, = 611, + =

[ Sp (E,mk (x,y;€,m)d¢ dn] A(x,p)dx dy

vUUHMmeﬂwm@

(13)
where 811, in Eq. (13) is the same as shown in Eq. (8), except

the functions w and p are independent and do not satisfy Eq. .

).
Considering the third term on the right-hand side of Eq.
(13) and using the same analogy in Eq. (11), we have

: S [ “ | oo,k Gy ma dn]k(x,y)dx dy

:% Ss S [SS S NE Mk (x,y:€,m)dé dn}ép(x,y)dxdy. (14)

Journal of Applied Mechanics

Substituting Eq. (14) in Eq. (13) and following Eq. (8), we
have

8T, = S

5

% S S [w— Ss Sp(é,n)k(x,y;é,n)dédn} ON(x,y)dx dy

S {szvzw—q+% (p+)\)}6w dx dy
+

- H [w-S SMs,n)k<x,y;s,n)dsdn]6p<x,y>dx dy

s

2
+§> M,+D| uv w+(1—y)a—f aw ds
02+C3

- d 3 (dw 1w
- V,+D| — v?
éca { + [an vVw+ (- p.) <6s6n o m)]}éw ds
Fw 1 ow
— 1 - DA R =0.
Z‘, [( ). (asan o as) + ,,k}awk 0. (15)

In Eq. (13), 6w, ép, and 6\ are independent, thus, 6IL, , =
0 is equivalent to

DV2V2w~q+%(p+)\)=O (16)
w=| | pemkcertmazan=o a7
W-S Sk(é,n)k(x,y;ém)dédnﬂ (18)
and
2
]\_an—D[uvzw+(1—p.)a—q
— 3 3 (d*w 19w

Vi=-D| ¥ w+(1—,;) <asan . asﬂ 19)

FPw 1 aw
Ry= —D(l—u)A<@—;s’£> (20)

Comparing Eqgs. (17) and (18), with respect to any point (x,
¥), it can be shown

| [ wemremmeenam=0 e

s
and we have

N(& ) =p(E,m) or Mx,y)=p(x,p).
Substituting Eq. (22) in Eq. (12)

=T+ S | [W_S Ssp(ém)k(x,y;é,n)dEdn}

xp(xy)dxdy (23)

22)

or
nw,p=% SS S {(v W) —2(1~u)[%2x— <aa:ay>2de dy
_ SS S gw dx dy+ SS Spw dxdy—-;- S S [S Sp(fy‘fl)
k(x,y;&,m)dt dn:lp(x,)’)dx dy+ S M, 6—:
ot

-

Vow ds— Z W (24)
3 k=

Equation (24) is the functional of the generalized variational
principle for plates on an elastic foundation with two unde-
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termined variables w and p. The application of Eq. (24) can
be illustrated by using an example shown in the publication
of Cheung and Zienkiewicz (1965). Based upon the foundation
flexibility matrix [f7], reaction column matrix {p}, plate de-
flection column matrix { w}, and the plate stiffness matrix [K]
in the publication, we are able to establish the generalized
variational principle with two variational functions in the fol-
lowing form

1
nw,,,=5{w}T[anl —{g}T{w}

1
+{p}T{W}—E{p}T[ff][p}- @25)

From 6IL,, = 0, the corresponding governing equations for
the finite element analysis can be obtained.

4 Summary and Conclusions

The theory of variational principle is further enhanced by
introducing the functional of the generalized variational prin-
ciple for plates on an elastic foundation. In practical appli-
cation, it can be shown that, using Eq. (24) and interpolation
functions of deflection w and reaction p, the corresponding
governing equations can be established based upon the ordi-

nary variational procedure. The authors have found that it is
very convenient for finite element analysis of plates on an
elastic foundation.

In addition, the corner conditions for plates have also been
given in terms of deflections. This presentation has not been
shown in any of the previous publications.
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Stability Analysis for the Head-
Disk Interface in a Flexible Disk
Drive

This paper describes the modeling, theoretical formulation, and eigenvalue analysis
Jfor a combined system of a spinning flexible disk and a pair of head and suspension
systems that contact the disk at opposing points on its two sides. In the analytical
model a constant friction force between the sliders and disk and the slider pitch
motion, as well as its transverse motion, are taken into account. From the eigenvalue
analysis it is found that pitch stiffness and moment of inertia of the heads induce
instability above the critical rotation speed similarly to the transverse stiffness and
mass. This instability can be effectively stabilized by increasing the external damping
which is spinning with the disk. It is also found that the friction force makes all
Jorward modes unstable over the entire rotational speed range. The friction induced
instability can be effectively suppressed by increasing the transverse stiffness and
mass and it can be stabilized by the pitch damping and the external damping. The
characteristics of instability due to the friction force qualitatively agree well with
experimental results reported previously.
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Introduction

Flexible disk storage systems have been widely used as con-
venient input/output devices in data processing systems, es-
pecially in small personal computers. To meet user demand
for convenient removable media, smaller size and larger ca-
pacity flexible disk drives have been developed in the past 20
years. Recent progress in the performance-to-cost ratio in com-
puters and hard disk drives increases the need for development
of a high speed and large capacity flexible disk storage system
with more than ten megabytes.

The most difficult problem encountered in developing a new
flexible disk drive is to obtain a stable and reliable scanning
condition between the medium and recording head. The disk
and head suspension often exhibit vibrations which cause not
only malfunctions in the read/write signal but also a remark-
able reduction of recording medium life. Until now this vi-
bration has been suppressed through trial and error by changing
the tribological characteristics of the medium, the slider con-
tour and its suspension system. Therefore, efforts to under-
stand the mechanism of vibration related to the head and
flexible disk interface through analysis and to find a stable
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scanning condition has recently become of great concern for
many researchers.

Vibrations of a spinning flexible disk induced by a point
contact stationary head was investigated by Benson and Bogy
(1978), Ono et al. (1986), and Ono and Maeno (1987). Benson
and Bogy (1978) discussed different stationary deflection pat-
terns of a spinning flexible disk depending on its thickness and
the position of the head. Ono et al. (1986) analyzed stationary
disk deflections associated with critical speeds for 8, 5.25, and
3.5-in. flexible disks, but they found qualitative discrepancies
between theory and experiment. Ono and Maeno (1987) found
that the steady deflection and vibrations of a 3.5-in. flexible
disk induced by a point contact head can be qualitatively pre-
dicted by taking into account a residual compressible stress in
the circumferential direction and an initial deflection of the
disk.

As for the vibration of a coupled system of a spinning flexible
disk with a head and suspension, Iwan and Moeller (1976)
analyzed the instability of a spinning disk due to coupling
effects of a translational mass, spring, and damper. They found
three different instability regions above the critical speed due
to the attached mass, spring, and damper, respectively. For
the investigation of unstable head vibrations, Good and Low-
ery (1985) used finite element modeling and free vibration
analysis of an actual disk and head assembly system. They
included head pitch and roll motion as well as transverse mo-
tion and could get good agreement with experiment for the
dominant mode frequencies, but they did not analyze the in-
stability. A comprehensive experimental study of unstable vi-
bration of an actual 5.25-in. flexible disk and head was reported
by Kohno et al. (1989). Since the unstable vibration observed
by them is related to the head pitch motion and appears to
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i)
li’ Head slider
Cy mass: mg

Inertia: 1 3,

Fig. 1 Model of flexible disk and head assembly system; (a) Spinning
flexible disk, head assemblies, and fixed coordinate system; (b) Modei
of upper and lower head assemblies

occur far below the lowest critical speed, it appears to be
unrelated to the instability phenomena predicted by Iwan and
Moeller (1976). Jiang and Chonan (1989) theoretically obtained
many unstable regions below the lowest critical speed for a
coupled system of a flexible disk and a translational mass and
spring. However, the unstable vibrations observed by Kohno
et al. cannot be explained by the results obtained by Jiang and
Chonan, because the relationship between unstable frequency
and rotational speed is qualitatively different in the two studies.
In addition, the pitch motion of the head was not considered
in their analysis. Moreover, the unstable regions below the
critical speed in Jiang and Chonan appear to result from mis-
treatment in their theoretical formulation of a stationary force
applied to the spinning disk by the head.

In view of the discrepancy between theory and experiment
for the unstable vibration related to head-to-medium interface
as stated above, an effort is made here to develop a more
accurate model of a flexible disk and head assembly system
which has the potential to eliminate this discrepancy. This
paper presents the theoretical formulation and eigenvalue anal-
ysis for an extended model where the pitch motion of the head
and friction force between the heads and medium are taken
into account. Although an actual head-to-medium interface
and suspension system are more complex than the present
model, it is hoped that this work will contribute to a better
physical insight into unstable vibrations in the head-to-medium
interface in flexible disk systems.

Analytical Model and Theoretical Formulation

Figure 1 portrays an analytical model of a coupled system
of a spinning flexible disk and upper and lower head assem-
blies, together with the fixed coordinate systems O-xyz, O-rfz
and physical parameters considered in this model. In order to
simplify the analytical model while not losing important factors
relevant to the instability phenomena, the following assump-
tions are made with respect to the head-to-medium interface
and head assemblies.

1 Identical upper and lower heads are sliding on the disk
with equal and opposite static loads Fy and with no initial
static disk deflection. .

2 The upper and lower head sliders move together as a
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Fig. 2 The pitch moment of inertia and small pitch stiffness effects
on the natural frequency (I, = I, k, = 10Xk, [f, = 31.6 Hz))

rigid body in the transverse and pitch directions in contact
with the disk. The lower head slider is stiffly supported in the
transverse direction, whereas the upper one is loaded on the
disk by a flexible spring through a suspension arm. Thus, the
effective transverse mass 77, is the sum of the two slider masses
m; and the mass of the loading arm m, in a normal operating
condition. The pitch moment of inertia , is related to the two
head sliders whose mass center G is in the middle plane of the
disk. The head sliders are not allowed to move in the direction
parallel to the disk surface. The roll motion of the head slider
about an axis in the circumferential direction is not coupled
to other motions and can be omitted for the stability analysis.

3 The suspension system of the two head assemblies is
modeled as a simple transverse spring with stiffness coefficient
k, and damper with damping coefficient ¢, together with a
pitch moment spring k, and damper c4. They are uncoupled
from each other.

4 The acting and reacting forces and moment between the
disk and a pair of head sliders are transverse force F,, friction
force Fy and pitch moment M. They are concentrated at the
mass center G of the two head sliders.

5 The friction force Fy is constant and given by 2ufF,
where u is the friction coefficient.

Even when the disk is rotating in air without any constraint
such as a liner, the surrounding air has some inertia and damp-
ing effects on the disk vibration, especially in the high-fre-
quency region. Estimation of these effects is not easy and is
itself a subject to be studied. The mass effect of the surrounding
air may be equivalently understood not only as an additional
spinning mass of the disk, but also as a stationary mass which
is attached to the disk like the two heads. However, because
of the difficulty of its qualitative estimation, the mass effect
of the surrounding air is neglected here. Although the esti-
mation of the damping effect of the surrounding air is also
difficult, we simply regard it as two kinds of homogeneous
external damping; one of them is spinning with the disk (¢))
and another is stationary (c,).

From the infinitesimal analysis, the equation of motion of
the disk can be written in terms of transverse displacement w
and with respect to the stationary coordinate system (r, 6), as

H—a—+ 32w+c 2+ 9 w+ca—w
PE\Bt ™ 20 o 30 2 3t
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The parameters p, H, E, and y are the density, thickness,
Young’s modulus, and Poisson’s ratio of the disk. (:) is the
Dirac delta function. The coupling position between heads and
disk is assumed to be r = £ and § = 0. When the spinning
disk is clamped at the inner radius » = ¢ and free at the outer
radius r = b, the in-plane stresses o, and gy due to the cen-
trifugal effect are given by

where

N
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From Fig. 1(b), the dynamic transverse force ¥, and pitching
moment M are, respectively, given by

*w aw
FZ=—sz—CZE‘"-—sz 3)
8 (ow d ow aw
M= I, () —cy (20} —ky 2,
¢ o7 <rae> Y <rao> “ a6 @

Equation (1) looks like an inhomogeneous equation but be-
comes a homogeneous equation after substitution of equations
(3) and (4) into equation (1).

A particular solution of the disk deflection for this homo-
geneous system is assumed in the form of a Fourier sine and
cosine series expansion as follows:

L
w=Z (G, (r,t)coslf+ Ki(r,t)sinlf). 5)
1=0

In the case of a freely spinning disk, the sine and cosine func-
tions represent circumferential eigenmodes. In the case of the
coupled system of the disk and head assembly, each eigenmode
deviates from a harmonic function, but can be approximately
expressed as a linear combination of harmonic functions. Re-
garding the mode functions’ dependence on r, G, and K| are
obtained by the finite element method as described in a previous
paper (Ono et al., 1986). This implies that the radial mode
functions, which are decomposed into harmonic functions, are
assumed to be approximately represented in the third-order
polynomial function space within the region of each element.

Substituting the disk deflection (5) into the basic equations
1), (2), (3), and (4), we can get a set of partial differential
equations for G{r,t) and K(r,t). Based on the finite element

method, we next transform these differential equations with

respect to r into matrix algebraic equations for the state vector
at the nodes of the finite number of elements. When the element
number in the r direction is denoted by N and the harmonic
functions are taken into account up to / = L, the degrees-of-
freedom of the final matrix equation for this coupled system
becomes 2(1 + 2L)N. Since the coefficient matrices of this
second-order time-derivative equation are asymmetrical, the
eigenvalue analysis was carried out by using an available library
program of generalized eigenvalue analysis.

Journal of Applied Mechanics

For the purpose of comparison with the theoretical and
experimental works published previously, a 5.25-in. flexible
disk is chosen for computer calculation, although the calcu-
lated data of the most prevailing 3.5-in. disk will be more
interesting than for the 5.25-in. disk from a technical point of
view. For the physical parameters of the disk, the following
values are used in the calculation: £ = 4.9x10° N/m?, » =
0.3, p = 1.3x10° kg/m?, H = 0.078 mm, ¢ = 17.5 mm, b
= 65.0 mm, and £/b = 0.75.

As for the head and suspension parameters, the mass m
and pitching moment of inertia I of the two sliders are esti-
mated as 4.0x 107* kg and 1.60% 10~° kg m?, respectively.
The effective transverse mass m, including both slider mass
m; and the loading arm mass m; are estimated as 4.0x 1073
kg; ten times larger than m,. Then, 4.0x 10 *kgand 1.60 x 10~°
kg m? are, respectively, considered to be representative trans-
verse mass and pitch moment of inertia, which we denote
henceforth by m, and I. Since the transverse mass m, and
pitch moment of inertia I, are not easily changed, their nominal
values, m,, and I4, are usually used in the following calcu-
lations.

On the other hand, the stiffness and damping of the sus-
pension cannot be definitely estimated, since different man-
ufacturers may choose quite different values. Especially, the
stiffness can be changed so easily that its value may be selected
from the view point of stability. Therefore, the effects of
stiffness on the eigenvalues were investigated by using several
different values in the calculation. In order to get better phys-
ical insight into the frequency characteristics of the coupled
system, we first note the natural frequencies of the different
subsystems. The lowest values of the transverse stiffness &y
and pitch stiffness k4 are chosen to be 15.8 N/m and
6.32x 10" *Nm/rad, res ectively, so that the transverse natural
frequency f, (= N ky/m,/2r) and the pitch natural frequency

Jo (= Nkyo/I,/27) of the two head assemblies both become
10 Hz, when m, is equal to my, (= 4.0x107° kg) and I, is
equal to Iy (= 1.60x 10™° kg m?), respectively.

The effect of the suspension damping is one of the most
important concerns in this study, because it is well known that
the singing noise has been often stabilized by the addition of
some damping material to the suspension. Since it is not easy
to increase the damping factor by a large amount, the effects
of transverse and pitch damping are examined with the non-
dimensional damping ratio having the value 0.1. The effects
of the external damping ¢, and ¢, are also investigated by
choosing their values properly.

From the viewpoints of both computing efficiency and ac-
curacy, the maximum number L of the order of the harmonic
functions and the finite element number N is chosen to be 15
and 5, respectively. Eigenvalues are generally expressed in the
form a + 2xfj, where j = +/—1. The real part o and the
frequency f are plotted and discussed. The notation (n,/) rep-
resents the nth nodal circle and /th nodal diameter mode. Its
forward and backward travelling components are expressed by
the subscripts f and b, respectively.

Calculated Results and Discussion

(1) Pitch Moment of Inertia and Stiffness Effects. The
coupling effects of a spinning disk and a pitch vibration system
have not been investigated previously, and the effects of the
pitch parameters in the real head assemblies are weak compared
with those of the transverse parameters. Therefore, a coupled
system, which includes only pitch moment of inertia and stiff-
ness, is discussed first. Figure 2 shows the natural frequencies
JSof the coupled system (open circles) where the pitch moment
of inertia I, is equal to I, and the pitch stiffness &, is equal
to 10 X ky. Since the pitch frequency of the head and suspen-
sion system f, is 31.6 Hz in this case, the amount of k, is
regarded as fairly small compared with actual cases. For com-
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Fig. 4 The pitch moment of inertia and large pitch stiffness effects on
the natural frequency (I, = g, k, = 10°x ky {f, = 316 Hz])

parison the natural frequency of a free disk is indicated in Fig.
2 with small black dots. Since the real part of the eigenvalue
is almost zero in this case, the « value is not shown here.

It is seen from this figure that a nonrotating 5.25-in. flexible
disk has the lowest natural frequencies for the zero nodal circle
modes (0,0) and (0,1) at about 10 Hz, while the lowest one
nodal circle mode, i.e., the (1,0) mode, starts from about 64
Hz. Although not illustrated in Fig. 2, it was found that the
lowest two nodal circle mode (2,0) starts from about 190 Hz
and the lowest three nodal circle mode (3,0) from about 370
Hz. The frequencies of the backward traveling (0,2), and (0,3),
modes become zero just above 600 rpm. This rotational speed
corresponds to the critical speeds of the associated modes. The
0,4)s, (0,5)s, and (0,6), modes undergo critical speeds at about
730, 860, and 1000 rpm, respectively. No apparent instability
can be observed above the critical speeds in this case.

As seen in this figure, the deviation of the natural frequencies
from those of the free disk is negligible in the low and middle
frequency ranges. However, a remarkable change of frequency
is noted in the high-frequency range. From additional calcu-
lations to investigate the effects of I, and k, separately, it was
found that a k,, of this amount does not change the frequency
from that of the free disk. Therefore, the change of the natural
frequency from that of the free disk in the high-frequency
range is caused by the I, only. As seen in Fig. 2, the change
of frequency from the free disk can be noted from around 100
Hz, which is above the original natural frequency of the pitch
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Fig. 5 Instability due to transverse mass and large transverse stiffness
(m, = My, k, = 10*x kg [f, = 1.0 kHz])

vibration system f;. The effect of I, on the frequency becomes
stronger for higher nodal-diameter modes. From a detailed
examination of the frequency change above 100 Hz, it was
found that the frequency change due to I, occurs in such a
way that the top corner and the two upper-side frequency lines
of each diamond or upper triangle shift downward, keeping
the two side corners at the initial crossing points for the free
disk. As seen from the high-frequency range in Fig. 2, all
frequency lines always pass through the original crossing points
of different mode lines, as pointed out by Schajer (1984).

If the pitch stiffness &, increases by 100 times from the case
of Fig. 2, instability regions appear above the critical speeds
as shown in Fig. 3. In this figure, the same symbols in the
frequency f and the real part o represent the corresponding
imaginary and real parts of a pair of complex conjugate ei-
genvalues. Except for the case of zero frequency, each single
symbol in f corresponds to a conjugate pair of pure imaginary
eigenvalues, since the corresponding « value is zero. At the
rotational speed w where f decreases to zero, the eigenvalues
become a pair of positive and negative reals with the same
absolute value. This implies that one of the modes with zero
frequency becomes unstable. Since the zero-frequency mode
is a stationary mode, this type of instability is termed here as
a ‘‘stationary-type instability.’’ The overlapped symbols in f
also correspond to positive and negative reals with the same
absolute value in «. This means that two modes have the same
frequency, and that one of them is unstable. At this point the
frequency curves of the two different modes are merged into
one. Thus, this type of instability is termed here as a ‘‘merged-
type instability.”’

Each stationary-type instability appears to start from near
the critical speed described above. The rule that determines
the onset of a merged-type instability is more complex. The
merged-type instability apparently takes place when a reflected
increasing frequency line and a decreasing frequency line meet
in the neighborhood of a third line. As seen in the range 800~
1000 rpm in Fig. 3, more than one instability of different types,
or the same type, can occur at the same rotational speed.

_From the calculated results for the case where only large
pitch moment of inertia of I, = 10%x I is included, it was
found that the merged-type instabilities are also induced. How-
ever, its illustration and detail discussion are omitted here,
because the characteristics of this instability are qualitatively
similar to those due to the transverse mass which will be dis-
cussed later.

Small frequency changes from those for the free disk, such
as a veering feature (Schajer, 1984), can be noted at crossing
points between different mode lines in Fig. 3. Therefore, it is
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Fig. 6 Instability due to transverse mass only (m, = my)

also interesting to examine the effect of increased pitch stiffness
on natural frequency. For this purpose, the low and high-
frequency ranges in the rotational speed range less than 500
rpm are depicted in Fig. 4 for the same parameters as in Fig.
3. From the comparison between Figs. 4 and 2, it is noted that
the large deviation of fin the high-frequency range caused by
moment of inertia is thoroughly suppressed by the increased
pitch stiffness. Since the stiffness effect becomes predominant
over the mass effect in the low-frequency range, all frequencies
increase from the free disk values except for the (0,0) mode
and the original crossing points of different modes. Compared
with the frequency change due to moment of inertia, the fre-
quency change due to stiffness takes place in the opposite
direction such that the bottom corner and the lower two-side
frequency lines of each diamond or the bottom-side frequency
line of each upper triangle move upward, keeping the two side
corners fixed at the initial crossing points for the free disk.

Moreover, it is interesting and worth noting that all fre-
quencies above about 320 Hz decrease from the free disk val-
ues. Considering that the pitch vibration system attached to
the disk has the natural frequency of 316 Hz in this case, we
found that a general rule of frequency change due to the com-
bination of pitch moment of inertia and pitch stiffness can be
explained as follows: The inertia effect to decrease frequency
and the stiffness effect to increase frequency are competitive
with each other and the two effects are canceled just at the
natural frequency f; of the pitch vibration system attached to
the disk. The frequency of the disk below f increases due to
the dominance of the stiffness effect, while the frequency of
the disk above f, decreases due to the dominance of the inertia
effect. The degree of frequency deviation from the free disk
values in the regions below and above f, increases with an
increase in the pitch stiffness and inertia. Since the original
(n,0) mode motions have no pitch component, their frequencies
are never affected by the pitch parameters, as seen in Fig. 4.

Although not illustrated, it was found from the additional
parameter studies where large amounts of I, and k are taken
into account separately, that the frequencies asymptotically
approach certain limiting values with an increase in pitch in-
ertia, and these limiting frequency values are the same as are
obtained with an increase in pitch stiffness, except the lowest
natural frequency. The lowest natural frequency tend to zero
with an increase in pitch inertia. These behaviors will be dis-
cussed in more detail in the case of transverse mass and stiffness
effects.

(2) Transverse Mass and Stiffness Effects. Next, the
transverse mass and stiffness effects on the cigenvalues are
investigated. Figure 5 shows the destabilized eigenvalues due
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to a transverse mass of m., and a large transverse stiffness of
104szg. These values are regarded as close to the effective
mass and stiffness of an actual head assembly in normal op-
erating conditions. The natural frequency of the transverse
mass and stiffness system f; is 1.0 kHz in this case.

It is seen from Fig. 5 that this combination of m, and k, is
large enough to cause instability after the critical speed. From
additional calculated data for the cases where only m, or k, is
taken into account separately, it was found that the eigenvalues
in the presence of k; only are the same as in Fig. 5 in all
frequency ranges less than 400 Hz, and therefore the stiffness
effect is predominant in these ranges. The eigenvalues in the
presence of m;, only are found to be different from Fig. 5 in
the low-frequency range, and are depicted in Fig. 6 for com-
parison.

As seen in Fig. 5, both stationary and merged-type insta-
bilities again appear due to the transverse stiffness. By com-
parison of Fig. 5 with Fig. 3, one can note that the instability
regions due to transverse stiffness only or dominant stiffness
are fairly similar to those due to pitch stiffness. On the other
hand, transverse mass gives rise to only the merged-type in-
stability, as seen in Fig. 6. The reason why transverse mass
and pitch inertia do not induce the stationary-type instability
is that the inertia effects always vanish at zero frequency. If
a large number of modes are taken into account, the unstable
speed region caused by the transverse mass appears to be
bounded differently from the Iwan and Moeller (1976) results
where a few modes were taken into account.

It is worth noting that the frequencies f in Figs. 5 and 6
have the same values except in the low-frequency region where
the merged-type instabilities take place. This suggests that f
approaches a limiting value with an increase in stiffness only,
and that this limiting value is the same as the one which f
approaches with an increase in mass only, except in the low-
frequency region associated with instability.

For a more detailed examination of the changes in frequency
due to transverse mass and stiffness, the natural frequencies
for the two cases which include transverse mass of 10 X my, or
transverse stiffness of 10*x ko separately are plotted in Fig.
7 with circle and cross symbols, respectively, in the low-fre-
quency and low rotational speed ranges. For comparison the
natural frequencies of the free disk are also shown with small
dots. It is found from this figure that the natural frequencies
are almost equal in both cases except for the lowest frequency
line of the case with transverse mass only.

Regarding the mass effect on frequency, it was found from
this figure and additionally calculated data that the lowest
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frequency curve is reduced toward zero frequency as the trans-
verse mass increases. At the same time the other frequencies
decrease and approach asymptotic values in such a way that
the top corner and two-side frequency lines of each diamond
or triangle go down, keeping the two side corners at their
original crossing points, similarly to the high-frequency region
in Fig. 2. In the case where m, = my, the f value has not
approached the asymptotic value, because the lowest frequency
has not become zero and the f values with circles are slightly
larger than the ones with cross symbols, as seen from Fig. 7.
When the spinning disk is constrained by only transverse stiff-
ness, on the other hand, the bottom corner and two-side fre-
quency lines of each diamond or the bottom side of each
triangle rise up from the free disk lines, keeping the two side
corners at the same positions. As the transverse stiffness in-
creases, the natural frequencies approach asymptotic values.
In the case of Fig. 7, the transverse stiffness is so large that
the natural frequency indicated by cross symbols is almost in
the asymptotic state. It is seen from Fig. 7 that these limiting
frequencies are equal except for the lowest frequency. How-
ever, it should be noticed that when both the mass and stiffness
are combined together, the frequency changes can cancel each
other near the natural frequency f, of the attached mass and
spring system, because the same asymptotic state is obtained
by the decrease or increase of f depending on the mass or
stiffness effect. From these results it can be said that the com-
bination effects of the transverse mass and stiffness on the
eigenvalues is also competitive rather than additive similarly
to the combination effect of the pitch inertia and stiffness.

As mentioned before, the same behaviors as are described
above for the transverse parameters can be obtained for the
pitch parameters, although the limiting frequency values are
different and the (n,0) modes are not affected by pitch pa-
rameters.

(3) Combination Effect of Pitch and Transverse Param-
eters. An actual spinning disk in a floppy disk drive system
is coupled with not only pitch moment of inertia and stiffness
but also transverse mass and stiffness. So the next interest is
to investigate the combined effects of the pitch and transverse
parameters. Figure 8 shows the eigenvalues related to instability
above the critical speed when the pitch parameters in Fig. 3
and the transverse parameters in Fig. 5 are taken into account
at the same time.

It is worth noting that the unstable speed regions and the
strength of the instability are markedly reduced by one fifth,
as compared with Figs. 3 and 5. From the calculated data for
the cases where only transverse and pitch stiffnesses are in-
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Fig. 9 Friction effects on eigenvalues

cluded, it was found that the instability characteristics are the
same as shown in Fig. 8. This seems to imply that large pitch
stiffness and large transverse stiffness can mutually suppress
the strong instability tendencies indicated in Figs. 3 and 5.
From the calculated results for the several cases where &, or
k. are further increased from the case in Fig. 8, it was found
that the o values associated with instability change slightly but
that the instability regions can neither be completely eliminated
nor can they be increased again as in Fig. 3 or Fig. 5 by
increasing k, or k,. This implies that the combination effect
of pitch and transverse stiffness on instability is neither additive
nor competitive, but may be called a suppression effect.
From the additional parameter study where only I, and m,
are included, it was found that the instability characteristics
above the critical speeds are governed by either I, or m,, de-
pending on their relative amounts. In other words, the com-
bination effect of the pitch inertia and transverse mass is
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competitive and any suppression effect as shown in Fig. 8
cannot be obtained. Therefore, a combination of two of the
four parameters I, k;, m, and k, usually affects the instability
competitively except for the combination of k, and k,.

The suppression effect due to the combination of &, and &,
may be hypothetically interpreted as follows: Modes desta-
bilized by large pitch stiffness are possibly allowed to move
only in the transverse direction, like a symmetrical deflection
mode with respect to the coupling point. On the other hand,
modes destabilized by large transverse stiffness are allowed to
rotate about the coupling point, like a skew symmetrical de-
flection mode. Therefore, the former unstable modes may be
suppressed by the addition of a transverse stiffness constraint,
while the latter modes may be suppressed by a pitch stiffness
constraint.

Since the values of pitch and transverse parameters consid-
ered in Fig. 8 are regarded as equivalent to those of an actual
flexible disk drive in the normal operating condition, it can be
said that the instability tendency above critical speeds can be
largely removed by the constraints of pitch and transverse
stiffnesses. However, the residual instability tendency cannot
be eliminated without employing some other stabilizing means,
such as a damping, as will be discussed later.

(4) Friction Effect.
fect of the head-disk friction force. In the following calcula-
tion, the static head load F, is assumed to be 0.4 N. The
friction coefficient is considered as relatively large and is taken
as 0.4. Then the tangential friction force Fy is 0.32 N. Figures
9(a) and (b) show the eigenvalues in the low and high-fre-
quency ranges, respectively, for the case where only the friction
force is applied to the coupling point.

From the comparison of f values in Figs. 9(a) and (b) with

those of the free disk in Fig. 2, it is found that the friction
has an effect to change the frequencies from those of the free
disk except for the (n,0) modes. The reason for no change in
the (n,0) mode frequencies is that they have zero derivative in
the circumferential direction so the static friction force effect
vanishes as seen from the friction term in equation (1). The
change of the frequencies from the free disk values and the
veering feature near the crossing points are relatively stronger
in the low-frequency range than in the high-frequency range.
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In particular, the (0,1), mode frequency drops markedly and
remains at zero above about 100 rpm.

As seen from the « values of Figs. 9(e) and (b), the in-
stabilities are induced by constant friction force in the entire
frequency range. Since the interaction between different orig-
inal modes due to friction is not so strong, the notation of the
corresponding original mode number is indicated for the typ-
ical increasing and decreasing frequency components for con-
venience. From comparison between the « and f values in Fig.
9, it is found that the forward, or increasing frequency, modes
generally become unstable, while the backward, or decreasing,
frequency modes remain stable. Near the crossing or veering
points, the o values generally tend to zero. The steepness of
the increasing or decreasing lines does not always result in a
large absolute value of o. The largest positive « value appears
in the (0,3); mode in the low-frequency range, although the
eigenvalues for higher-order modes are not illustrated in Fig.
9(a). In the high-frequency range between 300 and 350 Hz,
on the other hand, the (1,6);, (1,7), and (1,8), mode lines have
relatively large positive « values, while the (1,8), (1,9), and
(1,10), mode lines have relatively large negative « values. It is
interesting to note in Fig. 9(e) that all the backward modes
have small negative a values for frequency below the (0,1);
mode line, even above their critical speeds. The (0,1), mode
has a particularly large negative « value. From the rotational
speeds above which the f values for the (0,1), mode becomes
zero, this conjugate eigenvalue changes to two negative values.

In an actual floppy disk drive, the static friction force is
imposed on the disk together with pitch and transverse pa-
rameters. Therefore, we next calculated the combination effect
of the friction force and the large pitch and transverse param-
eters which were used for the case in Fig. 8. The calculated
result was found to be the same as in Fig. 8 in the entire speed
range up to 1000 rpm and in the frequency range up to 400
Hz. The absolute value of o for any mode is reduced to less
than 0.02 rad/s except the ones which are related to stationary
(zero frequency) and merged-type instabilities. This means that
the destabilizing effect of friction force is completely sup-
pressed by the combination effects of large pitch and transverse
stiffnesses.

Although the present analytical model may be still much
simpler than the actual experimental set up used by Khono
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and et al. (1989), it is interesting to compare their observed
characteristics of unstable vibration in the flexible disk and
head assembly system with the calculated results obtained from
the present model. According to their observation, typical fea-
tures of unstable vibration are that the instability occurs in a
certain rotational speed range and its frequency increases with
increase in rotational speed. These features agree well with the
characteristics of unstable vibration caused by friction force
only, as shown in Figs. 9(e) and (b). In the normal operating
condition, however, the transverse stiffness is so high, because
of the fixed lower head, that the instability due to friction
force can be thoroughly suppressed, as stated above. There-
fore, if we imagine that the leading and trailing disk supporters
used in their experiment have no function to stabilize a par-
ticular mode, and that the lift of the leading disk supporter
functions to weaken the suppressing effect of mass and stiff-
ness, then one of the interesting modes can possibly become
unstable in a certain rotational speed region whose termina-
tions correspond to veering points; for example, the (1,7),mode
becomes unstable between 425 and 600 rpm and the frequency
may change from 320 to 347 Hz with increase in the rotational
speed, as seen from Fig. 9(b). According to their description,
the unstable vibration may have nodes near the disk supporters
and may be regarded as a higher-order mode like the (1,7);
mode. Accordingly, it is reasonable to consider that the lift of
the leading-side disk supporter induces some reduction in the
transverse stiffness. For example, strong air-bearing effects
may be developed between the lower head slider and the disk.
If the loading arm and slider are decoupled, the effective mass
of my (= 10m,) may be reduced to the slider mass m;.

In order to investigate the possibility of friction instability
under such abnormal conditions with reduced values of stiff-
ness and mass parameters as described above, the eigenvalue
analysis was further carried out for the four cases which include
friction force as in Fig. 9 and the decreased pitch and transverse
parameter values. If the transverse stiffness decreases to ky,
the o values increase to more than 10 rad/s in the low-frequency
range, but still remain less than 0.2 rad/s in the high-frequency
range. In order to increase the a values in the high-frequency
range, it is also necessary to decrease the transverse mass. The
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parameter study was done for the following four cases: (1)
k, = k, with the other parameters having the same values as
in Fig. 8, (2) k; = ky, m, = 0.1 X m_ and the other parameters
the same as in Fig. 8, (3) k, = ky, kg = 102><k¢0 and the
other parameters the same as in Fig. 8, and (4) k, = ky, m,
= 0.1 X my, ks, = 10> X k4 and the other parameters the same
as in Fig. 8.

If we confine our discussions only to the characteristics of
eigenvalues in the high-frequency range, it was found that cases
(1) and (2) have the same f values but different « values, and
that cases (3) and (4) have the same f values but different «
values. Thus, the o values for the cases (1) and (2) and their
identical frequency f in the high-frequency range are shown
in Figs. 10(a), (b), and (c), respectively. Similarly, Figs. 11(a),
(b), and (c¢) show the corresponding quantities for the cases
(3) and (4).

It is seen from these figures that the o values decrease almost
inversely proportional to the increase in m, in both Figs. 10
and 11 and that the fvalues in the high-frequency range depend
not on n1, but on & in these ranges of parameter values. The
reason why m, does not apparently change the f values, while
changing the a values, is considered to be as follows: Since
J-1s 31.6 Hz at most in these cases, the m, effect is predominant
over the k, effect in the high-frequency range and the eigen-
values in Figs. 10 and 11 are close to the limiting state, in terms
of the transverse mass effect, where the o values are zero.

For better understanding, the « and f lines of typical eigen-
values with relatively large « values are indicated with the same
letters. Along the lines denoted by (¢) and (b) in both Figs.
10 and 11, the same relationship between the slope of f and
the sign of « as observed in Fig. 8 still holds. However, the

_increasing frequency regions with relatively large o values of

the lines (@) and () in Fig. 10(c) are remarkably reduced
compared with those in Fig. 11(c). As seen in Fig. 11, the
mode indicated with (¢) becomes unstable in the rotational
speed region from 325 to 473 rpm. In this unstable region the
unstable vibration frequency increases from 320 to 340 Hz,
with an increase in the rotational speed. Similarly, the mode
denoted by (») becomes unstable in the rotational speed region
from 240 to 440 rpm and the frequency increases from 330 to
350 Hz. It can be said that these results are in good qualitative
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agreement with the experimental ones observed by Kohno et
al. (1989).

From these parameter studies it is obvious that the instability
caused by friction force can be suppressed by increasing the
transverse stiffness and mass. From additional parameter stud-
ies it was also found that the friction instability can be sup-
pressed by increasing the pitch moment of inertia and stiffness.
The reason why the o values with k, = 10*x k4 in Fig. 10
are larger than those with k, = 10>X ky0 in Fig. 11 is that the
effect of I, and &, on the eigenvalues is almost canceled near
316 Hz, because f, = 316 Hz in Fig. 10.

(5) Damping Effects. Lastly, we discuss the damping ef-
fects on the instability. To examine the effects of damping
factors on the high-frequency instability caused by the friction
force, we chose the abnormal case in Fig. 11(b) and (¢), where
I, = Iy, ky = 10°Xke (fs = 100 Hz), m, = 0.1Xmyy
(= my), k; = ko (f, = 31.6 Hz) and Fy = 0.32 N. The values
of the damping coefficients ¢, and ¢, are chosen to be
2.01 x 10”7 Nms/rad and 1.59 x 10~*Ns/m, which correspond
to 0.1 nondimensional damping ratios. Although the ¢; and
¢, values are not known, they both are chosen to be 0.1 Ns/
m.
Figure 12 shows the « values for each case where only one
damping factor described above is additionally taken into ac-
count. Since damping factors of this amount have no visible
effect on frequency, the f values shown in Fig. 12(e) are com-
mon for the four cases. Similarly to the previous figures, the
same symbols for « and f belong to a conjugate pair of ei-
genvalues. From Fig. 12(a) and (b) it is noted that c, has a
strong stabilizing effect on the instability caused by friction
force, whereas ¢, has little stabilizing effect. However, this
superiority of ¢, to ¢, does not hold in the low-frequency range
(not shown) where ¢, has a rather stronger stabilizing effect
than c,. It should be also noted from Fig. 12(a) that the o
which originally had larger absolute values without ¢, move
downward by a greater amount due to the addition of c;.

On the other hand, the damping factors ¢, and ¢, have
different stabilizing effects such that all « values are shifted
in the negative direction by the same amount, as seen from
Figs. 12(c) and (d). Strictly speaking, some slight deviation
from the uniform shift rule can be noted in Fig. 12(d) in the
higher rotational speed region. It is obvious that this difference
in the deviation of the « value with ¢; from that with ¢, results
from the lack of the convective term of ¢, in equation (1).

From the additional parameter studies for the combination
effects of these damping factors, it was found that they affect
the « value under a simple principle of superposition, while
keeping the f values unchanged, in the ranges of parameter
values used here. It can be said from these results that the
instability with high frequency caused by friction force can be
effectively stabilized by the addition of a pitch damping to the
suspension and some external damping to the disk.

Although not illustrated, it was found from the calculated
results for the same parameters as in Fig. 11(b), but with
damping, that the positive « values become more than 10
rad/s in the low-frequency range and these unstable vibrations
of the lower-order modes cannot be stabilized by the four kinds
of damping factors of this amount. In order to change the
positive o value to negative, the amounts of ¢, ¢, ¢}, and ¢,

should be increased by more than 20 times from those in Fig. .

12. In an actual system, however, those lower-order modes
would be practically suppressed by a disk liner, even if the
transverse stiffness happens to be small.

In order to develop a high-speed flexible disk drive, on the
other hand, it is well known that we should develop some
means of increasing the external damping, for example, such
as a Bernoulli plate. Therefore it is interesting to investigate
the effect of strong surrounding air damping ¢; and ¢, on the
instability in the high rotational speed region above the critical
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speeds. For the purpose of this parameter study, we chose
three different combinations of the transverse and pitch pa-
rameters, as have already been treated in the above discussion.
The first is the same as in Fig. 5 (large transverse mass and
stiffness). The second is the same as in Fig. 8 (small pitch
inertia and large pitch stiffness together with large transverse
mass and stiffness). The third is the case having the same
parameters as in Fig. 11(b) excluding the friction force (small
pitch and transverse parameter values). Currently available
high rotational speed flexible disk drives with a fixed recording
head and some stabilizing plate may be modeled as the one
with parameter values between the first and second cases. If
a pair of flying head sliders are employed, similarly to those
rigid disk drives, the head and suspension system is modeled
as the third case. In high-speed flexible disk drive, the friction
force should be decreased to be negligible value in any case.
For each case described above, the external damping effects
were examined by calculating three cases where ¢, = 0.5
Ns/m, ¢, = 0.5 Ns/m and ¢; = ¢; = 0.5 Ns/m are added
separately.

Since it was found that the external damping effects on the
eigenvalues are essentially equivalent for all three cases of
different combinations of the pitch and transverse parameters,
the ¢, and ¢, effects on the f and « values in the second case
are representatively shown in Fig. 13. Figure 13(a) portrays
the « values in the case where only ¢, is included. The cor-
responding f values are just the same as shown in Fig. 8. From
the comparison between the o values in Fig. 8 and those in
Fig. 13(a), it is seen that the o values for all modes uniformly
shift to the negative direction and almost all unstable modes
are stabilized except for the one which emerges at 1000 rpm
(« value is off the graph). As seen from the comparison between
Fig. 12(c) and Fig. 13(a), the amount of negative shift in the
« values due to ¢; is proportional to the ¢; value. Therefore,
it can be said that all unstable modes can be stabilized by the
addition of the necessary amount of the spinning external
damping factor c;.

Figures 13(b) and (c¢), respectively, show the o and f values
when only ¢; = 0.5 Ns/m isincluded. From careful comparison
of the f values in Fig. 13(c) with those in Fig. 8, it is found
that some of the merged frequencies in Fig. 8 separate by small
amounts due to the ¢, effect in Fig. 13(c). Even though the
two frequencies are not merged, the original pair of positive
and negative o values remain unchanged excluding a few ex-
ceptions such as the pairs observed at 840 and 940 rpm. From
Fig. 13(b) it is found that the o value of every backward mode
increases from the same negative value as is obtained by the
same amount of ¢; and becomes positive just above the cor-
responding critical speed, as the rotational speed increases.
The eigenvalues of the stationary-type instability modes are
not affected by the addition of c¢,. As the rotational speed
increases further, the increasing frequency lines which reflect
back at the critical speeds cross the decreasing frequency lines
of the other backward modes, and the « values of the two
crossing modes become a large positive and negative pair near
the crossing points, even if the two frequencies do not merge
into one. By careful inspection to the correspondency between
the « in Fig. 13(b) and the fin Fig. 13(c) near the crossing
point, it is noted that the o« value of the decreasing frequency
line jumps to the negative value of the pair, while that of the
increasing frequency line jumps to its positive value. On the
whole, it is found that the stationary external damping factor
¢, has no effect to stabilize the instability above the critical
speed caused by the pitch and transverse inertias and stiff-
nesses. On the contrary, all backward modes become unstable,
although the amounts of the positive « values remain small.

From the calculated results for the case where both ¢; and
¢, are included, it was also found that the « values are equal
to the sum of the two cases where ¢; and ¢, are separately

DECEMBER 1991, Vol. 58 / 1013

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



included and that the f values are nearly equal to the ones
where only ¢, is included.

Conclusions

A new modeling and theoretical formulation is presented
including friction force and pitch motion of a head slider as
well as its transverse motion. The results of an eigenvalue
analysis for a 5.25-in. flexible disk drive system with various
values of the related parameters can be summarized as follows:

1 Large pitch moment of inertia and large pitch stiffness
have destabilizing effects on the backward travelling modes
above their critical speed similarly to transverse mass and stiff-
ness.

2 Large pitch and transverse stiffness induce two kinds of
instability above critical speeds; stationary (zero frequency)-
type instability and merged-type instability. Every unstable
speed region is bounded.

3 Large pitch moment of inertia and transverse mass causes
only the merged-type instability above critical speeds. The un-
stable speed region is also bounded.

4 Pitch moment of inertia and transverse mass attached to
the disk shift downward the original free-disk frequency lines,
except for the crossing points of two different frequency lines.
On the other hand, the pitch and transverse stiffness shift
upward the original frequency lines, excluding the crossing
points. In case of pitch parameters, the eigenvalues of the
original zero-nodal diameter modes do not change.

5 With an increase in transverse mass, the frequency lines
approach certain limiting lines which are the same as the fre-
quency lines approach with increase in transverse stiffness,
with the exception of the lowest frequency line. The lowest
frequency line tends to zero with an increase in the transverse
mass. The same situation occurs in the relation between the
pitch moment of inertia and stiffness. The limiting frequency
lines are different for the transverse and pitch parameters.

6 The combination effects of pitch inertia and stiffness or
transverse mass and stiffness on eigenvalues are competitive.
The two effects are canceled at the mass-stiffness natural fre-
quencies, above which the inertia or mass effect becomes pre-
dominant and below which the stiffness effect becomes
predominant.

7 The positive real part values of the unstable modes caused
by the pitch stiffness and transverse stiffness separately can
be largely reduced by the combination of the pitch and trans-
verse stiffnesses. This suppression effect of instability cannot
be observed in the combination of the pitch moment of inertia
and transverse mass.

8 A constant friction force makes every increasing fre-
quency mode unstable and every decreasing frequency mode
stable over the entire rotational speed region, except the orig-
inal zero-nodal diameter mode. Near the crossing points be-
tween the increasing and decreasing frequency lines, the real
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part values tend to be zero. This result shows good correlation
with prior experimental ones.

9 The instability due to the friction force can be suppressed
by increasing the transverse mass and stiffness and pitch stiff-
ness. In the normal operating condition of an actual flexible
disk drive with a lower fixed head, the friction instability is
regarded as completely suppressed due to large transverse stiff-
ness and large effective transverse mass. However, if the con-
straints due to the large transverse stiffness and mass are
accidentally released, the instability due to the friction force
may appear.

10 The unstable vibration with high frequency caused by
the friction force can be effectively stabilized by the pitch
damping of the head suspension. The transverse damping of
the head suspension has little stabilizing effect on the high-
frequency unstable modes. The external rotating and stationary
dampings also have a stabilizing effect on the friction insta-
bility. The degrees of the stabilizing effects are proportional
to the amount of each damping factor and the combination
effect of different damping factors is additive.

11 The instability caused by pitch stiffness and transverse
mass and stiffness above the critical speed can be stabilized
by increasing the effect of spinning external damping. The
stationary external damping has no stabilizing effect on the
instability of this kind. In addition, the stationary external
damping has a small destabilizing effect on all backward modes
above the critical speeds.
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Introduction

A thin strip, formed by bonding two hookean, homoge-
neous, but dissimilar materials, constitutes a simple thermo-
static element (Fig. 1). It provides an interesting study in
mechanics and approximations. If end and edge effects are
neglected, and the Bernoilli assumptions are invoked, then the
strip is reduced to a model with two degrees-of-freedom (Ti-
moshenko, 1925). By acknowledging the edge effects in the y
direction and treating the element as a plate under the Kirch-
hoff assumption, the element is likewise reduced to two de-
grees-of-freedom (Timoshenko, 1925). Either model provides
a prediction of the interior behavior and deflections, but the
latter gives a better description of normal stresses upon a cross-
section.

Of course, the flexure caused by heating occurs only because
of the bond and the essential interfacial shear stress which is
also accompanied by transverse normal stress. These effects
are very localized near the ends and edges. Some indication
of these effects are obtained by approximating each layer as
a separate beam and enforcing interfacial continuity and in-
teractions, as well as appropriate end conditions. This con-
stitutes a one-dimensional ‘‘bonded-beam’® approach which
has been adopted and reported by Suhir (1986, 1989), Grimado
(1978), Chang (1983), and others. Unfortunately, a beam the-
ory can not accurately predict effects which occur in an edge
zone, equal or smaller in magnitude than the thickness.

Finite elements can give more accurate descriptions of the
stresses near the edges and ends (Gerstle and Chambers, 1987;
Suganuma et al., 1984). This can be employed in the context
of either a plane-stress (two-dimensional) or a general (three-
dimensional) model. However, neither can accurately describe
the singularity which is apparent in the interfacial normal stress
(Dundurs, 1967, 1969; Bogy, 1968, 1970).
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because of the bond and interfacial shear which is also accompanied by transverse
normal stress. These latter stresses are very localized at the end and edges. Here,
the elementary approximations, and refinements via finite elements, are presented
and compared. Deflections are given with reasonable accuracy by the simple ap-
proximations, but the severe interfacial stresses are revealed only by the refinements.

I 12
T Material 2! X | Y
H
JL Material 1
b —%—— [ — k=5
Fig. 1 Thermostat geometry

In this paper, the authors present derivations of both the
simple beam and simple plate approximations first outlined
by Timoshenko (1925). To validate these simple approxima-
tions, and to gain a deeper understanding of the interfacial
stresses, we also examine this problem using both plane-stress
(two-dimensional) and general (three-dimensional) finite ele-
ments previously developed by Wempner (1982, 1983). (The
procedure for the FEM calculations was interactive; the mesh
was progressively altered and refined as successive results in-
dicated the very severe gradients near the end and edges.) In
comparison, a summary of earlier works using both the bonded-
beam approach and other (different) plane-stress (two-dimen-
sional) finite elements are also presented.

Our purpose is to display the very interesting results and
differences obtained by the various elementary theories and
the more refined models of the finite element method. Though
the predictions of stresses differ in the various approximations,
similar predictions of the deflection of the tip are given by all.
The effectiveness of employing a simple element (Wempner,
1982, 1983) for this study is also evident, since all numerical
results were obtained using a personal computer. Finally, the

results provide a graphic example of St.-Venant’s principle.

A First Approximation—a Simple Beam

For the simplest approximation first described by Timo-
shenko, the assumption is made that L >> B> H. Therefore,
all stresses in the y and z directions are neglected. If end effects
are also neglected by invoking St.-Venant’s principle, the only
nonzero stresses are the longitudinal normal stresses in each
material. By the Bernoulli assumption, plane sections remain
plane, and the normal stresses follow:
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0y =Ee’ - Exz— EaAT  where i=1, 2. 1)

Here, €’ and « are the extensional strain and curvature of
the x axis; they are obtained by enforcing equilibrium; viz.,
force and couple vanish:

F= SUXdAIBSGXdZ=O M= Szadi:BSzoxcz;zzo. )

In accordance with (1), Egs. (2) are expressed in e and «:

EH)\ , 1, E H; -
1+ =22+ 1-= 3 | «H
< EZH,>E 2\ B H)

E, Hy oy
=(1+2 22 ) AT (3
( E, H, o 23} (Ba)
E,H\ , 2. E H
1-222) 0 2142 H
< EZH%>e s\ "B H
EzHgaz
=l1—-——5—loyAT. 3b
< EH o)™ @)
The small deflection of the tip follows:
K 2
==L" 4
w=3 “)

By the above approximations, the only nonzero stresses de-
pend on the transverse position in the strip, and the entire
system is reduced to one with two degrees-of-freedom (e° and
K).

This approximation was also given by Gerstle and Chambers
(1987), but was derived in a different manner.

A Better Approximation—a Simple Plate

For most real thermostats, the geometry of the bimetallic
strip corresponds to L > B> H or L > B>> H. Then stresses on
z surfaces might be neglected, but on y sections, a better ap-
proximation is obtained if only the resultants are required to
vanish, as on x sections. In effect, the strip is viewed as a
simple Kirchhoff plate, wherein the interfacial strains (¢, eﬁ)
and curvatures (k,, k,) are constants. This plane stress ap-
proximation follows (i=1, 2):

E; E; 1+
0y =1 —’»,? (9+ e — m (ke + Viky)Z ~ 1—_—1}72'EiaiAT (50)

E,' E; 1+
=1 (S+ vied) — 1—_7 (ky + ViK, )z ~ l—_—v—;Eia,AT. (5b)
i 1 i

The values for the four unknown constants €2, 63, Ky, and
k, are found by enforcing the conditions of vanishing force
and couple on x and y sections:

F,= SOXdA:BSGXdZZO My:SZUXdA=BSZdeZ=O (6a)

F,= SoydA =LSoydz=0 M, = SzaydA =ngo),dz=0. (6b)

The strains and the curvatures are the same in both the x
and y directions, i.e., ey=€=¢" and k, =k, =«:
0y =0y, =Ee~Eiz— E\,AT ° (7a)

0xy =0y, = Eg¢ — Exkz — EyapAT (7b)

where

a=(1+»)a. ®)

_ - — E
k=(1+»k e=(1+p) E=1 3

The two equations governing € and & are similar to (3a,b)
viz.:
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By this approximation, the small deflection along the cen-
terline at the tip is again given by Eq. (4).

As in the simple beam approximation, the only nonzero
stresses depend on the transverse position in the strip, and the
entire system is reduced to one with two degrees-of-freedom
(e and ¥). In fact, Timoshenko (1925) showed that the simple
plate approximation can be obtained from the simple beam
approximation by making the following substitutions:

E- g B
1- 14} 1- V)

(10)

In addition, if v, = v, = », the stresses predicted by the simple
plate approximation are just 1/(1— ) times the stresses pre-
dicted by the simple beam approximation,

Approximation as Two Bonded Beams

Both of the preceding approximations provide ready cal-
culation of the stresses in the interior of the strip. However,
neither solution provides any information about the interfacial
shear and normal stresses. These interfacial stresses are neg-
ligible in the interior of the strip, but are significant near the
end of the strip as first noted by Timoshenko.

Two-dimensional elasticity solutions of infinite quarter-
planes by Dundurs (1967, 1969) and Bogy (1968, 1970) indicate
that there is a singularity in the interfacial normal stress at the
end and edges of the strip. Because of this singularity, there
is also a severe gradient in the interfacial shear stress near the
end and edges of the strip. However, an investigation of these
interfacial stresses for the exact geometry of a real thermostat
by either a two or three-dimensional elasticity solution would
be exceedingly difficult, if not impossible.

In an effort to develop simplified calculations for the in-
terfacial stresses, several authors such as Suhir (1986, 1989),
Grimado (1978), Chang (1983), and others have analyzed bi-
material strips by beam theory. Although their approaches
differ slightly, all of these authors model each material as a
separate beam or long narrow plate. Equilibrium for each beam
is enforced, as well as the boundary conditions at the interface
of the two beams and at the end of the strip. This “bonded-
beam’’ method can be subdivided into two types; bonded beam
I (Suhir, 1986 and Grimado, 1978) enforces a zero shear force
at the end; while bonded beam II (Suhir, 1989, and Chang,
1983) enforces a zero shear stress at the end. As an example
of this method, the general results from Suhir’s (1986, 1989)
work will be presented.

For the bonded-beam I approximation, the interfacial shear
and normal stresses are given by:

AT(a;—
sz=—%ﬂsinh(u1x) (11a)
1
_AT(an— )
a;,‘————AlA2 cosh(ux) (11b)

Likewise, for the bonded-beam II approximation, the in-
terfacial shear and normal stresses are given by:

Txz = C sinh(B1x) + Cycosh(B,x)sin (B3x)

+ Cssinh(B,x) cos(B3x) (12a)
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Fig. 2 Finite element geometry

g, = Cycosh (B1x) + Cscosh(B,x)cos(B3x)
+ Cesinh {Box)sin (B3x). (12b)

All of the constants in (11@) through (125) depend on the
geometry of the strip and the properties of the two materials.

For both bonded-beam approximations, the deflection at
the tip of the strip is:

IHL* (o — o) AT
" 2 | BE(1—0D) [EH Q-]
HP+ H3+3H + +
e [EzH:(l—vﬁ)J [Ezﬂz(l—l’%)}

(13)

Although these approximations lead to reasonably simple
closed-form solutions for the interfacial stresses, all suffer
from some fundamental errors. First, all of the solutionsignore
the effects of stresses and strains in the y direction and, there-
fore, ignore equilibrium in that same direction. Second, all of
them predict finite values for the transverse interfacial normal
stress at the end of the strip, as opposed to the singularity
indicated by the solutions of elasticity. In fact, certain com-
binations of properties and thicknesses predict zero normal

stress, e.g., from Suhir:
EHI(1-
1 12( V;) _1 (14)
E,H;(1—v7)

Previous Finite Element Approaches

In an effort to probe the nature of the interfacial stresses
for real geometries of thermostats and similar structures, Gers-
tle and Chambers (1987), Suganuma et al. (1984), and others
have employed the finite element method (FEM). These pre-
vious studies used two-dimensional elements, wherein the di-
rection of zero stress is again taken as the y direction (the
width). However, as already shown for real geometries of
thermostats, B> H. Therefore, if the singularity at the tip is
ignored, a model using plane-stress elements with zero stress
in the z direction (the height) is also a valid model.

Present Approach

In this paper, the authors employ both two-dimensional and
three-dimensional finite elements (Fig. 2). Both types of ele-
ments were derived using the Hu-Washizu (1955) functional.

This functional was chosen as a basis for development of finite .

elements for two reasons. First, it allows independent ap-
proximations for the displacements, strains, and stresses. Sec-
ond, elements based on the Hu-Washizu functional avoid the
problem of ‘‘shear locking’> when the thickness of the element
decreases, (Wempner, 1968, 1982, 1983).

The first element is a plane-stress plate (i.e., the normal
stress in the transverse direction is ignored). This element has
trilinear approximations for the in-plane displacements, bili-
near approximations for the transverse displacements and the
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in-plane normal strains and stresses, as well as linear approx-
imations for all three shear strains and stresses. In view of the
approximations, i.e., suppression of the transverse normal
stress, this model has the attributes of ‘a (two-dimensional)
shear deformable plate.

Since the normal stress in the transverse direction is ne-
glected, the extensions of the normals in the transverse direc-
tion are also neglected. Let & (i=1, 2, 3) denote the local
normalized coordinates which originate at the center of the
element. Nodal values are &= 41, where j=1, 2, ... 8 signify
node numbers. Also, the nodal displacements are denoted by
.. Then the plane-stress displacement approximation is given
by:

18 o 14
=g > Nt (i=1,2) =72 Nls (15a)
j=1 k=1

where
Nj=(1+EE)( + £58)(1 + £4Ey)
Ne=(1+E{E)(1 +£58).
The strain approximations are:

(15b)

€1 =y + poy + paks + paads
e2=ps + pefy + prfa + sk s
Y12= o+ pioks
Y13 =pa1 + pi2ér

Y23 =13+ sk (15¢)

Likewise, the stress approximations are:
01=081+ B2+ Br&3 + Bakaés
02=LBs+ Bet 1 + Brés + Bskifs
712="Bs + B10k3
713=B11+ B2éz
73 =013+ Buaéi. (15d)

The second element is a three-dimensional brick. This ele-
ment has a trilinear approximation for all three displacements,
bilinear approximations for all three normal strains and stresses,
and linear approximations for all three shear strains and
stresses.

The displacement approximation is given by:

13
ui=§§ H‘ju{ (l=1; 2; 3)
j=1

where N; is defined in (158).
Now, in addition to the strains (15¢) and the stresses (15d),
one also has:

(16a)

€= 15+ piss 1 + pirba t+ gk s
03= P15+ B16&1 + Bi7éa+ Bris 162 (16b)

In both elements, the strain approximations are the simplest
polynomials that inhibit all zero energy or ‘‘hour glass’’ modes
of deformation (Wempner, 1982, 1983).

Finite Element Models

Our numerical examples employ the following material and
geometrical properties: Ey=15.0X 10% psi, E,=30.0% 10° psi,
v, =0.300, »,=0.300, a; = 13.0x 10~/°F, 0, = 6.50x 10~/ °F,
L =2.000 in., B=0.200 in., H,=0.060 in., H,=0.015 in.,
AT=400°F. These properties were chosen to provide a realistic
example. The much thinner layer might be ferrous alloy with
greater strength; the thicker layer a cuprous alloy. Of course,
the relatively thin layer aggravates the computational problem;
in particular, the normal stress gradient must be severe to
vanish at the nearby surface.
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Table 1 Summary of FEM models

FEM. MODEL NUMBER

DESCRIPTION

1 X-Y Plane-Stress Y Continuity Not Enforced

X~Y Plane-Stress Y Continuity Enforced

X~Z Plane-Stress

BtWw N

3-D

Table 2 Comparison of tip deflections

Fig. 3 Finite element mesh

In view of the symmetry, only one-fourth of the strip was
modeled. Because the interfacial stresses are highly localized
and have sharp gradients, iterations were made with various
mesh configurations, and element sizes until a 29x4X 10
(length x width X height) mesh was chosen for use in all
computations. This mesh has progressively smaller elements
near the end, edges, and material interface (Fig. 3). Utilizing
this mesh, computations were made with four different com-
binations of elements and interfacial continuity (Table 1).

The first and second models use the plane-stress element
with the z direction taken as the direction of zero stress (i.e.,
an x-y plane-stress model). For comparison with the simple
beam, model 1 relaxes interfacial continuity in the y direction
(i.e., differences in anticlastic strain and curvature are ig-
nored). In model 2 interfacial continuity is enforced; this cor-
responds to the (better) simple plate.

For comparison with the previous finite element studies of
Gerstle and Chambers (1987), and Suganuma et al. (1984),
model 3 uses the plane-stress element, but the y direction is
taken as the direction of zero stress (i.e., an x-z plane-stress
model). This model also corresponds to the simple beam for
the longitudinal normal stresses since the difference in anti-
clastic strain and curvature are again ignored.

Finally, model 4 uses the general (three-dimensional) ele-
ment. This model provides a benchmark with which to compare
the other FEM models and the elementary approximations.
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APPROXIMATION DEFLECTION
(in./L)
Simple Beam 0.0418
Simple Plate 0.0418
Bonded Beam I & ITI 0.0418
FEM 1: X-Y Plane-Stress Y Continuity Relaxed 0.0418
FEM 2: X-Y Plane-Stress Y Continuity Enforced 0.0418
FEM 3: X-Z Plane-Stress 0.0416
FEM 4: General 3-D 0.0411
4 Detail Bel «
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Fig. 4 Longitudinal normal stress

Results

The predicted displacements of the tip of the strip are shown
in Table 2. Since the values differ by less than two percent,
the simple beam is entirely adequate for predicting deflections.

The predicted longitudinal normal stresses for an interior
region are shown in Fig. 4. The simple beam and simple plate
have a similar linear distribution but different values. Since
both materials in our model have the same value of », the
stresses for the simple plate are exactly 1/(1 — v) times the values
for the simple beam.

Also, from Fig. 4, a summary of the predicted values of
longitudinal normal stresses are as follows:

FEM model 1 =~simple beam
FEM model 2~ simple plate
FEM model 3 =simple beam
FEM model 4=simple plate.

The results for FEM models 1, 2, and 3 were expected since
the basis of FEM models 1 and 3, as well as the simple beam
ignore the effects of the strains and curvatures in the y direction
(the width); while these effects are accounted for in FEM model
2 and the simple plate. The results for model 4 indicate that
the simple plate is entirely adequate for predicting the interior
stresses.

The interfacial shear stresses for the two x-y plane-stress
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finite element models (models 1 and 2), and the bonded beam
I are shown in Fig. 5. (Note, for all plots of interfacial stresses,
only the results for material 2 are shown since it is thinner,
and therefore it exhibits higher values and sharper gradients.)
The two FEM models indicate higher absolute values of stress,
but all three approximations indicate continuously increasing
values of shear as the end of the strip is approached. However,
this violates the boundary condition of vanishing shear stress
at the end. As noted, the bonded beam I enforces the condition
of zero shear force at the end of the strip, not zero shear stress.
Also, since L > B, the two x-y plane-stress FEM models behave
like a beam model.

The predicted values of the interfacial shear stresses for the
three-dimensional (model 4) as well as the x-z plane stress
(model 3) FEM models are shown in Fig. 6, while the predicted
values of the transverse interfacial normal stress are shown in
Fig. 7 and Fig. 8. Also plotted in these figures are the stresses
according to the bonded beam II.

These three approximations correctly predict a zero shear
stress at the end of the strip, and the signs for all three are
the same. But, the two FEM models again predict much higher
absolute values of stress. Also, the bonded beam II indicates
a more gradual transition from zero to peak and back to zero,
while the FEM models indicate a much steeper gradient in
shear with an abrupt reversal to zero in a zone much closer to
the end of the strip.

For the interfacial normal or ““peeling’’ stress, the absolute
values of the stresses are similar for FEM models 3 and 4, and
the bonded beam II, but there is a marked difference in the
direction of the stress predicted by the bonded beam II. The
FEM models predict a compressive stress at the end of the
strip, while the bonded beam I1 predicts a tensile stress. Again,
the bonded beam II indicates a more gradual transition of
stress from zero to a finite peak value, while the FEM models
indicate extremely sharp gradients and reversals of peeling
stress at the very tip of the strip. These reversals and extremely
sharp gradients are an indication of the singularity in the peel-
ing stress at the tip. Also, though material 2 is extremely thin,
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the gradient of the peeling stress is greater along its interface
than through its thickness (Fig. 8).

Finally, as was the case for longitudinal normal stresses, the
values of shear stress for model 2 are approximately 1/(1 —»)
greater than the values of model 1; while the values of both
the shear and peeling stresses for model 4 are approximately
1/(1 —») greater than the values of model 3. The differences
are again attributed to the effects of the strains and curvatures
in the y direction which are continuous in models 2 and 4, but
not in models 1 and 3.

Conclusions

The behavior of a simply bimetallic thermostatic strip pro-
vides an interesting study in the effectiveness of various ap-
proximations.

The simple beam (two degrees-of-freedom) is adequate for
the prediction of deflections, while the simple plate (again,
two degrees-of-freedom) is adequate for the prediction of
stresses at interior points.

Though these simple approximations are useful in predicting
the deflections and interior stresses, they provide no infor-
mation about the interfacial shear and normal stresses that
appear near the end and edges of the strip. The theory of
bonded beams demonstrates that these stresses are highly lo-
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calized in a small region near the edges and end of the strip.
However, it failed to predict the magnitude, the severity of
the gradients, and in some cases the correct sign of these stresses.
This is not unexpected since beam theory can not predict be-
havior in a region, equal or smaller than the thickness of the
beam.

To probe the nature of the interfacial shear and normal
stresses, previous studies were performed using plane-stress
finite elements with the y direction (the width) taken as the
direction of zero normal stress. Those studies predicted the
general character of the interfacial stresses, indicating that a
singularity exists in the peeling stress. However, since those
previous studies did not account for the strains and curvatures
in the y direction, the values of the stresses are in error by a
factor of 1/(1 —v).

The effectiveness of a simplified quadrilateral element has
been demonstrated since all the numerical results were obtained
on a personal computer with no computational difficulty, or
“‘shear locking,”” though the interface and end elements were
extremely thin.

Finally, since the simple plate describes the deflection and
all non-negligible stresses in 95 percent of the strip, it provides
a graphic example of St.-Venant’s principle.

Practical Comment

The large normal stress at the end and edges can be elimi-
nated if the faces of the layers are beveled as illustrated in Fig.
9 (Lukasiewicz).
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with transversely isotropic, orthotropic, and monoclinic properties are derived. The
complete solution of the entire layered medium is then obtained through introducing
the thermal and mechanical boundary and layer interface conditions. This is ac-
complished via the flexibility/stiffness matrix method. As a numerical illustration,
the distributions of temperature and thermal stresses in a laminated anisotropic slab

subjected to a uniform surface temperature rise are presented for various stacking
sequences of fiber-reinforced layers.

1 Introduction

The use of fiber-reinforced composite materials in a wide
variety of modern engineering applications has been rapidly
increasing over the past few decades. The advantages of com-
posites over traditional materials are well known (Jones, 1975).
The inherent heterogeneous and anisotropic nature of layered
composites, however, makes the analysis of such materials
become more involved than that of homogeneous and isotropic
counterpart (Lekhnitskii, 1981). For the thermoelastic analysis,
the problem becomes even more complicated. In this case,
solutions to both the heat conduction and thermoelasticity
problems for all layers are required. These solutions are also
to satisfy the thermal and mechanical boundary and interface
conditions. As a result, the conventional procedure for thermal
stress analysis of a multilayered medium results in having to
solve two systems of simultaneous equations for a large number
of unknown constants as evidenced from the previous work
by Padovan (1975, 1976), Tauchert (1980), and Tanigawa et
al. (1989). Specifically, based on the method of complex series
expansion together with the use of complex adjoint differential
operators, Padovan (1975, 1976) examined the effects of ma-
terial anisotropy on the stationary thermoelastic fields of gen-
erally laminated slabs and cylinders subjected to spatially
periodic thermal loadings. Tauchert (1980) obtained the so-
lution of thermoelasticity for a simply-supported orthotropi-
cally laminated slab via the method of displacement potential
and compared the results with those by the bending theory.
On the other hand, Tanigawa et al. (1989) performed the tran-
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sient thermal stress analysis of laminated beam composed of
dissimilar isotropic layers.

To provide an efficient approach to stress analysis of a
multilayered medium, various alternative solution procedures
have been proposed. Among them is the transfer matrix method
originally developed for isothermal elasticity problem by Bufler
(1971) and Bahar (1972) and later extended to thermoelasticity
problems by Bahar and Hetnarski (1980). In terms of the
vectors containing the appropriate state variables of the layer,
this approach recasts the boundary value problem in the form
of an equivalent initial value problem. The state vector of any
given layer is then related to the initial state vector of layers
with known boundary conditions via successive multiplications
of the transfer matrices of the intermediate layers. This process
amounts to applying the interface continuity conditions for
the state variables of any two adjacent layers.

Another matrix approach is the flexibility/stiffness matrix
method. In this approach, a local matrix equation is con-
structed in terms of the unknowns representing the value of
selected field variables (stresses for flexibility formulation and
displacements for stiffness formulation) evaluated at the layer
interfaces. The global matrix equation is assembled from the
local matrices through the applications of boundary and layer
interface conditions. The unknowns are then obtained by solv-
ing the global matrix equation. In terms of the resulting in-
terfacial values, the required unknown constants for the general
solution of the elasticity problem are readily evaluated. Con-
sequently, by dividing the solution procedure into two steps,

. this matrix formulation results, in comparison with the con-

ventional formulation, in a significant reduction in the number
of equations that must be solved simultaneously. Small and
Booker (1984) and Kausel and Seale (1987) applied, respec-
tively, the flexibility matrix and stiffness matrix formulations
to the elasticity problem of a layered isotropic medium resting
on a halfspace. More recently, Choi and Thangjitham (1991a,b)
performed the stress analysis of a multilayered anisotropic
medium -based on the stiffness matrix formulation. The fore-
going studies are, however, limited to an isothermal condition.

DECEMBER 1991, Vol. 58 1 1021
YASVE

r copyright; see http://www.asme.org/terms/Terms_Use.cfm



The objective of this study is to extend the flexibility/stiff-
ness matrix method to the thermoelasticity problem of a mul-
tilayered anisotropic medium under the state of generalized
plane deformation. By utilizing the Fourier transform tech-
nique, the general solutions to heat conduction and thermoe-
lasticity problems for layers with transversely isotropic,
orthotropic, and monoclinic propertles are first derived. The
flexibility/stiffness matrix method is then employed to obtain
the specific solution which satisfied the thermal and mechanical
boundary and layer interface conditions. As an illustrative
example, the thermoelastic response of a multilayered fiber-
reinforced slab to a uniform surface temperature rise is ex-
amined for various layers stacking sequences.

2 Governing Equations and General Solutions

A layered slab (Fig. 1) composed of N fiber-reinforced layers
is considered in this study. The fiber angle, 6, is measured
counterclockwise from the positive x-axis to the fiber direction.
The external thermal and mechanical loads are assumed to be
applied such that all field variables are functions of x and z.
Due to the presence of off-axis monoclinic layers, the state of
generalized plane deformation for thermoelasticity as discussed
by Lekhnitskii (1981) is assumed such that

T=T(xz2), u=u(xz), v=v(xz), w=w(xz)

(la,b,c,d)

where T is the temperature field measured from the reference
stress-free temperature, and #, v, and w are the displacement
components in the x, y, and z-directions, respectively. For the
case of on-axis transversely isotropic and orthotropic layers,
the generalized plane deformation is equivalent to the pure
plane deformation.

2.1 Layers With Monoclinic Properties. For the off-axis
monoclinic layers with the plane of material symmetry normal
to the z-axis, the temperature field satisfies the steady-state
heat conduction equation (Nowinski, 1978)

*T T
kit py) +K375 -

where &, i,j=1,2,3, are the coefficients of thermal conduc-
tivity in the structural coordinates of the medium (Fig. 1) which
can be written in terms of those, «;, /=1,2,3, (in this paper,
repeated indices do not imply summation) in the material co-
ordinates of the layer and of the fiber angle, § (Jones, 1975).
The material coordinates of the layer refer to the directions
parallel, transverse, and normal to the fibers.

The corresponding heat fluxes are given as

aT . aT
5’ Qy=_Klzaa q;=

=0 )

- . oT
gr= — K11 e (3a,b,0)
where g,(x,2), j=X,7,z, are the heat flux components in the
X, y, and z-directions, respectively.

The Duhamel-Neumann constitutive equations under the
state of generalized plane deformation are written as (Now-

inski, 1978)

ou ~ ow -
w=Cu—+Ci— +C16 —31T (4a)
ox 0z
~ a - 0w
C a C23a +CZ6 —,BzT (4b)
~ ou ~ ow .~ 0v
0=C13 I —+Cyh—— +Csaax BT (4c)
~ U ~ 0w  ~ Ov
= Cis P —+Cs az+066&_66T (4d)
~ 0v ~ f[ou ow ‘
Tyz = C44a_z + C45 <"é‘£+ —a;> (46)
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T=0
Configuration of the N-layer anisotropic medium

Fig. 1

~ 0v . [ou Ow
=Cys % +Css <az + 6x> 4N
where 0;;(x,z) and 7;;{(x,z), I,j=x,y,z, are the normal stress
in the i-direction and the-shear stress in the i-j plane, respec-
tively, and C,J, i,j=1,2,...,6, are the elastic stiffness constants
in the coordinates of the medium which are functions of the
stiffness constants, Cj;, i,j=1,2,...,6, in the layer coordinates
and of the fiber angle, 6. The thermal moduli, 8, j=1,2,3,6,
are defined as

B1=Cndn + Cradan+ Ciydsy + Cisdna (5a)
B2 = Cradiyy + Coadiny + Crisy + Coginy (55)
B3 = Ca6in + Coyding + Cyadizs + Crgin (5¢)
Bs= Cie6ir1 + Cagling + Cie6izs + Cosina (5d)

in which &, i,j=1,2,3, are the thermal expansion coefficients
in the coordinates of the medium which are again functions
of those, oy, /=1,2,3, in the layer coordinates and of the fiber
angle, 6.

In the absence of body forces, the governing equations for
the plane thermoelasticity of a given monoclinic layer expressed
in terms of the displacement components are written as

L Pu L Fu L v L v
Cuaxz+cssaz2+cléaxz+c4saz
~ o~ Fw oT
C C
+ (Ci3+ 55)6xz ﬁlax (6a)
~ u  ~ u v~ v
C
163xz+c4sazz+cssaxz+c44 p
*w oT
+ (G + C45) 56 (6b)
&u 62v
(CIB+CSS) +(C36+C45)
62w ~ 32 aT
+Css—= 352 +C33 53 (60)

where Eqs. (6a)-(6¢) constitute a system of nonhomogeneous
partial differential equations.

To solve the field Egs. (2) and (6a)-(6¢), the Fourier trans-
form is applied over the variable x. The transform pair for an
arbitrary function g(x) is defined as (Sneddon, 1951)

®© o

g(s)= S g(x)e”"dx, g(x) ——I;S g(sye Mds  (Ta,b)
where an overbar denotes the transformed quantity, s is the
transform variable, and i=+/ — 1.

Under the condition that the field variables and their first
derivatives with respect to x vanish as x— = oo, the heat con-
duction Eq. (2), is readily solved to give the temperature field,
T(s,z), in the transformed domain as

T=H, coshskz + H,sinhskz (8)

where H;(s),j=1,2, are the unknown constants to be evaluated
from the proper boundary conditions and k=+/k;/ka3. It is
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noted that the variable s 1n the above equation is regarded as
a parameter. The transformed heat fluxes are then obtained
by taking the Fourier transform of Egs. (3a)-(3¢) and using
Eq. (8).

In the Fourier transformed domain, the governing equations
for thermoelasticity, Eqgs. (6a)-(6¢), are reduced to the follow-
ing system of nonhomogeneous ordinary differential equations

dqu da
Mi—=+M,—+Mii=1 9
1 dz’ 2 dz 3 Uy )
where U (s,z) = (% (52), D (s2), W{sz) } is the displacement vec-
tor of length three, M;(s), j=1,2,3, are the 3 x3 symmetric
matrices defined as

Cs Cis 0
Mi=|Cs Cu 0 |,
0 0 Cnp
0 0 —is(Ci3+ Css)
M= 0 0 —is(Css+ Cys) | »
—is(Ci3+ Css)  ~is(Cg+ Cus) 0
-5*Cy, —5*Cig 0
My=| —5*Cs —5°Cgs 0 |> (10ab,0)
0 0 —5°Css
and the right-hand side vector, W, (s,z2), is given as
o= (—isBT —isBel B3T') (10d)

in which the prime denotes differentiation with respect to z.

To obtain the particular solutions corresponding to the non-
homogeneous part of Eq. (9), the method of undetermined
coefficients (Hildebrand, 1976) is employed rather than that
of displacement potentials. This is due to the fact that, unlike
the problems of orthotropic (Tauchert, 1980) and transversely
isotropic (Sharma, 1958) media, the use of such potentials for
monoclinic media leads to a noncanonic form of the governing
equations as depicted by Padovan (1974, 1975). Supplemented
by the complementary solutions of the homogeneous part of
Eq. (9) (Choi and Thangjitham, 1991b), the general solutions
for displacements are obtained as

3
= (Ajoshshiz + Bsinhs\;z)

j=1
+ i% (H,coshskz + Hysinhskz) (1)
3
U= Y (A,coshsh\z + B;sinhs\z)L;
j=1

+ i% (Hcoshskz + Hosinhskz)  (12)

3
W= ) i(Asinhs\z+ Bjcoshs\z) R;

J=

+? (H,sinhskz + Hycoshskz)  (13)

where A;(s) and B;(s), j=1,2,3, are the unknown constants

to be evaluated by applying the proper boundary conditions

and N;, j=1,2,3, are the roots of the characteristic equation
det A=0 (14)

in which A is a 3x 3 symmetric matrix whose elements are
given as

Ay=CssN =Gy, Ap=4y= Cushi = Cie,
A=Ay =~i(Ci3+Css)N;, Ap=CuN — Ce,

Ap=Apn=—i(Cu+Cis)N, An=CyuN—-Css. (15

Journal of Applied Mechanics

The constants L; and R, j=1,2,3, for each root A; in Eqgs. (12)
and (13) are obtained as

_Apdi—A5ly (AL - Andn)

= , Rj= (16a,b)
T ARAn—Apl T Apby—Apdg
and the constants 7;, j=1,2,3, are given as

= (B1as— 56“22 + n3(@304 — a206) (174)

a—a)ay
m:(ﬁﬁal“51“2)24'173(0106—0203) (17b)

a; —apay

B1(a3as— a2a6) + Bs (@105 — a3a3) + B (43— a1as)

n3 = (17¢)

ag(2a,a3 — a1a5) + as (@ — a,a4) — a3a,
in which a;, j=1,2,...,6, are defined as
a=k’Css—Cp1, a,=1Cys—Cig, a3=~(Cps+ Css)
a;=k"Cy—Ces, as=1’Cy3—Cs5, ag= —x(Cag+Css). (18)
It is noted that the quadratic roots )\} of Eq. (14) are positive,
real, and distinct (Pagano, 1970).
By taking the Fourier transform of Eqs. (4a)-(4f) and using

the displacement expressions, Eqgs. (11)-(13), the stress com-
ponents are obtained as

3
Gn= Y, is(CosNR;— Ciiu— CpuL;) (Ajcoshshz + Bsinhsh;z)
Jj=1
+ (C~1mn1 + C~1116"72 + C~mB"73K ~ B} (Hycoshskz + H,sinhskz),
m=1,2,3,6 (19)

3
= Y SICumNLi+ Cpus (R;+ \;)] (Asinhshz + BicoshsAz)
j=1
+ i[Capmax+ Cons (1 — n3)] (Hysinhskz + Hycoshskz),
m=4,5 (20)

where 0,(s,z), m=1,2,...6, are the contracted notation for
Gxxs Oyys Ozzs Tyzs Txzs Taps TESPECtively.

2.2 Layers With Orthotropic Properties. For the case of
on-axis orthotropic layers with fibers aligned in the x-direction
(0 =0 deg), there exists three mutually orthogonal planes of
material symmetry. In this case, the elastic stiffness constants
Cij=C;; with Cy;s=0 and C,s=0, m=1,2,3. The thermal ex-
pansion coefficient causing the shearing thermal strain, &,, is
also zero. As a result, the displacement v in the governing Eqgs.
(6a)-(6¢) is decoupled from the remaining components, 1 and
w. Consequently, the complementary part of the transformed
displacements, Eqgs. (11)-(13), and stresses, Egs. (19)-(20), is
no longer valid. By following the similar solution procedure,
the expressions for the transformed displacements of ortho-
tropic layers are obtained as

2
u= Y (Ajcoshshz + Bjsinhs\;z)

Jj=1

+ iﬂsl (H,coshskz + Hysinhsxz)  (21)

2
W= i(A;sinhshz+ Bjcoshs\z)R;

Jj=1

¥ % (H,sinhskz + Hycoshskz)  (22)

U= Ascoshshgz + Bssinhsh\gz (23)

where \g=/ Cy¢/Cys and N, j=1,2, are the roots of the char-
acteristic equation

Ci3CssN +[(Ci3+ Css)*— €11Cy3 = C3sIN + €1 Css =0
and the constants R;, j=1,2, are given as

4
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_Cu-Cs\
T (Ciu+Css)N
It should be noted that the particular solutions of Eq. (9)
for orthotropic layers can be obtained from those for mono-
clinic layers by substituting the corresponding thermal and
mechanical properties. The quadratic roots )\f,in Eq. (24) are
also positive, real, and distinct.
The transformed stresses for the case of orthotropic layers
are obtained as
2

(25)

Gu= D i5(CraNiR;— Ciim) (A coshshiz + Bjsinhshz)
J=1

+ (Cpmi + Crgnak — B) (Hicoshskz + Hysinhskz)

m=1.2,3 (26)
2
Tu= 2, 5Css(R;+\;) (A;sinhs\z + Bicoshs\z)
i=1
+ ié55(1’]1K— 1’]3) (HlsinhSKz+H2COShSKZ) (27)
7y = ShoCa4 (A38inhishgz + Bscoshshoz) (28)
Ty = — isCgs (A 3c08hs\gz + Bssinhishez) (29)

where G,,, m=1,2,3, refer to Gy, Oy, 0y, respectively.

2.3 Layers With Transversely Isotropic Properties.
Another case of interest arises when the material properties of
layers are transversely isotropic in the x-z plane. This condition
occurs when the material properties in all directions perpen-
dicular to the fibers are the same and the fibers are aligned in
the y-direction (#=90 deg). In addition to Cys=0, C,s=0,
m=1,2,3, and &, =0 as for the case of orthotropic layers, the
thermal and mechanical properties of the transversely isotropic
layers are further simplified such that C; =Cj;, Cip=Chs,
Cu=Css, Css=(C11—C13)/2, &1="0;; and &y =ky. In this
case, the quadratic roots of the characteristic Eq. (24), are
repeated and equal to unity. Consequently, the expressions for
the transformed displacements are obtained as

= (A, + Ayz)coshsz + (B + Byz)sinhsz

- iﬁli (H;sinhsz + Hycoshsz)  (30)
2CH

R R\ .
W:i[ <B1+Bzz+A2§> coshsz + <A1+A2z+32;) smhsz:‘

+_Q~1_[ (%+H1z) coshsz + (gs—lesz) sinhsz} 31

U= Ascoshsz + Bisinhsz (32)
where the constant R is given as
_ _Cut3Cs (33)
Ci3+Css

The corresponding transformed stresses are obtained as
G = I[Ci3(1 + R) By — 25Cs5 (A + A327) ]coshsz
+i[C3(1 + R) A, — 25Css (B, + Byz)]sinhsz
—2—%5—6—1[ (flisz+H1> coshsz + (Iilfz-’er) sinhsz] (34)
Ci 2 2
G=ilC11(1 + R) By + 25Ciss (A, + A7) [coshsz
+i[C1(1 + R) A, + 25Cs5 (B, + B,yz)sinhsz
65561

+3 (Hszsinhsz + Haszcoshsz)  (35)
) 1
7= Casl (14 R) A2+ 25 (B, + Byz) looshsz
+ Css[(1+ R) By + 25 (A, + Apz)Jsinhsz
_ iCSSBl [(H,sz+ H,)coshsz + (H,sz+ H,)sinhsz]  (36)

11
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Tyy= iC1y(1 + R) (Aysinhsz + Bycoshsz)

+ ( gﬁ‘ - 32> (H,coshsz + Hysinhsz)  (37)
11 .

Ty=— isCy4 (Ascoshsz + Bssinhsz)
Ty = 5Cy4 (Assinhsz + Bycoshsz).

(38)
(39

3 Flexibility/Stiffness Matrix Method

The next step of ‘the solution procedure is to determine the
temperature, displacement, and stress fields for all layers by
solving the specific boundary value problem. For the foregoing
sections, it is seen that, for each layer, there are two unknown
constants, Hj, j=1,2, and six unknown constants, 4; and B;,
Jj=1,2,3, for heat conduction and thermoelasticity problems,
respectively, Consequently, for an N-layer medium, a total of
8N unknown constants must be evaluated from a set of 8NV
appropriate boundary and interface conditions. For laminated
composites which, in general, contain a large number of layers,
the conventional procedure results in having to solve two sys-
tems of simultaneous equations for a large number of unknown
constants. To circumvent these difficulties, the flexibility ma-
trix and stiffness matrix formulations are employed for the
heat conduction and thermoelasticity problems, respectively.

3.1 Flexibility Matrix Formulation for Heat Conduction
Analysis. In the flexibility matrix formulation of heat con-
duction problem, the transformed temperature, 75 (s), and
transverse heat fluxes, G (s) = (§,)i, at the upper (+) and
lower (—) surfaces of the kth layer are expressed in terms of
the unknown constants, Hf, Jj=12, as

Ty G Sk HY
{—TJ - [ -Gk SJ Lflz‘} @0
ak+ _ ko ~k Sk Ck HII(
)l S

where Cj=coshskih,/2 and S, =sinhskh,/2 for which A is
the thickness of the layer.

Upon eliminating the constants, Hf, from Egs. (40)-(41),
the relations for the surface temperature and transverse heat
fluxes of the layer are obtained as

{T/:r }_[F,l(l lerz] {5/:}
-Tr FY, Fh| gk

where Ff-‘j(s), i,j=1,2, are the elements of the local flexibility
matrix of the kth layer defined as

[Ffl F’fz]_ 1 [ Ci Sk:H: Sk Ck:l~l
k kK | T T

Fr, Fy o @ik L~ Cr Skl =Sk Gk

in which the 2 X 2 local flexibility matrix, F}, is symmetric.
For a perfectly bonded N-layer medium subjected to arbi-

trary temperature variations on the bounding surfaces, the

following thermal boundary and interface continuity condi-
tions are applied

42

(43)

Ty =7+ (44a)
T =T G =Giv, k=12, (N=1) (44b,0)
Ty=1" (44a)

where 1* (s) signify the transformed temperatures on the upper
(+) and lower (—) surfaces of the medium, respectively.

By denoting G, =g; and Gn.;=qn the transverse heat fluxes
on the upper and lower bounding surfaces of the medium,
respectively, and Gy 1=qr =G %s1, k=1,2,...,(N=1), the
common interfacial transverse heat fluxes between the kth and
(k+ Dth layers, the successive applications of the conditions
in Eqs. (44a)-(44d) lead to the global flexibility equations for
the N-layer medium written as
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Fl\Gi+ Fiaga=1" 45a)

Foget (Fa+ FiP DGt + Fi3 Qe 2 =0,
k=12,...,(N=1) (45b)
FSGn+ Figne = -1 (45¢)

In matrix form, the above system of algebralc equations can
be expressed as
Fq=t (46)
where F(s) is the (N+1)x (N+1) banded and symmetric
global flexibility matrix, q¢s) is the global vector containing
the unknown interfacial transverse heat fluxes, i.e.,
{G1G2...Gny 1), and t(s) is the vector containing the trans-
formed surface temperature and zero elements, It is noted that
the half-bandwidth of F is two.

3.2 Stiffness Matrix Formulation for Thermal Stress Anal-
ysis. To utilize the stiffness matrix formulation for the ther-
mal stress analysis of a multilayered medium, the following
vectors for the kth layer are defined as

di={— W, T Ty}, 0n=(—idh, ™ 7] (@7a,b)

ap=[{AY A5 A%y, be=(Bf Bf BY}) (47c,d)

where di(5,2) and o, (s,2) are the vectors for the transformed
displacements and tractions, respectively, and a,(s) and b, (s)
are the vectors for the unknown constants.

In terms of a, and by, the vectors contamlng the surface
values of displacements, d; (s), and tractions, i (s), of the
layer can be written as

i f’il_'_IffZ_ B d)r

{EE g [ P ‘ P5 ] { } l{(dk )TZ @)
O _QLL'_QI_(Z_] { 2 _} _ { @?_)_T}
{—a;} [ ok | P S G

where_}j‘,-j(s) and Qf-‘j(s), i,j=1,2, are the 3 X 3 real submatrices
and (d;)7 and (o;°)r are, respectively, the vectors containing
surface displacements and tractions of the layer corresponding
to the nonhomogeneous part of the governing Egs. (6a)—-(6¢).

The elimination of the unknown vectors, a; and by, from
Eqgs. (48) and (49) yields the relations for the surface tractions
and displacements of the layer as follows

‘_Tk+ 11 | K al:r fl:
[Nk, SO (S L Sl B G 0
{—a:} [K’z‘liK’z‘sz;} I{FE} ©o

where K{-‘,(s), i,j=1,2, are the 3 X 3 real submatrices defined

as
[_ff\_l_;_’f,_} [_Q__}_QB_} [_If'i\_!_l_”ia} )
K3, {K[z(z o { ;7 21 { 22
in which the matrix on the left-hand side is the 6 X 6 real and
symmetric local stiffness matrix, X,, of the kth layer. This
matrix is fully populated for layers with monoclinic properties.

The thermal effects represented by the vectors Ty (s) are ex-
pressed in terms of K, as

{_F_/Z_} _ { @i)r } [!&U_’f__] {@_QT} 52)
(73 — (o )7 K& L KS | (L@)r

For an N-layer medium subjected to applied tractions on
the bounding surfaces, the mechanical boundary and layer

interface continuity conditions are imposed such that
—4 _ T+
gy = f

(1)

(53a)

Journal of Applied Mechanics

di =dify ), 50 =08, k=12, ,(N-1)

o=t

(53b,0)
(53d)

where £* (s) denote the transformed self-equilibrating trac-
tions applied on the upper (+) and lower (—) surfaces of the
laminated medium, r_espegtively.

By defining &, . =d%z=d%,, k=1,2,...,(N— 1) as the vector
for the values of interfacial dlsplacements common to the kth
and (k+ 1)th layers, and 8;=d 7 and 8y, =d %, the following
global stiffness equations for the N-layer medium are obtained
through the successive applications of the conditions in Eqs.
tions (53a)-(53d)

Kb +Kipy =1+ +iv] (54a)

Kiib+ (K5 + K17 N80y + KIS B a = 1(FF +T41),
k=12,..,(N—1) (54b)
Ko+ Ky = —F~ +iTy (54¢)

The above system of algebraic equations can be written in
matrix notation as

Ko=F+7F (55)

where K(s) is the 3(N+1)x3(N+ 1) banded and symmetric
global stiffness matrix, 6(s) is the global vector for the un-
known interfacial displacements, i.e., {8, 85...0n5.1}, £(8) is
the vector containing the transformed surface tractions and
zero elements, and T(s) is the vector containing the effects of
thermal loadings. The half-bandwidth of K is six.

In contrast to the conventional procedure which yields, re-
spectively, a system of 2N and 6N simultaneous equations for
heat conduction and thermoelasticity problems, the current
matrix approach offers fifty percent reduction in the number
of equations that must be solved. With the foregoing remarks
in mind, the general solution procedure for thermal stress
analysis by the matrix formulations can be divided into the
following steps.

e First, the global interfacial heat flux vector, q, is obtained
by solving the global flexibility matrix Eq. (46).

® The unknown constants of the kth layer, H" are then eval-
uated from Eq. (41) in terms of the correspondmg local in-
terfacial heat fluxes, q; and @ ;.

e The constants Hf are substituted into Eq. (52) to evaluate
the thermal effects, ¥, of the layer which will be used in the
local stiffness matrix Eq. (50).

e With the vectors &, k=1,2,...,N, determined, the global
stiffness matrix Eq. (55) is assembled to be solved for the global
interfacial displacement vector, é.

e Similar to the second step, the vectors for the unknown
constants of the kth layer, a, and by, are evaluated from Eq.
(48) in terms of the corresponding local interfacial displace-
ments, 8¢, b4 1, and (dF)

® As a final step, the inter and intralaminar displacements and
stresses within the medium are calculated by taking the inverse
Fourier transform of the appropriate expressions.

4 Numerical Examples and Discussions

As a numerical example a [0 deg/90 deg/68/ — 6], balanced
symmetrically laminated slab is considered. Specifically, the
following thermal and mechanical boundary conditions are

applied.
‘ To; Ixl=a
(X)) = 56
) [0; otherwise (56a)
Ty (x)=0; Ixl <o (56b)
oz (X) =74 (X) = H(x)— 0; lxl<oo (56¢)
)= ()= () =0; Ixl<o (564)

where Ty is a temperature rise in a region of 2a on the top
surface of the laminated slab (Fig. 1).

DECEMBER 1991, Vol. 58 / 1025

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.0 0.2 0.4 0.6 0.8 1.0
T/T.

Fig. 2 Temperature distribution at x=0 for a {0 deg/90 deg/#/ — 0], lam-

inated slab
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Fig. 3 Distribution of g, at x=0 for a [0 deg/90 deg/6/ - 6], laminated
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Fig. 4 Distribution of ¢,, at x=0 for a [0 deg/90 deg/6/ — 6], laminated
slab
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In addition, the unidirectionally fiber-reinforced constitut-
ing layers are assumed to have the following fiber (T300) graph-
ite) and matrix (epoxy) thermoelastic properties (Chamis, 1984)

E}=220.6 GPa, v;=0.2, G;}=8.9 GPa, ;=84 W/m.K,
ap=—0.98x 10" cm/cm/K, E7=13.8 GPa, »}=0.25,
G;=4.8 GPa, }=8.4 W/mK, ¢7=10x 10"¢ cm/cm/K,
E,,=3.45 GPa, »,=0.35, G,,=1.28 GPa,
kn=0.18 W/m+K, a,,=64.3%107¢ cm/cm/K

where E, v, G, «, and « are Young’s moduli, Poisson’s ratios,
shear moduli, thermal conductivities, and coefficients of ther-
mal expansion, respectively. The subscripts f and m refer to
the fiber and matrix phases, while the superscripts 1 and 2
denote the longitudinal and transverse properties of the fiber,
respectively.
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slab

Regarding each layer as being homogeneous and anisotropic,
the corresponding gross elastic stiffness constants, Cj;, and
thermal properties, k; and oy, in the material coordinates of
the layer are evaluated using the composite micromechanics
equations by Chamis (1984). For a specific fiber volume frac-
tion V;=0.5, the gross thermoelastic properties are obtained
as

Ci =114 GPa, Cy=Cy;=8.7 GPa, C,=C3=3.3 GPa
Cy3=3.4 GPa, Cyu=2.7 GPa, Css=Cg=3.2 GPa
k11 =42.1 W/meK, xp=rxp=0.466 W/m-K
a1 =0.025 %107 % cm/cm/K,

0 = 033=32.4%107% cm/cm/K

from which the gross properties in the structural coordinates
for a given fiber orientation § of the layer can be determined
via the tensor transformation equations (Jones, 1975).

The numerical results are obtained for the layer thicknesses
hry=1.25 mm, k=1,2,...,8, and for the fiber angles § =0 deg,
30 deg, 45 deg, 60 deg, and 90 deg. In this study, the heated
area in Fig. 1 is taken as 2a = h where % is the thickness of the
slab. The resulting through-the-thickness variations of the tem-
perature, T, and the stresses, 0y, 0y, 0y, and 7, at x=0 are
shown in Figs. 2-6, respectively.

.In Fig. 2, while the temperature field close to the heated
area is almost invariant with respect to the change of fiber
angle #, the temperature field away from the heated area is
observed to decrease with decreasing fiber angle. This is due
to the fact that, for layers with the smaller values of fiber
angle, the increased thermal conductivity in the longitudinal
(x) direction renders the heat flow in that direction more easily.
For the case of #=90 deg, however, which corresponds to the
layers with transversely isotropic properties, the considerable
heat flow occurs in both the longitudinal and transverse (z)
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directions. Nonetheless, for all fiber angles # considered herein,
the extreme temperature gradients, d7/9z, which occur at the
heated area are shown to have the identical value.

Figure 3 shows the distributions of ¢,, which are discontin-
uous across the layer interfaces owing to the mismatch of
thermal and mechanical properties arising from the difference
in fiber angles between adjacent layers. For all cases under
consideration, the most severe discontinuity of g,, is observed
to occur at the first interface when 6 =90 deg. It is also noted
that, in contrast to the case of homogeneous, anisotropic slab
{(Tauchert and Akoz, 1975), the maximum absolute value of
g, does not necessarily occur at the location where the tem-
perature gradient is the greatest. Additionally, in the region
of nearly linear temperature distributions, as illustrated for
the case of =90 deg, the significant values (compressive) of
oy, are found.

The transverse normal stress o,, shown in Fig. 4 is observed
to yield the increasing values (compressive) for the increasing
fiber angle 4. The magnitude of ¢,, is, however, insignificant
when compared with that of 0. In Fig. 5, the distributions
of o,, component are also found to be discontinuous across
the layer interfaces. The degree of discontinuity is rather at-
tenuated relative to that of o,,. It is noted, however, that the
maximum values (compressive) of this out-of-plane normal
stress occur at the heated area, where the slab is experiencing
the greatest temperature gradients. Because of the distributions
of 7, component are identically zero for the case of orthotropic
laminates (6 = 0 deg, 90 deg), only those corresponding to 6 = 30
deg, 45 deg, 60 deg are illustrated in Fig. 6. Similarly, the
distributions of 7,, exhibit discontinuities at the layer inter-
faces, except for the first and the last interfaces. The slab with
6 =45 deg is shown to have the larger values of 7,, than those
with 6 = 30 deg and 60 deg. The other shear stress components,
7y, and 7,x, are zero at x = 0 regardless of the fiber orientations
of the laminates.

5 Concluding Remarks

The flexibility/stiffness matrix method is presented for the
heat conduction and thermoelasticity problems of a multilay-
ered anisotropic medium subjected to arbitrary thermal and
mechanical loadings applied on the bounding surfaces. Along
with the explicit expressions for the displacement and stress
fields for layers with transversely isotropic, orthotropic, and
monoclinic properties, a general solution procedure is provided
such that it can be uniformly applied to media with any given
number of layers and layer properties. In contrast to the con-
ventional solution procedure, a significant reduction in the

Journal of Applied Mechanics

number of equations that must be solved simultaneously for
the required unknown constants is achieved without provoking
any approximations. Based on this fact, the flexibility/stiffness
matrix method is suitable for the accurate thermal stress anal-
ysis of composite materials which, in general, contain a large
number of anisotropic layers.
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Introduction

Guided Lamb waves in Jaminated composite plates have been
receiving considerable attention in recent years. The interest
in this subject arises from the need to develop effective non-
destructive evaluation techniques to characterize defects in,
and mechanical properties of, composite structures. Ultrasonic
waves provide such a technique. But in order for this to become
a practical tool, a considerable amount of work is needed in
both analysis and experiment of the characteristics of guided
waves in anisotropic layered structures. The present study fo-
cuses on the effect of layering on free guided wave propagation
in a laminated plate.

Propagation of free guided waves (Lamb waves) in an an-
isotropic homogeneous plate has been studied in detail recently
by Nayfeh and Chimenti (1989) and Li and Thompson (1990).
These studies provide an interesting picture of the rich dis-
persion characteristics of these Lamb waves. They also contain
a comprehensive survey of the literature on guided waves in
homogeneous anisotropic plates. A comprehensive review of
current work (theoretical and experimental) can also be found
in the edited volumes of Mal and Ting (1988) and Datta,
Achenbach, and Rajapakse (1990). Among the theoretical
works, mention may be made of those by Kaul and Mindlin
(1962), Abubakar (1962), Solie and Auld (1973), Baylis and
Green (1986), Mal (1988), Datta et al. (1988), Bratton et al.
(1989, 1990), and Dayal and Kinra (1989).

In the studies mentioned above, attention was focused on
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strongly influences the dispersion behavior. Further, it is found that when the number
of laminae is sufficiently large, then the dispersion behauior can be predicted by
treating the plate as homogeneous with six stiffness constants obtained by using an
effective modulus method.

free Lamb waves. The effect of fluid loading on ultrasonic
guided waves in composite plates has also been investigated
by several authors. References to these can be found in the
two edited volumes mentioned above and in the works by
Nayfeh and Chimenti (1988a,b) and Mal and Bar-Cohen (1989).

Guided waves in layered (laminated) composite plates have
also received attention. For references the reader is referred
to the edited volumes mentioned previously and to the papers
by Dong and Nelson (1972), Mal (1988), Datta et al. (1988),
Dayal and Kinra (1989), and Chimenti and Nayfeh (1990). In
none of these works, however, has a systematic investigation
of the effect of increasing number of laminae on the dispersion
of free guided waves in a laminated plate been reported. Since
in many structural applications there are usually many laminae
in a composite plate (shell), it is of interest to investigate the
effect of the number of layers on the dispersion behavior. This
is the subject of the present study.

Although in principle it is possible to obtain, using a prop-
agator matrix approach, an exact dispersion equation govern-
ing guided waves in layered anisotropic plate, finding roots of
this transcendental determinantal equation is quite cumber-
some and time consuming, especially when the number of
layers is quite large. Also, addition of each layer involves a
new equation and a new search. Additional complications arise
when it is necessary to obtain not only the propagating modes,
but also the evanescent modes (complex roots). The latter are
needed to study scattering by defects or reflections at edges.
For reasons of numerical efficacy an alternative procedure has
been used in this paper to obtain the dispersive modes in a
multilayered plate. This is a stiffness method originally pro-
posed by Dong and Nelson (1972). In this approach each lamina
is divided into several sublayers. The variation of the displace-
ment through the thickness of each sublayer is approximated
by quadratic interpolation polynomials in a thickness variable
with coefficients that are the unknown displacements at the
top, middle, and bottom of the sublayer. Then applying Ham-
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ilton’s principle, the dispersion equation is obtained as a stand-
ard algebraic eigenvalue problem. Eigenvalues and eigenvectors
of this equation yield the propagating and evanescent modes
and the associated displacements at the nodes. Earlier, Datta
et al. (1988) and Karunasena et al. (1990) used a higher order
discretization in which the displacements were approximated
by cubic interpolation polynomials that involved the displace-
ments and tractions at the interfaces between the adjacent
sublayers. It was found that this approach led to better ac-
curacies at high frequencies. Since the interest in this paper is
an analysis of the effect: of layering at low and moderately
high frequencies, the simpler quadratic interpolation functions
have been used. As will be shown, this leads to predictions
that agree well with exact solutions in the frequency range
considered.

Formulation and Solution

Consider a cross-ply laminated plate, which is composed of
alternate layers of continuous fiber-reinforced material of equal
thickness, /. Although the stiffness method used applies to
arbitrary lay-ups, for simplicity it is assumed that fibers are
oriented at 90 deg to one another in adjacent layers and that
the configuration is symmetric in the plate. A global Cartesian
coordinates system with origin on the midplane of the middle
layer is chosen, X-axis is chosen along the fibers in the middle
layer, Y-axis is in the mid-plane, and Z-axis perpendicular to
the plane.

Stiffness Method

Since we are concerned with a large and varying number of
layers, it will be convenient to resort to a numerical technique
in which the number and properties of the layers can be ar-
bitrarily varied without substantially changing the solution
procedure. Such a technique was proposed earlier (Dong and
Nelson, 1972), where the authors presented a stiffness method
in which the thickness variations of the displacements were
approximated by quadratic functions of a thickness variable.
The generalized coordinates in this representation are the dis-
placements at the top, middle, and bottom of each layer. An
alternative higher-order polynomial representation was pro-
posed (Datta et al., 1988) where generalized coordinates were
the displacements and tractions at the top and bottom of each
layer. Thus, in this approach continuity of both displacements
and tractions were maintained at the interfaces between the
adjacent layers. This was found to give better results at high
frequencies. However, because both displacements and trac-
tions were involved, it entailed more cumbersome algebra than
the scheme using quadratic interpolation polynomials. In this
paper we have used this simpler scheme.

Since we will consider waves propagating in a direction mak-
ing an arbitrary angle with the symmetry axis of a lamina the
motion will be three-dimensional, having particle displacement
components u,, uy, and u,. In order to achieve numerical ac-
curacy, each lamina is divided into several sublayers. A local
coordinate system (x*, %7, 2} is chosen in the kth sublayer
with the origin in the midplane of the sublayer, and x**’ axis
making an angle « with the X-axis. It will be assumed that the
waves are propagating in a direction making an angle o with

the X-axis. The strain displacement relations in each sublayer '

are,
k k k k k k)
1 6P =
1 1
k k k k k k k
5,\('z)=£7§z) (u)((z)'}'u( ), GJ(IZ) 27)’2 = (u}('z)""ué,y))’
1
k k k k
W= =@ )
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where a comma denotes differentiation. The stress-strain re-
lation in this sublayer is

fo) =[cMlel . 2
where
{0} T= [Uxx Oyy Ozz Opz0zx Ux,v] (3)
{e} T= [€xx €y Ex2Epz Eox Exyl] 4
B (k) Cg() Cg() 0 0 Cl(é()-
Cfé" & Y 0 0 o
| 00wl

0 0 0 & P oo
0 0 0 P P o0

k k k k
Cfﬁ) C§6) 03(6) 0 0 Céﬁ)_

For convenience, the superscript () on u, ¢, and € has been
dropped above and in the subsequent development, Using the
interpolation polynomials in the z-direction, the displacement
components are approximated as,

{U} =INl{q) (6)
where
(U= [y uy 1) M
(g} =1ud, u, ul, W, ), i,y ), ) ®)
n 0 0 npb 0 0 ny 0 O
[INN=| 0 n, 0 0 n 0 0 n; 0]. )]

0 00 mp 0 0 np 0 0 n

In Egs. (7)-(9) the generalized displacements %, 1™, i/ are
taken at the back, middle, and front (top) nodal surfaces of
the sublayer. The interpolation polynomials n; are quadratic
functions given by

ny=—2+28% ny=1—48% ny=2482+4% (10)
when 2=z /n"®, B'® being the thickness of the sublayer.

Using Hamilton’s principle the governing equation for the
entire plate is found to be
KO+ (KFH QL - IKIHQ) - M Q) = (11)
Here, [K|], [K3], and [M] are symmetric and [K%] is skew
symmetric. Primes and dots denote differentiation with respect
to x and ¢, respectively. {Q} is the vector of all nodal dis-
placements. For wave propagation in the x-direction, {Q} is
assumed of the form

{Q) = {Qo}e/ ", (12)
Substituting (12) in (11) we get the eigenvalue problem
[~ K2+ K3jk — K3+ Mw?{ Q) =0 (13)

For nontrivial solution {Q,}, the determinant of the matrix
formed by the square brackets in the above equation must be
zero. This equation can be solved directly to find w for a k or
to find k when w is known. Some numerical results are discussed
later.

Analytical Method

The analytical solution is presented for the case where each
layer has transversely isotropic material properties with the
symmetry axis lying in the plane of the plate. As in the case
of stiffness method, we start with dividing each layer into
several sublayers. It should be noted at this stage that division
into sublayers is not required to obtain the exact frequency
spectrum, but is required to calculate exact wave functions
(discrete eigenvectors). The stress-strain relation within the ith
sublayer is given by Eq. (14) in the global X, Y, Z coordinate
system. Let U, V, W be the displacement components in the
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X, Y, Z directions, respectively. The stress and strain are re-
lated by dropping the superscript /7 for the sublayer

Oxx Ch Co Cs 0 0 0] fexx
Oyy Ca Cpn Can 0 0 0 [}eyy
ozz\ _|Cis Cs Cs 0 0 0 €zz (14)
Oyz 0 0 0 C44 0 0. Yyz
Ozx 0 0 0 0 GCs O Yzx
axy. 0 0 0 0 0 Cel\vxr

where o;; and ¢;; are the stress and strain components, re-
spectively, and v, =2¢;. Cy; are the elements of constitutive
matrix for the sublayer. Note that C,; = Cs3, Cs5= Ceg, C12=Ci3,
and Cy= (Cy— Cy3) /2. Let 0 be the angle between the global
X-axis and the local x-axis measured counterclockwise from
the global X-axis. For wave propagation in the x-direction the
appropriate forms for U, V, and W, that satisfy the equations
of motion, can be written as (see Mal, 1988; Karunasena et
al., 1990)

U=jk(Q + B )exp(iy), (15)
V=[L(AQ +Q7 ) — {05 lexpGy), 16)
W=[Arh +rfy —jLO3 lexp(iy), a7
where
V=KX+LY—wt,
Qf =Ac05(r2Z) + Appsin (1Z),
Qr =Apcos(rZ) —Aysin(rZ),
Q) = A51c08(rZ) + Apsin (1,2),
Q = Aypcos(rZ) — A, sin{n2),
Qf =A3,c08(5Z) + Aysin(§Z),
Q3 = Ajcos({Z) — A3sin(§Z),
A=[K— N = (ri+ L))/ + L7,
B=[— K ~B(r3+1H))/[6K*, (18)
and
F=1— K —eL?) /e]', (19)
Cu Css Cuy pu’ Ci
)\:C—SS; B:—C—S—S; e:E‘;; k= C—SS; 6=1+C—55, (20)

K =kcosf, L=ksinf. r; and r, are the roots of the following
equation with positive imaginary parts.
P+ L2+ \K - I3 8(r+L?

5K? B gPeryy |0

@n

Ay, Agg, Aayy A, Az, and Ajs, are arbitrary constants for the
sublayer. Stress and displacement components in the sublayer
can be expressed in terms of these six unknown constants.
After evaluating the stresses and displacements at z=z; and
Z=2z;.1, after some manipulations, the following relation can
be obtained,
{Bir1}=[P]{B;} (22)
where
(B} =1U; Vi 0y 0pi 03 W (23)

The vector quantity {B;}, which is still unknown, is inde-
pendent of X and f, and it represents the displacement and
stress components at z=z;. [P;] is the propagator matrix in the
ith sublayer. The elements of [P;] are defined in the Appendix.
Repeated application of Eq. (22) results in
{Bn+1} =[Pl{B\}, 24

where

[P1=[PullPn-1l.....[P][Py]. 25)
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The repeated application of Eq. (22) ensures the continuity of
displacements and tractions at the interfaces. Let us denote
the elements of the 6 X 6 matrix [P] by P,,, (n=11t0 6, n=1
to 6). Invoking the zero-traction conditions at interfaces 1 and
(N+1), we obtain, from Eq. (24),

Py Py Py | (U 0
Py Py Py |{Vi=40;. (26)
Ps; Ps; Py |\ W 0

The exact dispersion relation for the plate is obtained by setting
the determinant of the coefficient matrix to zero as

Sw, k) = Py (PypPse— PisPsy) — Py (P41 Psg— PagPs1)
+ P (PyPs;— PpPsy) =0, (27)

Equation (27) can be solved for k given w, or alternatively, it
can be solved for w for given k.

For a fixed value of either w or k, Eq. (27) is a transcendental
function of either k£ or w, respectively. It is possible to find
the roots of this transcendental equation by some search method
(see Press et al., 1988). This approach will be computationally
formidable since the roots are sparsely scattered. Herein Mull-
er’s method is employed to recover the exact roots. Approx-
imate roots obtained from the stiffness method described earlier
are used as initial guesses in the Muller’s method. If the roots
are required over a range of k (or w), approximate roots from
the stiffness method are required only at the first step to use
as initial guesses. At the next step, k& (or w) is changed by a
small amount, and Eq. (23) is solved taking the exact roots
from the previous step as initial guesses for the current step.
The process is repeated until the range of interest is scanned.
Once the exact roots are determined, the exact wave functions
can be computed as discrete eigenvectors using Eq. (22) at
successive interfaces.

If the problem under consideration is symmetric or anti-
symmetric, it is possible to model only the half-thickness of
the plate in the analysis. In this case, the boundary conditions
at the middle surface of the plate, z=H/2; are

W=0; 0,,=0; 0,,=0, for symmetric problems,

(28)
Applying these boundary conditions in Eq. (24) appropriate
dispersion relations and eigenvectors can be obtained. The
boundary conditions given in Eq. (28) are applicable to the

stiffness method also, if the problem is symmetric or antisym-
metric.

U=0; V=0; 0,,=0, for antisymmetric problems.

Numerical Results and Discussion

The stiffness method outlined above was used to study the
effect of increasing number of layers on the dispersion of
guided waves in a laminated plate. For this purpose a cross-
ply graphite fiber reinforced composite plate was considered
with the symmetric lay-ups, 90 deg/0 deg/... 0 deg/90 deg.
Thus, in this case the symmetric and antisymmetric modes
were uncoupled. The elastic constants of the middle lamina in
the global coordinate system are, in units of 10" N/m?
Cy,=1.6073, C33=0.1392, Cy3=0.0644, Cy4y=0.0350, and
Css=0.0707. The number of laminae varied from 3 to 39. In
order to ascertain the accuracy of the results obtained using
the stiffness method the results were compared with the exact
solutions for plates with different numbers of laminae for
propagation at 45 deg with the X-axis. This was chosen because
of the strong coupling of the P—SV and SH modes in this
case. The number of sublayers used in each lamina was varied
to get close agreement with the exact solution. Figure 1 shows
the comparison of the results for a plate with 35 laminae. The
number of 'sublayers used in each lamina was 2. Agreement is
found to be excellent in the range of the phase velocity-fre-
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Fig.1 Dispersion of guided waves in a 35-layered cross-ply plate. Lines

at the predictions of stiffness method; , x — predictions of exact equa-
tion; ,— predictions of the effective modulus model.
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Fig. 2 Resuits for a 3-layered cross-ply plate. Symbols are as in Fig. 1.

quency considered. In all the figures shown, the nondimen-
sional frequency and phase velocity are defined as, Q=wH/
2\/ C55/p and C= w/k\/ C55/p.

The effect of the increasing number of laminae on the dis-
persion behavior is illustrated in Figs. 2-4 for propagation at
45 deg to the X-axis in plates with 3, 11, and 19 laminae,
respectively. Comparison of Figs. 2 and 3 show considerable
differences. Notable among them are: significantly different
behaviors of the first symmetric quasi-longitudinal and quasi-
SH modes in the two cases (curves labeled Sy and SHp); strong
tendency (seen in Fig. 3) of the higher modes to become asymp-
totic to straight lines in certain bands of frequency; lowering
of the phase velocities of some modes. As the number of
laminae is increased further, it is seen that (Figs. 4 and 1) the
dispersion curves for the third and higher modes tend to have
three plateaus: first the long wavelength velocity of the quasi-
S, mode, then at the long wavelength phase velocity of the
quasi-SH, mode, and finally the quasi-shear velocity in the
plane of propagation. At these plateaus, velocities are constant
when the number of layers is sufficiently large. As seen from
Figs. 1 and 4, the dispersion curves for the first few modes

are nearly identical and there are differences for the higher

modes. It was found that for the lay-ups and material prop-
erties the dispersion curves did not change within the frequency
range considered when the number of layers was increased
beyond 35. This suggested that the guided wave dispersion in
this plate could be predicted by an effective modulus model.
In fact, this is seen from Fig. 1, which shows the results for
a homogeneous plate with (static) effective moduli calculated
in the manner presented by Postma (1955) for periodic isotropic
layers and generalized to orthotropic plates by Yeo (1983). The
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Fig. 3 Results for a 11-layered cross-ply plate. Symbols are the same
as in Fig. 1.
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Fig. 4 Same as in Fig. 3 for a 19-layered plate

fact that the plate with a sufficiently large number of laminae
can be modeled as homogeneous with certain effective prop-
erties is not unexpected. The important conclusion of this
systematic study is that even though the dispersion of the first
two modes can be predicted by the effective medium approx-
imation for a plate with only a few layers, for this approxi-
mation to be valid for higher modes the plate must have a
minimum number of layers. For the particular system consid-
ered, this number was found to be = 35. Note that the (static)
effective moduli of a cross-ply plate are given by the following
equations. Let ¢; be the stiffness of the 0-deg lamina. Then
for a periodic 90 deg/0 deg/. .. laminate the effective moduli
are:

2

z _2enlenten) - (cn—m) o

1= =0
4C33

_ 1 —
C13 =5(6‘23 +c13) =Cnp

Cy3=cC33
4 2
7o Acucst (c13—¢2)
2=
4C33

- = - 2C44Cs5

Cos=Cepy Cag=Css=— 29
C4q+ Css

Thus, using the particular properties considered here, the ef-
fective moduli of the plate are:

¢11=0.8732, ¢;3=0.0668, ¢;,=0.0644
¢=0.1392, T44=0.0468, Cs=0.0707. 30)
Conclusion

Guided wave propagation in a multilayered laminated plate

DECEMBER 1991, Vol. 58 / 1031

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



has been studied here using a stiffness method, and the pre-
dicted dispersion has been shown to agree well with exact
solution. The solution of the exact dispersion equation is fa-
cilitated by using the predictions of the stiffness method. It is
shown that the number of laminae has a strong influence on
the dispersion behavior when there are only a few laminae. As
the number of laminae increases, however, the plate can be
modeled as homogeneous. To limit the length of the paper,
results for propagation in the 45 deg direction are shown here.
However, the agreement between the results of the layered and
effective modulus models was found to hold for other prop-
agation directions also.
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APPENDIX

The propagator matrix [P;], appearing in Eq. (22), is given
by

[P = [EIT]H]

where
0 0 sin(2hr) 0 0 ]
cos(2hry) 0 0 sin(2hr;) 0
0 cos(2h() 0 0 sin(2A¢)
0 0 cos(2hry) 0 0 ’
—sin(2hr,) 0 0 cos(2hry) 0
0 —sin(2k¢) 0 0 cos(2h¢)
_ | UZAIIRI] [0]
(1= [ [0] [[Tz]{S]J ’
(IR [0]
[H] = ,
[ (0] [[Tzl[S]]_l]
m n O
[T}l=| —n m 0Of,
0 0 1
CsjKr(1+A) CsjKri(1+B) CssKL
[S]=| 2CssejLrA 2CssejLr,  Csse(L*- ) |,
rA r —jL
Jk  jkB 0
[R]=| jkA JL -t |
Ry R; 2CssejLy

Ry =Cssl(1 - 8)K*— AB(r3 + L?) + 242,
Ry =Css[(1 - K> B—B(r3+L*) +2¢L.

Here, m=cosf and »n=sind.
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Nonlinear Response of Infinitely
Long Circular Cylindrical Shells to
Subharmonic Radial Loads

The method of multiple scales is used to analyze the nonlinear response of infinitely
long, circular cylindrical shells (thin circular rings) in the presence of a two-to-one
internal (autoparametric) resonance to a subharmonic excitation of order one-half
of the higher mode. Four autonomous first-order ordinary differential equations
are derived for the modulation of the amplitudes and phases of the interacting
modes. These modulation equations are used to determine the fixed points and their
stability. The fixed points correspond to periodic oscillations of the shell, whereas
the limit-cycle solutions of the modulation equations correspond to amplitude and
phase-modulated oscillations of the shell. The force response curves exhibit satu-
ration, jumps, and Hopf bifurcations. Moreover, the frequency response curves
exhibit Hopf bifurcations. For certain parameters and excitation frequencies between
the Hopf values, limit-cycle solutions of the modulation equations are found. As
the excitation frequency changes, all limit cycles deform and lose stability through
either pitchfork or cyclic-fold (saddle-node) bifurcations. Some of these saddle-
node bifurcations cause a transition to chaos. The pitchfork bifurcations break the
symmetry of the limit cycles.

Introduction

Although single-mode analyses can provide some insight into
the problem of nonlinear dynamics, the interesting behavior
results from modal interactions; see Nayfeh and Mook (1979)
for a comprehensive literature review. Such a phenomenon
may occur when the linear natural frequencies are commen-
surate or nearly commensurate.

The first studies of modal interactions in the response of
shells were initiated by Mclvor (1962, 1966), Goodier and
Mclvor (1964), Mclvor and Sonstegard (1966), and Mclvor
and Lovell (1968). They analyzed the response of cylindrical
and spherical shells to radial and nearly radial impulses, taking
into account the coupling of the breathing mode and a flexural
mode when their frequencies are in the ratio of two-to-one
(i.e., a two-to-one internal or autoparametric resonance). In-
tegrating numerically the governing ordinary differential equa-
tions, they found that the energy is continuously exchanged
between the internally resonant modes. Bieniek, Fan, and
Lackman (1966) and Mente (1973) are also among the first to
study modal interactions in the dynamic response of shells.

!Currently at GWU-NASA Langley Research Center.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
oF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME-
CHANICS.

Discussion on this paper should be addressed to the Technical Editor, Prof.
Leon M. Keer, The Technological Institute, Northwestern University, Evanston,
1L 60208, and will be accepted until two months after final publication of the
paper itself in the JOURNAL oF APPLIED MECHANICS. Manuscript received by the
ASME Applied Mechanics Division, July 13, 1988; final revision, Aug. 25, 1989.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.248. Redistributi&oﬁ%{égngQS]!\?I?H'CQ

Evensen (1966) conducted a pioneering experimental and
theoretical study in shell dynamics; he studied the case of one-
to-one internal resonance of thin circular rings. He showed
that the response involves either a single or two coupled bend-
ing modes. He reported experimental observations of regions
in the frequency response curve where nonsteady vibrations
were found. He verified his results by analog-computer sim-
ulations. Chen and Babcock (1975) investigated analytically
and experimentally the nonlinear response of cylindrical shells
to a harmonic excitation. They studied both the driven as well
as the companion mode and their interaction. They reported
experimental observations of ‘‘nonstationary’’ responses ‘‘in
which the amplitude drifts from one value to another.”” Maewal
(1986) numerically integrated Miles’ evolution equations for
axisymmetric shells in the presence of primary and internal
resonances. He showed that for certain ranges of the excitation
frequency, the response is chaotically modulated.

Yasuda and Kushida (1984) studied theoretically and ex-
perimentally the axisymmetric response of shallow spherical
shells. They studied the case of primary resonance of the higher
mode in the presence and absence of a two-to-one internal
resonance. They analyzed the stability of the periodic solutions
and verified their analysis experimentally. They also observed
aperiodic motions.

Moganty and Bickford (1987) used the method of multiple
scales to study the nonlinear free vibrations of circular rings
in the presence of internal resonances between an in-plane and
an out-of-plane bending mode. They found a continuous ex-
change of energy between the coupled modes.
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Fig. 1 Polar coordinates of a point on the shell which was initially at
p and is at p* at time t*

Nayfeh and Raouf (1986, 1987a) analyzed the nonlinear
inextensional response of an infinitely long, circular cylindrical
shell to a harmonic excitation having the frequency Q when
the frequency w, of the breathing mode is approximately twice
the frequency of a flexural mode wy. They used the method of
multiple scales (Nayfeh, 1973, 1981) to fully account for the
nonlinear interaction, including the influence of the flexural
mode on the breathing mode. They demonstrated the existence
of the saturation phenomenon in the response when @ = w,,.
They also showed that the response exhibits a Hopf bifurca-
tion. Between the Hopf bifurcation points, the modulation
equations possess limit-cycle solutions, which undergo a cas-
cade of period-doubling bifurcations that culminates in a cha-
otic motion. Nayfeh and Raouf (1987b) extended their analysis
to the case where the excitation frequency is near the frequency
of the flexural mode (i.e., @ = wy. They showed that the
system exhibits a Hopf bifurcation resulting in amplitude and
phase-modulated motions.

In this paper we study the response of infinitely long circular
cylindrical shells to subharmonic radial excitations of order
one-half (i.e., @ = 2w,) in the presence of a two-to-one internal
resonance (i.e., w, = 2w,). We demonstrate the existence of a
Hopf bifurcation, leading to amplitude and phase-modulated
rather than periodic oscillations of the shell. These amplitude
and phase-modulated oscillations correspond to limit-cycle so-
lutions of the modulation equations. All limit cycles deform
as the excitation frequency changes between the Hopf bifur-
cation points. Some undergo symmetry-breaking bifurcations
and some undergo cyclic-fold bifurcations. Some cyclic folds
result in a transition to chaos.

2 Problem Formulation

Following Mclvor (1962) and Goodier and Mclvor (1964),
we consider the case in which the strain parallel to the gen-
erators of the shell is everywhere zero. Thus, the deformation
of the shell is identical in every plane perpendicular to the shell
axis, and the shell can be considered as being in plane motion,
In such a plane, we consider a point p on the undeformed shell
midsurface with the polar coordinates (e, 6), which after a
time #* moves to p* with the polar coordinates (r, ¢), as shown
in Fig. 1. We introduce the dimensionless displacement w and
time ¢ defined by

*
we A0 M
a a
where £* is the dimensional time, ¢ = E/p(1 — »%), Eis Young’s
modulus, » is Poisson’s ratio, and p is the mass density of the
shell per unit width. Moreover, we let

v=¢-0. 2
Then, to second order in the displacements w and v, the gov-

erning equations are (Goodier and Mclvor, 1964; Raouf, 1985;
Nayfeh and Raouf, 1986)

W (W 2w W)=y w=w" (Y —w) —

1 a(1 -1
) , , 2
+ _— 2 _+_ 7 — — 7 —_ 7 r —
¥ wy ' +w'y 2 w4 Eh P+y’ —w)
+ cubic terms in w and 3)

and
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a(l-»)
Eh

Y=y AW =W W = 2w+ 2w+ w'P

+ cubic terms in w and ¢ : 4)

where the dot indicates the partial derivative with respect to
t, the prime indicates the partial derivative with respect to 6,
and P is the applied radial pressure load. Here,

oF=h/12a )
where 4 and «a are the thickness and initial radius of the shell,
respectively.

In this paper, we consider the case of a two-to-one internal
resonance (i.e., w, = 2wy when the frequency { of the radial
load is approximately twice the frequency w, of the breathing
mode; that is, & =~ 2w,, subharmonic resonance of order one
half.

3 Perturbation Solution

We use the method of multiple scales (Nayfeh, 1973, 1981)
to determine a second-order uniform expansion of the solutions
of equations (3) and (4) for small but finite amplitudes when
P is given by

a(l —v%)
Eh

-P=¢eF cosQt 6)

where ¢ is a small dimensionless quantity. Thus, we seek ex-
pansions in the form

w(0,t;€)=ew, (0,T,,T)) + Ewy (0,T,, T)) + ... (7
V(0,0 = a0, To, T) + €92 (0,T0, T) + ... (8)
where T, = ¢, a fast scale characterizing motions with the
natural and excitation frequencies, and T; = ef, a slow scale
characterizing the modulation of the amplitudes and phases
of the modes with damping, nonlinearity, and any possible

resonances. Substituting equations (6)-(8) into equations (3)
and (4) and equating coefficients of like powers of ¢, we obtain:

Order ¢
Diw + (W2 2w +w)) — ) +w,=F cosQT,  (9)
D — i +wi =0. (10)

Order ¢
Diwy+ oA (W20 + wy) — g + wy =
=2D,Dywy+ wy' (§{ —wy) — (Do‘/’1)2 + \Mz =2wp{
1
+wivl = 3 Wit + F(d) —wy)cosQT, (11)
Dy =3 +ws = = 2D, Dy + wi w{’
=2w/ ¥ +2(D,wy) (D)) + Fw{cosQT,
where D, = 0/0T,,.

It turns out that, in the presence of structural or viscous
damping, all modes that are not directly or indirectly excited
vanish in the steady state (Nayfeh and Mook, 1979). Conse-
quently, in the case of internal resonance between the breathing

and nth flexural modes, we express the solution of the first-
order problem as

(12)

. 1 1
wy=pTi(cos <E QT0> +q,(T))sin <£ QT,,)
1 . (1
+ [p2(T1)cos <Z QT0> +g,(T})sin <Z QT(,)}cosne

1 1
+ [p3(T1)cos <Z QT[,) +q5(Ty)sin (Z QT0>}sinn6

+F(1+ 02— 0% lcos(QT,) (13)
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1
Y, =T, [pz( T))cos (Z QTO) +@q,(Ty)sin (i QT0> }sin nt

—I‘,,I:p3(T1)cos <i QTD> +q3(T,)sin <i— QT0>]cos nf  (14)

where

1 : ,
r,,:; [1+ o2 — 1) — ¥

1 1 1
V1=5 oi+ Zoz, vy = 502 (15)

and ¢, and o, are detuning parameters defined as
(16)

We note that the problem is degenerate because there are
two orthogonal modes (i.e., cos nf and sin n0) corresponding
to the same flexural frequency w,. This degeneracy can be
removed by an imperfection, or the nonlinearity, or initial
conditions. To remove the degeneracy by the nonlinearity, we
need to carry out the expansion to another order. Hence, the
level of excitation needed to remove the degeneracy is an order
of magnitude higher than that needed to activate the two-to-
one autoparametric resonance being considered. In this paper,
we study the case of a perfect circular shell, excitation levels
that do not activate the one-to-one autoparametric resonance,
and initial conditions that produce p; = ¢; = 0.

Substituting equations (13) and (14) with p; = g; = 0 into
equations (11) and (12), using equations (16), and eliminating
the secular terms, we obtain the following modulation equa-
tions:

Q=2w,+ €0, and w,= 2w, + €0y.

pi = —vaq1— pgp1 — 2M 020>~ faq, 09)]
Gi =vap1 — poqy + A (D5 — @3) — I (18)
D1 = —viGy— Dy~ A(quo2 — qopy) (19)
Q3 =viPr— pnGr+ Mo (D102 + 41G3) (20)
where
1 1

4w,A| = Zn2+5 (w2 +n)2—nT, ?3))
40s,(1 +T2)Ay = n? — 20T, + 2w,w, 12 (22)

F=4u,f. 23)

Modal damping has been incorporated into equations (17)-
(20) with p, being the damping coefficient of the breathing
mode and u, being the damping coefficient of the nth flexural
mode.

The fixed-point solutions of equations (17)-(20) correspond
to p/ = g/ = 0. There are two possibilities. First,

pi=q;=0 for i=1and2 24)
which is the trivial solution. Second,
1 .1
Py =a,Cos 2 Y2 41 = ApS1N 2 Y2 (25)
1 1 . 1 1
Dr=a,cos E Y1+ Z Y2 ), §2=a,sin E Y1t Z Y2 (26)
where
* —1 2 1 1 2 7
=4, =A2 Myt Z E o+ 0y @27
a2 Vi
dy=—x; % (7 -x; (8)
1
1
tany, = —2u,/{ o, + 2 0y (29)
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1 1 1
tany, = — [ueh,a; + #nAxaﬂ/[E 02A20¢2; -5 <01 + ) 02) Alai:l

2
(30)
1
xX1= [4%#"—02 (E 02+01>:’/4A1A2 GD
X2 = ['u,o(()'z + 20’1) + 202[L"]/4A1A2. (32)

The stability of a fixed point to a perturbation proportional
to exp (AT)) is determined by the zeros of the characteristic
equation

ANy Sf+rv, 204, 2A1p,

f_ 9} )\+.u'o “2ALp2 2AIQZ =0 (33)
~Aqy, Aopy Nt +Aagy v —Agpy '

=AoDy — Mg —vi—Awp ANp,— Ay

To investigate the stability of the trivial fixed points given by
equation (24), we put p, = g, = 0in equation (33) and obtain

A= ok (fP=13)", —pxiv. (34)
Thus, a trivial fixed point is stable if
F< (po+r3)" (352)
and unstable if
1> (po+v3) " (35b)

When f = (42 + #9)”, a nonlinear analysis is needed to de-
termine the stability of the trivial fixed point. To analyze the
stability of the nontrivial fixed points, we use equations (25)-
(30) in equation (33) and obtain

N 200+ N+ 12 + Aoy + 93— f2 + 40, A, @2IN
+ Ratatiy + 208,95 — 2paf >+ 4A Ao + po)an] N
A BA M A M + gt — 1192] =0 (36)

Consequently, a given nontrivial fixed point is stable if the
real part of each root of equation (36) is negative. It follows
from equations (21) and (22) that A;A, < 0, and hence equation
(36) has real positive roots if and only if

AIAZQ%'}"”'O#II_ V1V2<O (37)

which, in conjunction with equations (27) and (28), implies
that the fixed point corresponding to the positive sign in equa-
tion (28) is stable and that corresponding to the negative sign
is unstable. Moreover, equation (36) has a pair of complex
conjugate roots with a positive real part if

r3(rry—ry) —rirg <0 (38)

where r,, 1, 13, and r, are, respectively, the coefficients of A},
A, A, and N° in equation (36).

4 Numerical Results

Next we present numerical results for the case #/a = 0.028,
which yields w, = 1.00033 and wg = 0.50528 so that w, =
2wg; that is, n = 8. In this case, A; = 3.87539, A, = 15.2611,
and es; = —0.01023. We let e = 1.40137 x 1072, and figg
= A5 " pog = 0.02;then &, = Ay " o; = —0.73, For such a
high flexural mode number (i.e., 8), Simmonds (1979) showed

. that adding the cubic terms in equations (3) and (4) does not

have any significant effects. Calculations are performed on
the autonomous modulation equations (17)-(20) rather than
on the original equations of motion. A fixed point of the
modulation equations corresponds to a periodic motion of the
shell, whereas a periodic solution of the modulation equations
corresponds to a two-period quasi-periodic motion of the shell.

All numerical integrations are performed using a sixth-order
Runge-Kutta algorithm and the results are confirmed by chang-
ing the step-size of the integration. Either the detuning pa-

DECEMBER 1991, Vol. 58 / 1035

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig.2 Variation of amplitude of the response with the amplitude of the
excitation for x; < 0, g = 0.02and 6, = ~0.2: a, = \/pi+qs and a
= +/ p3 + g3 are the amplitudes of the breathing and eighth flexural modes,

respectively
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Fig.3 Variation of amplitude of the response with the amplitude of the
excitation for x; > 0, yog = 0.02and 5, = 0.2: a, = «/p}+¢qf and a,
= +/ p3 + g3 are the amplitudes of the breathing and eighth flexural modes,

respectively

rameter o, = Ay %4, or the excitation amplitude f is used as
a bifurcation parameter, all others being held fixed. The fixed
points are determined from equations (25)-(32). The stability
of the fixed points is determined by numerically calculating
the eigenvalues of the Jacobi matrix from either equation (33)
or equation (36).

In Fig. 2, we show the force-response curves for x; < 0.
This figure shows the saturation and jump phenomena (Nayfeh
and Mook, 1979) and its exhibits a Hopf bifurcation. Hopf
bifurcation occurs when two complex-conjugate eigenvalues
of the Jacobi matrix cross the imaginary axis transversely with
nonzero speed into the right half of the complex plane. When
f < fi = 0.025, only trivial fixed points are possible; they are
stable. Hence, it follows from equations (13) and (14) that the
response of the shell is linear and periodic. When f; < f <
f> = 0.101, there are three possible fixed-point solutions: the
trivial solution, which is stable, and two nontrivial solutions,
the larger of which is stable and the other is unstable with a

1036 / Vol. 58, DECEMBER 1991

real eigenvalue being positive. When f;, < f < f; = 0.104,
there are two fixed-point solutions: the trivial solution, which
is unstable with a real eigenvalue being positive, and a non-
trivial solution, which is stable. When f > f3, there are two
fixed-point solutions: the trivial solution, which is unstable
with a real eigenvalue being positive, and a nontrivial solution,
which is unstable with a pair of complex conjugate eigenvalues
having a positive real part. As fincreases beyond f;, the non-
trivial fixed point with both breathing and flexural components
loses its stability with two complex conjugate eigenvalues cross-
ing the imaginary axis transversely from the left half to the
right half of the complex plane. Consequently, f = f; is a
Hopf bifurcation value.

As the forcing amplitude f increases slowly from zero, the
trivial fixed point (i.e., @, = ag = 0) is the only steady-state
solution until a threshold is reached at f=f,. As pointed out
by one of the referees, when f = f;, there exists another family
of fixed points described by
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P1:_7(V2+f2)/ﬂo, Q1=’Y,P2=0, q2=0 (39)
for any . This is a nongeneric bifurcation. As f increases
beyond f, the trivial fixed point becomes unstable and the
flow jumps to a nontrivial solution. As fincreases further, the
amplitude a, of the breathing mode remains constant (i.e.,
saturates) and spills over the extra input energy into the coupled
eighth flexural mode, which responds nonlinearly causing a
large amplitude wrinkling of the shell. At f = f3, the nontrivial
fixed point with both breathing and flexural components
undergoes a Hopf bifurcation. For values of f near f3, the
modulation equations (17)-(20) possess limit-cycle solutions,
and hence the response of the shell is an amplitude and phase-
modulated oscillation.

As f decreases slowly below f;, a, remains constant and ag
decreases slowly until f reaches the critical value f = f;, where
the nontrivial stable and unstable fixed points of the flexural
mode collide in a fold (saddle-node) bifurcation. As f decreases
below fi, both ¢z and a, jump down to zero. In the region f;
< f <f5, an unstable fixed point separates two stable fixed
points of the flexural mode. In this interval, the flow tends to
one of the stable fixed points depending on their basins of
attraction. Consequently, the response of the shell consists of
either the breathing mode only or a combination of the breath-
ing and eighth flexural modes, depending on the initial con-
ditions.

Figure 3 shows a force response curve for x; > 0. In this
case, no fold bifurcation takes place and the jump occurs only
in the breathing mode response at f = 0.102.

Figure 4 shows frequency curves for f = 1.0. Whereas q,
is a single-valued function of 6,, az can be a multivalued func-
tion of &,. Moreover, Fig. 4 exhibits a jump phenomenon at
o, = —1.9996. It shows a Hopf bifurcation at 6, = — 1.9987
and 1.9981. The nontrivial fixed point becomes unstable as
0, increases beyond —1.9987 or decreases below 1.9981 and
limit cycles are observed.

The stability of the limit cycles is determined by using Flo-
quet theory. The modulation equations (17)-(20) have the gen-
eral form

X =f(x) (40)

where the prime indicates the derivative with respect to T;.
The stability of a T-periodic solution X(7T;) = X(T;+T) of
equations (40) is determined by the linear variational equation

£'=vf(X)E (C3Y)
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where Vf(X) is a 4 X4 T-periodic matrix. Let & = ®(7T}) be
a solution satisfying

' =vf(X)P P0)=1

(42)

. where 7 is the identity matrix. The Floquet multipliers are the

eigenvalues of the monodromy matrix ®(7) whose columns
are the solution vectors of equation (42) evaluated at- 7| = T.
The monodromy matrix is calculated by numerically integrat-
ing equation (42) from T} = 0 to 7; = T four times. The
positions of the Floquet multipliers relative to the: unit circle
in the complex plane determine the stability of the limit cycle.
Because equations (17)-(22) are autonomous, one of the Flo-
quet multipliers is always + 1 (Hale, 1963; Urabe, 1967; Hirsch
and Smale, 1974). If the modulus of one of the other multipliers
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on limit cycle, (b) projection of phase space on the two-dimensional
piane spanned by p, and p,, (c) waveform of g,, and (d) power spectral
density (PSD) of g, signal

is greater than one, the limit cycle is unstable; otherwise it is
stable. A bifurcation occurs when a multiplier leaves the unit
circle. The type of bifurcation depends on the way a multiplier
leaves the unit circle. In our study, we observe cyclic-fold and
pitchfork bifurcations associated with a multiplier leaving the
unit circle through + 1. The cycle-fold bifurcations result in
cyclic jumps where the flow jumps to another limit cycle or
to a chaotic attractor. A symmetry breaking is observed when
a multiplier touches +1 from within the unit circle.

To calculate the limit cycles, we use an algorithm originally
proposed by Aprille and Trick (1972) to eliminate transient
responses, thereby latching onto a limit cycle and calculating
its period. It uses a combination of a numerical integration
scheme and a Newton-Raphson iteration procedure. This al-
gorithm proved efficient in reducing the computation time but
is sensitive to the initial guesses and the step size of the inte-
gration because of the coexistence of attractors. Using different
step sizes and with the same initial guesses, we found that the
algorithm sometimes may land on different orbits for the same

1038 / Vol. 58, DECEMBER 1991
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Fig. 7 Deformation of attractor X as a function of 4,:
(b) 5, = 1.9820, (¢) 6, = 1.9815, and (d) 5, = 1.9800

(a) & = 1.9840,

0,. The results of the algorithm were verified by long-time
numerical integration.

To compute the power spectrum we use the fast Fourier
transform algorithm developed by Cooley and Tukey (1965)
and implemented by Singleton (1968). Different techniques are
used to identify chaos: the broadening of the power spectrum,
the fractal structure of the Poincaré section, capacity or fractal
dimension, and the existence of a positive Lyapunov exponent
of the attractor. A positive Lyapunov exponent indicates an
exponential divergence of neighboring trajectories, confirming
chaos. Lyapunov exponents are calculated using the algorithm
proposed by Wolf et al. (1985). The Lyapunov dimension d;,
of the attractor is also calculated using the following relation
proposed by Frederickson et al. (1983):
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Fig. 9 Projection of phase space on the p, — g, plane for 5, = 1.984:
(a) limit cycle IX and (b) limit cycle X.

J
di=j+ Yi0/105 (43)

i=1

where o; is the jth Lyapunov exponent and j is defined as

J J+1
Y050, Yo, <0. 4
i=1 i=1
The Lyapunov exponents are ordered in the usual way
01>02>U3>..->0'N. (45)

The Lyapunov dimension is actually the information dimen-
sion, which is bounded from above by the capacity or fractal
dimension d, (Lichtenberg and Lieberman, 1983; Farmer,
1982). On the other hand, the phase space has a negative
divergence, thus it is volume contracting. Accordingly, the
capacity d; is bounded from above by the phase dimension,
and hence d; < 4. Consequently,
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d, <d;<A. (46)

For 5, < —1.9987 and &, < 2.0353, limit cycles do not exist
and the flow asymptotically approaches a fixed point as ¢ —
oo, The behavior of the flow within the above internal is sum-
marized in Fig. 5. Here we note the following:

(1) There always exists an unstable fixed-point solution for
—1.9987 < 0, < 1.9981. This fixed point is indicated by a
plus sign in the two-dimensional projections and a cross in the
three-dimensional projections (e.g., Fig. 6(a), (b)).

(2) All periodic limit cycles start symmetric (i.e., there ex-
ists a group of symmetries which maps the limit cycle to itself,

.see item S below) and lose stability through either a pitchfork
or a cyclic-fold bifurcation.

(3)Deformation of limit cycles: all cycles undergo defor-
mation as &, changes. Interesting behaviors are observed in
the following:

(@) Limit cycle IV starts at 5, = — 1.8200 as a symmetric
one and loses its symmetry just before collision, then the flow
jumps onto a chaotic attractor.

(b) Limit cycles IX and X are born at 5, = 1.9953 as
symmetric ones, lose symmetry but regain it before their saddle-
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node bifurcations. Figures 7(a)-(d) show the deformation of
limit cycle X.

(4) The loss of symmetry is associated with a Floquet mul-
tiplier touching + 1 from within the unit circle. Figure 8 shows
the behavior of the multipliers for limit cycle X around the
symmetry breaking frequency.

(5) The modulation equations (17)-(22) exhibit a symmetry
apparent in the phase trajectories. The equations are invariant
under the transformation

T pi— =P, 1= — 41 P2~ Gy, G2 D2 @7
Equations (47) show the possibility of a mirror image reflection

1,
around p; = 0 and ¢, = 0 and a rotation ofE w in the p,— q»

plane. Consider, for example, Fig. 9, which shows the pro-
jection of the limit cycles IX and X onto the p, — g, plane. It

. . 1
is obvious by inspection that there is a rotation Ofi T between

(a) and (b).

(6) For —1.9987 < &, < —1.7861, the unstable limit cycle
IIT coexists with the stable fixed point and the stable limit cycle
I1. Limit cycle I exists for —1.9987 < 6, <= —1.9986. As ¢ —
oo, the flow tends to one of the stable states depending on their
domains of attraction. The unstable orbit IIT was achieved by
changing the size of the integration step in the Aprille and
Trick algorithm and by a short time integration (Fig. 10).
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power spectral density (PSD) of g, signal

Figure 11 shows its accompanying stable orbit I1. The two limit
cycles collide and annihilate each other at 5, = —1.7861.

(7) The broadening of the power spectrum at 6, = —1.55
of the time history of the component g, (Fig. 12(c)) compared
with the spectra of the limit cycles in Fig. 6(d), 10(d), and
11(d) and the fractal nature of the Poincaré section (Fig. 13)
indicate the chaotic nature of the attractor which exists for
¢ (— 1,58, —1.28). The Poincaré section is the set of all points
at which the trajectories on the chaotic attractor intersect the
hyperplane defined by ¢, = 0. Although this was constructed
by long-time numerical integration, it still contains some tran-
sients as evident from the presence of the isolated points. To
confirm the chaotic nature of this attractor, we calculate its
Lyapunov exponents and fractal dimension dp Ato, = —1.55
(chaotic region VII), the Lyapunov exponents are (0.566, 0.000,
—0.057, —0.624) and the Lyapunov dimension d; = 3.8.
Thus, 3.8 < dy < 4.0 and the attractor has a fractal dimension.

(8) Period-three motion is found over a very narrow range
of &, (see Fig. 5). Figure 14 shows a projection of this limit
cycle (compare with Fig. 7). Because it has three revolutions
(as compared with Fig. 7(a)-(c)), it is called a period-three
motion.

5 Conclusions

The modulation equations for the nonlinear oscillations of
cylindrical shells subject to a radial subharmonic excitation
are obtained. The case of a two-to-one internal resonance
between the breathing mode and a flexural mode is considered.
The stability of the fixed points and limit cycles of these equa-
tions is presented.

As the bifurcation parameter 5, (the frequency detuning of
the subharmonic excitation) varies, the flow exhibits a Hopf
bifurcation, in which fixed points lose stability and limit cycles
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are created. Multiple limit cycles coexist over some ranges of
&,. Some limit cycles undergo a symmetry breaking bifurcation.
Period-three motions are observed over a narrow range of
excitation frequencies. Cyclic-fold bifurcations are observed.
They are accompanied by cyclic jumps. Numerical integration
suggests that some of these jumps cause a transition to chaos.
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1 Introduction

The theory of pseudo-rigid bodies was introduced by Cohen
(1981) and Muncaster (1984). It is a dynamical theory which
in a certain sense approximates the theory of finite elasticity.
The monograph of Cohen and Muncaster (1988) gives a de-
tailed exposition of the theory, with some applications.

The theory is useful as a practical model in situations in
which the motion is approximately homogeneous, or, more
generally, in which only spatial averages of stress and strain
are required. In particular, the theory has been suggested as
a simplified model of deformable satellites.

In this paper we develop the formalism for impulsive motions
of pseudo-rigid bodies. Our development parallels that for rigid
bodies as presented in McMillan (1960) or Goldsmith (1960).
The impact is modeled as consisting of a deformation phase
and a restitution phase. The impact is characterized by im-
pulsive point loads of deformation and restitution, and by
their ratio, the coefficient of restitution. As in the rigid case,
this treatment amounts to coarse modeling of phenomena
which, strictly speaking, lie outside the scope of the theory
being used. In the pseudo-rigid case, the phenomena in ques-
tion are inhomogeneous deformations and inelastic effects. (In
the rigid case they are deformation and inelastic effects.)

The theory of impulsive motions of rigid bodies is still a
matter of current research. Brach (1981) has argued that, in
general, impulsive couples at the impact site must be included.
He has also (1984, 1989) discussed the status of the tangential
impulse in impacts. Keller (1986) has given a careful analysis
of ambiguous situations that can arise in impacts with friction.

The impact of linearly elastic bodies is sometimes modeled
by the Hertz approximation (Goldsmith, 1960, Chapter 4).
The local nature of this analysis and the various approxima-
tions involved make it difficult to meaningfully compare ifs
results with those of the present work,

In Section 2 of this paper, we establish notation and recall
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Impulsive Motions of Elastic
Pseudo-Rigid Bodies

We develop the formalism for treating impact problems in the theory of pseudo-
rigid bodies developed by Cohen and Muncaster. Our treatment is general enough
to include the effect of kinematical constraints.

some essential facts from the theory of pseudo-rigid bodies.
In Section 3 we present a detailed analysis of the impact for
the case of two pseudo-rigid bodies, each subject to two in-
dependent constraints.

In Section 4, we develop the equations governing the impact
of an incompressible pseudo-rigid body on a rigid wall. We
apply these to the study of the details of pre-impact and post-
impact motions for a specific example.

2 Notation and Preliminaries

In this section we establish the notational scheme of the
work and recall some essential facts from the theory of pseudo-
rigid bodies.

In this work we shall adhere to the summation convention
for repeated indices. Lower case roman indices will range from
1 to 3, lower case Greek indices from 1 to 2.

The equations governing the smooth (¥ (#), F(¢)) of a pseudo-
rigid body are

mF = fexta
and
FEF =M, -L. 1)

Here, T denotes the position vector of the body’s mass center,
F the deformation gradient tensor, m the mass and E the Euler
(inertia) tensor of the body.

If the body is acted upon only by a system of N concentrated
loads f,, I < p < N, applied at points whose current position
vectors relative to the mass center are r,, 1 < p < N, then
we have

N
fextz Z fp)
p=1

N
Mew= Y, £,Qr,. @
p=1
If the body is composed of an elastic material with stored-
energy function per unit mass W(-) and subject to the kine-
matical constraints g*(F) = 0, the internal force moment is
given by

L =mWHF)F + T g%(F)F7, (3)
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the I',, as usual, denoting constitutively indeterminate con-
straint reactions.

We may recover the appropriate expressions for the case of
one or of no constraints by setting one or both of the I',, equal
to zero in Eq. (3).

In this paper we shall sometimes be concerned with the
collision of two such bodies. We shall carry over as much as
possible of the foregoing notational scheme to this situation
by simply indexing quantities to distinguish between bodies 1
and 2. Thus, the meaning of expresswns such as m, ¥}, F,,
E,, W' (%), are fairly obvious; g'? (F,) denotes the second
constraint on body 1, T'j; is the corresponding constraint re-
action, and so on.

As in our previous paper (1989), we shall often be concerned
with pseudo-rigid membranes rather than three-dimensional
bodies. The only modification to the foregoing development
is that now F denotes a nonsingular tensor on a two-dimen-
sional space.

We recall from the results of the above-mentioned paper the
fact that in a plgne motion in the plane normal to i;, F has
the representation

F = e () Re;(¥) + pex(d) @ exy) + vi; @i @)
where

1=cos{ iy +sin{ i,

ey({)
ex(§)

In the next section we shall develop in detail the formalism
for the mutual impact of two pseudo-rigid bodies each subject
to two independent general constraints.

1= —sin{ i; +cos¢ 1.

3 The Collision of Two Generally Biconstrained Bodies

In this section, we consider the impact of two pseudo-rigid
bodies. We shall model the impact process as involving jumps
in F,, T, while F, T, remain fixed. We regard the impact
process as consisting of a deformation phase and a restitution
phase. During the deformation phase, an impulse Pe acts at
the point of impact; during the restitution phase an impulse
Re acts at the point of impact. Moreover,

R=kP, 5)
k being the coefficient of restitution for the impact. During
the deformation phase, the constraint reactions suffer an im-
pulse I‘,,g, while during the restitution phase, they undergo an

impulse Fag We shall impose on the constraints g* 8 (.} the
mild restriction that

(i) gF ﬂ(F)#O for F non-singular,
(i) g&'(F) and g&%(F) are linearly independent for F
nonsingular.

In our previous work (1989), we considered three types of
kinematical constraint, namely, incompressibility, inextensi-
bility, and unshearability. It is easy to see that any pair of
these will satisfy both of these conditions.

We shall denote by R, the position vector of the impact
point on body « and introduce the notation

re=Ry—To (6)

We denote, by n, the common normal vector at impact pointing

from body 2 into body 1. If u is the coefficient of kinetic
friction for the surfaces of the two bodies, then the vector e
has the orthogonal decomposition

e=en+e’ )
where
le’ |

o~ He ®)

Journal of Applied Mechanics

We shall denote pre-impact quantities by a superscript (—),
post-impact quantities by a superscript (+), and quantities at
the transition between deformation and restitution by a su-
perscript ().

The final ingredient in our model of the impact process is
the requirement that at the transition from deformation to
restitution, the relative normal velocity of the impact points
should be zero, thus

neR{” =nR{",
or, more explicitly,
T (0 +neFF 't =074 + n-F§'F; 'r,. ©)

Granted those preliminaries, the equations governing the
impact process are

m ¥ — m ¥ = Pe, (10a)
m T — (0 = kPe, (10b)
myri) — mﬁ&": —Pe, (10¢)
myTs") —m,rs? = — kPe (10d)
F{OE, - F{7E, = Pe@F; 'r; — T 1gi*(Fy), (10e)
F{VE, - F{E, = kPe®F; 't~ [{.gt*F), (10
FSE, — F§ O, = — Pe®F; 'ty — D08 (F2),  (10g)
F{VE, - F{E, = — kPe®F; ', — D.g8°(Fy).  (10h)

We note the fact that since the constraints are identically sat-
isfied by F,, we must have

gE(F))F, = gl*(F,)+F,=0 each . (11)
Moreover, it follows from (10e)-(104) that
F{D+ kB - [1+ KF D = — [, — kT 18 (FOET!,  (120)
F$H + KFS) — [1+ KD = — 13, — kDo lgl*(F)E; . (12b)
We define tensors K'?, K** by
K'“(F): = gi*(F)E[ 2,
K™(F,): = g8*(F,)E; 2. (13)

If we operate on (12a), (12b) with gi*(F)), gi*(F,), respec-
tively, the left-hand side vanishes by (11) and we are left with
the identities

(K@) K'"P(F )} (T{s— kT15) =0,

(K**(F,)K*(Fy)} (T4 — kL) =0 (14b)

The symmetric 2 X 2 matrix, whose entries are
{K'*(F))+K'(F)}, is nonsingular precisely if

K EF ) K2(F) = 1KY FDKZF) . (15)

But this follows from the Cauchy-Schwarz inequality and the
fact that the K'* are linearly independent. Hence, (14b) implies

[iy= kL. (16)

(14a)

Similarly, we see that _
FZIa = kPZa‘ (17)

_ We next exploit (11) to develop relationships between the
I'yg and P. It follows from (10e) that

F{d - F5->—ﬁe®E;‘F;‘rl+1“h,g‘“(FI)E;‘. (18)
Operation on (18) with gi’(F,) implies, in view of (11) that

(K'(F,)K'“(F)) T\, = Pe-K'*(F)ET *Fi ', (19)
Similarly, from (10g) and (11) we get
{K?(Fy) s K*(F,) ) [0 = — PesK*(F)E; °F; 'ro.  (20)

Since the matrices on the left-hand sides of (19) and (20) are
nonsingular, we may rewrite these equations in the form
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Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



I\‘loz = Alcx(Fl)ﬁ, f‘Za = A2oz(F2)p;

for known functions A ,s(+). _

Our next step is to use the impact condition (9) to determine

the impulse P in terms of pre-impact quantities. We introduce
the notation

@1

H,:=F,"E;'F;' (xno sum)
The left-hand side of (9) now takes the form
neRO =ne (T3 +FF 'ty ) + Pl(nee)im !
+ (e Hin)] = Aro(F K FDETFT ')
=n.R{7)+ B{(nee)[m; ' +rHr]
— Ao (FnK'*(FDE; "*F7 'ri ). (23)
Similarly, the right-hand side of (9) becomes

neR{" =nR§ - P{(nee)lm; ' +r,Hyr)]
= Ao (PN K (F)E™ "2F; 1y},

(22)

(24)
Thus, (9) takes the final form

ne(R{™-R§) = —ﬁ{m-e)[

m;+m;

+rpoHry +rys Hor,
myn;

— A (Fn-K'*(F)E; ?F[ 'r,
— Ay (Fy)n - K**(F,)E; '°F; ]l'z} .29

Equation (25) relates P to the relative normal velocity of the
impact points before impact, the F,, and the inertial and con-
straint properties of the two bodies. Our final task, now that
B has been determined as a function of pre-impact quantities,
is to develop the initial conditions for the subsequent motion,
that is T\, FL") It follows from (10, (16), (17), and (21) that

T =T +m (1 + k) Pe, (26a)
T =T —my '(1+ k) Pe, 26b)
FiM=F+ (1 +k)P{e®@E[ 'Fi 'r,

~ A (FDK“(FDE 2} (26¢)
F{O=F — (14 k)P{e®@E; 'F;'r,

— Ao (F)K™(F)E; 2. (26d)

These equations determine ¥4, F(" in terms of pre-impact
quantities.

Several remarks are in order. First, the foregoing treatment
assumes that the tangential relative velocity of the impact points
does not change direction in the course of the impact, i.e.,
that

e’ +(RIV-R{)<0, e R -RM <0,
e’ «RM-R{MY<0. 27)

Should the second or third of these conditions fail, the fore-
going analysis will yield physically incorrect results. For the
analogous situation in rigid body mechanics, the subtleties of
such cases have been discussed by Brach (1984, 1989), and
Keller (1986). It would be straightforward to adapt the tech-
niques of these works to the pseudo-rigid case, and we intend
to do this in a future paper.

A second observation is that the governing equations for an
assortment of simpler cases may be extracted from the above
analysis without further labor. For instance, the equation gov-
erning the collision of two unconstrained bodies are obtainable
from (10) simply by setting the T,z and T'%; equal to zero. If
body 1 is subject to only one constraint, the system (14a) is
replaced by a single equation, as is the system (19). The case
in which a pseudo-rigid body impacts a rigid plane with outer
unit normal n has governing equations (10a), (106), (10e),
(10f) with impact condition

1044 / Vol. 58, DECEMBER 1991

n-R?=0 (28)

replacing (9).

In Section 4 we shall present the results for the impact of
an incompressible pseudo-rigid body on a rigid plane and apply
these to the detailed study of an explicit example.

4 An Explicit Example

In this section, we shall study the free motion on a smooth
horizontal plane of an incompressible, isotropic, pseudo-rigid
disk before and after impact with a rigid, vertical wall. We
begin by developing the relevant equations.

For the constraint of incompressibility, the constraint func-
tion g(-) is given by

g(F)=1-detF, 29
and the internal force moment by
L =mWe(F)F - pl. (30)

If such a body collides with a rigid wall with normal n, the
impulse of deformation P is

P=— {(nee)trH[m ' +r-Hr]
—(meHr)(e«Hr] ' trHm-R)). (31)
The corresponding impulse to the constraint reaction p is
p=~(trH) 'e-Hrp. (32)
The initial conditions for the subsequent motion of the body
are
T =T 4 m~ (1 +k)Pe, (33a)
FO=FO 4 (1+k) (Pe®E'F 'r+pF TE™').  (33b)

Recall that the kinetic energy of a pseudo-rigid body is defined
as
T:=

| . .
m?-?+§ tr{F E F7}. (34)

D |

A simple calculation using (31)-(33) yields
T _TO) o AT
AT= {(ne€)tr H{m ' +r+Hr]— (n-Hr)(e+Hr)} "1+ k)P

x itr Hlm ' +reHr] [(n-e)(e-ft("’)—% a +k)(n-R‘))]

+(eHr) B (1+k)(e-Hr)m+R ) — (n-Hr)(e-R“))B , (3%

for the change in kinetic energy due to the impact. Notice that
in the absence of friction (¢ = n), AT = 0 precisely if &k = 1.
We now turn to our specific example.

In our previous paper (1989), we considered the free motion
of a circular incompressible, isotropic pseudo-rigid membrane
on a smooth horizonal plane. The center of mass has constant
velocity T, the deformation gradient tensor is given by

F=\e|(0)®ei(¥) + N 'exd) Qex(t) (36)
and the stored energy function is given by
W(F)= W\ Y. (37

As we established in the above-mentioned work, this motion
has three first integrals, namely

A=A"Y[¢+¥]=K (const), (384)
A+N"Y[d—¥]1=L (const), (38b)
and
7N+, KN L\?
3 { AR T T +2(x2+1)2}
+ WO\ =E (const). (38¢)
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AC) =9 M) =0, N =25 ¢ =0, n=0
2.0 A+ =9.286, M(+) = 0, N(+) =25
A=) =.9047, A(+H) = 1.028

A =9, M) =,
2.0 A =10.43, M)
M=) = 9047, A(H) = 5649

N(=) =25 ¢ =2x/3, n=m/12
= 2313, N(+) =32.94

0.
.0
A
Fig. 2
Here, E is the total energy less the (constant) kinetic energy €= {p2+1}7 172 —uksgn(il-R(‘))il +iy} :

of translation and r is the undeformed radius of the disk.
Equation (38¢) forms the basis for a phase-plane analysis which
will determine the qualitative behavior of A. Equations (38a),
(38b) then enable one to find ¢ and ¢ as functions of ¢. The
tensor F is given by

F=\e,(¢)®ei(¥) — N *exd) @ ex(¥)]

o .
+ 200-1) [ei(@)®ex¥) +exP) R er (V)]

le(d)@ey) —ei(@)Rex¥)l.  (39)

. L\
203+ 1)
Here we study the situation in which a disk undergoing such

a motion collides with a rigid wall whose outer normal vector
is i,. Thus, we have n = i, and

Journal of Applied Mechanics

(40)

The inertia tensor E is given by E = mr?/4 1, and the tensor
H has the form

H=4(mr®) "'\ %ei(0)@e1(d) + Nex(9)Rexd)].  (41)

It follows from the kinematical analysis of our earlier work
(1989) that

r=—r{N\ sin®(¢) + A% cos’p} ~ 2 {N? sing ei(d)
+A"2cosp exd)).  (42)

We shall use Eqgs. (31)-(33) to analyze this impact. We note
that, in this case,

= sing i)+ cosy iy.

n-e=cosy,
trH=4(mr*) "'\ + 179,

Hr= —4(mr) "' {\? sin®p+ N2 cos?p} " 121, (43)
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A =9 M) =0, N&) =25, ¢p=7/3, n=10
2.0 A =77, M) = 1528, N+) =21.24
A=) = 9047, A+ = 4659
1.5
A
1.0
0.5+
0.0
0. -0
A
Fig. 3
2.5

A =9, M) =0, NV =25, ¢ =27/3, n=0
201 A =9365, M) = 1528, N+ = 29.06
M=) = 9047, A = 4659

0.0
0. . .0
A
Fig. 4
so that Expressing this in components with respect to the basis {e,(¢)}
reHr=4m"", we find, upon introducing the notation
n-Hr=—4(mr)” {N sin’¢+ X2 cos’p) ~'", 5= 4(mr)" (N sinfp+N"% cos’p) A1+ k)P,  (48)
esHr= —4(mr) (N sin®p + A2 cos’p} "2 cosy.  (44) that
) Substituting tlheseginto2 Eq. 331), we2 find1 o X(lr)=>'\(-)+s)\()\4_ 1)~ (cos cos(e +1)
P= —m(cosn)™ {5N° sin“¢+ X"+ 5Scos“¢d] ™ { A\ sin“p —\* sing sin(é+ )},
4 253 (i o R()
TN oS BIERRTD, (9 ey ik _ KO+ - DL - L=
and,ﬂfrom (32), that ) _ 2S()\4— 1)sing cos(é + 1),
p=riz'+ 1} 7' A2sin®p + N2 cos?p] TN cosy B, (46)
We consider (33b) in the form ‘ M+ DK K - - DL - L =
FOF '=FOF ' 4 (1+k)Pe@Hr+(1+k)pH.  (47) —28O\2—N"Ycose sin(p+1n).  (49)
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AG) =9 M) =0, N&) =25, ¢ =0, n=m/12
A+) =9.689, M+ =.0052, N*) = 26.9
M=) =.9047, M) = 1.024

0.
A
Fig. 6
2.5
A) =9, M5) =0, NO) =25, ¢ =7/3, n=1/12
2.0 A = 8284, M) = 0752, N(H) = 24.85
M=) = 9047, M) = 3968
1.5+
A
1.0
.5
0.0+ -
0.0 .0
A
Fig. 6

1t follows that
K =K — S\ - 1) {sing cos(p+1)
+A"? cose sin(e+m)3,
LY=L~ SO\ + 1) {sing cos(¢+7)
—N\"? cosg sin(d +m)},  (50)

We may substitute these post-impact values of X, K, and L
into (38¢) to determine E'), the post-impact value of E.
We now consider, as we did in (1989), the specific material
maodel for which
WO H=CIN+2"2-2). (51)

For this particular motion and material, the phase portraits
for \ are governed by the relationship

Journal of Applied Mechanics

N=8Cr 21+ MY HA-MA-AYH?
~NOA+AHTI=N -2 (52)

with

1

"A:=2+C'E, M:=— C'K*?, N:=%C"L2rz. (53)

16

Here, M and N may be regarded as measures of that portion
of the nontranslational energy which resides in spin rather than
in elastic stored energy or kinetic energy of stretching. Recall
from the results of our earlier work (1989) that in the case M
= 0, different qualitative behaviors are possible, depending
on the value of N. For values of N less than 16, all trajectories
pass through the value A = 1, while for values of N greater
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than 16, only those associated with sufficiently large values of
A do so. For M # 0, A never passes through the value 1; it
would require an infinite amount of energy to do so.

We have computed the pre-impact and post-impact trajec-
tories for a selection of these. We take S = 0.5 in all of the
examples shown. We rescale our time units so that 8Cr=% =
1. We take as our initial values

AT =9, M =0, N=25 G4

so that A™? = 0.9047. In all of the phase-plane diagrams
shown, the solid line represents the situation before impact
and the dotted line that after impact. Impact occurs at A =
1.5.

Figure 1 corresponds to the case in which ¢ = 0 and 3 =
0. Thus, the point of impact lies on the semi-major axis of the
deformed state, and no friction acts. Notice that the impact
involves a direct conversion of translational kinetic energy into
kinetic energy of stretching; 4 and A increases through the
impact, while the values of M and N are unchanged.

Figure 2 depicts the case ¢ = #/3, n = 0. This time 4, N,
and A decrease through the impact, while M increases. The
post-impact behavior of A is radically different than that before
impact. Nontranslational kinetic energy has been redistributed
to accommodate a nonzero value of M and has undergone a
net decrease. If &k < 1, some of this energy is dissipated due
to inelastic effects. The rest is converted to kinetic energy of
translation. If &k = 1, all of it is so converted.

Figure 3 shows the case ¢ = 27/3, » = 0. Now, A, N, and
M increase due to the impact, while N decreases. Physically,
this corresponds to a conversion of kinetic energy of translation
and kinetic energy of stretching into kinetic energy of spinning.

Figures 4, 5, and 6 refer to the case (¢, 7) = (0, n/12),
(n/3, w/12), 2n/3, w/12), respectively. Comparison with Figs.
1, 2, and 3 indicate the effect of friction on the impact process.
Figure 4 shows an impact in which A4 increases at the expense
of translational energy. (Total energy decreases due to fric-
tional and possible inelastic dissipation.) In contrast with Fig.
1, this increase in nontranslational energy is shared between
stretching and spinning modes. The reader can readily interpret
Figs. 5 and 6.

Thus, we see that even in this simple example rather complex
behavior is possible.

5 Discussion
The mechanics of pseudo-rigid bodies involves degrees-of-

1048 / Vol. 58, DECEMBER 1991

freedom of stretch and shear in addition to those of rotation
and translation associated with a rigid motion. These extra
degrees-of-freedom contribute to both kinetic and elastic po-
tential energy. In an impact, there will, in general, be a net
loss of kinetic energy due to friction and bulk inelastic effects.
In addition, kinetic energy will, in general, be redistributed
among these various modes by an impact. The foregoing ex-
ample illustrates this process.

Analyses such as that of Hunter (1957) have attempted to
study permanent transfer of energy from translation to vibra-
tion, within the framework of the Hertz approximation. These
studies find that such effects are negligible. Since the Hertz
analysis assumes that the effect of impact is a local indentation
of the impacting body, and, moreover, neglects material inertia
in the indented region, these results are to be expected.

The developments of this paper, on the other hand, speak
to a situation in which the impact produces gross deformation
of the impacting body. Thus, it is no surprise that the impli-
cations of the model are so different from those of the Hertz
treatment.
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Unraveling Paradoxical Theories
for Rigid Body Collisions

A collision between two rigid bodies has a normal impulsive reaction at the contact
point (CP). If the bodies are slightly rough and the contact points have a relative
tangential velocity (slip), there is also a frictional force that opposes slip. Small
initial slip can halt before contact terminates;, when slip halts the frictional force
changes and the collision process is separated into periods before and after halting.
An energetically consistent theory for collisions with slip that halts is based on the
work done by normal (nonfrictional) forces during restitution and compression
phases. This theory clearly separates dissipation due to frictional forces from that
due to internal irreversible deformation. With this theory, both normal and tangential
components of the impulsive reaction always dissipate energy during collisions. In
contrast, Newton’s impact law results in calculations of paradoxical increases in
energy for collisions where slip reverses. This law relates normal components of
relative velocity for the CP at separation and incidence by a constant (the coefficient
of restitution €). Newton’s impact law is a kinematic definition for e that generally
depends on the slip process and friction; consequently it has limited applicability.

W. J. Stronge

Department of Engineering,
University of Cambridge,
Cambridge, CB2 1PZ, U.K.
Mem. ASME

Colliding bodies are effectively rigid during collision if there
is negligible deformation outside the contact region and if the
contact region remains negligibly small in comparison with the
size of the bodies. Collisions between topologically smooth
bodies occur at a contact point (CP) where the bodies have
a common tangent plane and a common normal direction n.
The dynamics of rigid body collisions are a limiting case for
a time-dependent process of local deformation; in this process
active forces are present at the contact point only during the
collision. Since the total collision period is very small, this
process has changes in momenta without changes in config-
uration.

Most collisions between rigid bodies can be considered as
this limiting case where equal but opposed impulses act on the
bodies at an instant of contact. The relative velocities for the
CPs at incidence v, and separation v, have normal components
that are related by the coefficient of restitution ewhere 0 <e=<1.
Bounds e = 1 and e = 0 denote elastic and completely inelastic
collisions, respectively.

The ““‘impact law’’ defines e as a simple proportionality of
relative velocity components at incidence and rebound,
Veen= —e v,on'. This definition expresses a velocity constraint;
in contrast, an alternative definition relates e to normal com-

'Newton first expressed this velocity constraint; the expression generalizes -

analytical results by J. Wallis (1670) regarding conservation of momentum for
inelastic and elastic particle collisions.
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ponents of impulse for restitution and compression periods of
collision (Poisson, 1817). Newton’s impact law and Poisson’s
hypothesis are equivalent if the collision is collinear (i.e., both
colliding bodies have centers of mass on the common normal
through CP) or if friction is negligible.

During a collision the relative velocity v (¢) for the CPs can
also have a tangential component v — (ven)n called slip. Fric-
tion acts at the CP of a body in a direction that opposes slip.
Friction complicates the collision process by introducing dy-
namic constraints on relative motion at the CP; if slip is initially
small, the reaction can stop slip during collision. Rigid body
collisions with friction and slip that terminates before contact
ceases have confounded theoreticians for more than a century
(Poisson, 1817; Kane, 1984; Brach, 1989).

Stronge (1991) has shown that when slip stops or reverses,
the time-dependent nature of the collision process cannot be
neglected. If there is friction and the collision is noncollinear
the normal reaction force on each CP changes when slip stops
during a collision; consequently, analyses of collision dynamics
must be separated into periods before and after stopping. Tak-
ing this separation into account, Keller (1986) used Poisson’s
hypothesis to describe the analysis of collisions with slip re-
versal. This analysis did not examine energy dissipation by
separate components of impulse however, so it failed to rec-
ognize that Poisson’s hypothesis can yield nonfrictional energy
dissipation that does not vanish if the collision is elastic, ¢ =
1. Both the impact law and Poisson’s hypothesis are energet-
ically inconsistent in this regard if the collision is noncollinear
and there is friction with slip that stops.

A new definition of coefficient of restitution was proposed
by Stronge (1990) that always satisfies dissipation constraints
for the normal compressive reaction. This definition relates e
to inelastic deformation of colliding bodies; it is independent
of friction and slip. With this definition the ratio of separation
and incident velocities explicitly depends on both e and the
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Fig. 1 Planar collision of two bodies at CP. At collision, the direction
to CM, from CP is inclined at angle ¢, relative to the common normal
direction n; 6, = tan~'(x,/y). The normal reaction force P acls at CP.

process of slip at CP. The complexity of including friction in
the collision process is unravelled by examining impulse-de-
pendent velocity changes during separate phases of collision
representing compression, restitution, and slip in each direc-
tion.

Planar Collisions With Slip

Changes in velocity during collision depend on differences
between velocities of contact points. The dynamics of collision
are most transparent in terms of velocities relative to a reference
frame that moves with the common tangent plane at the instant
when compression ceases; let this reference frame move steadily
in direction n during each phase of slip.

Suppose rigid laminae labeled 1 and 2 with masses M, | =
1, 2 collide at CP as shown Fig. 1. We acknowledge that the
colliding bodies are only relatively rigid by considering an
infinitesimally small deformable element between the CPs that
admits only infinitesimal deformation in direction n; i.e., this
deformable element is assumed to have negligible tangential
compliance. The contact point of each body CP; has changing
velocity v;(¢) relative to the steadily moving reference frame.
During the compression period t<f,, v;sn>0>v,sn. Let the
centers of mass (CM;) have velocities ¥;(¢) = (0; @;) where
0; and #; are the normal and tangential components relative to
the steadily moving reference frame. Each laminae has an
angular velocity w;{¢). Velocities for CP; and CM; are related
by vi(2) = ¥; — w; X 1; = (D;—x0;, G+ yiw;) wherer; = (x;,
¥;) is the position vector of CM; from CP,. During collision
the contact points have a difference in velocity v(¢) = v; —
v, = (v, u) with both normal and tangential components; the
tangential component is termed slip. Equal but opposed re-
action forces P; = (P, uP sgn(u))(—1)" act at coincident
points of contact that are slipping; these forces have normal
components P, tangential components uP sgn (1), and change
sign according to (—1)'. The tangential force on each body
acts in a direction opposed to slip; while there is slip the tan-
gential force has a magnitude that is proportional to the normal
component of force P = dP/dr where P(f) is the normal
component of impulse. The limiting friction coefficient u pre-
scribes this proportionality. We assume that u is a constant
although in practice, p can vary with v(¢,) due to surface
indentation.

The initial difference in velocity at CP can be separated into
initial velocities for CP; relative to the steadily moving refer-
ence frame, vi(f,) = (v,, U,) and vy(Z,) = (—nv,, —Eu,)
where 9, £ are constants. (It is convenient to make y propor-
tional to the relative rate of change for the normal component
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of velocity of CP; during compression.) Hence, at the CP there
is an initial difference in velocity v, (z,) — v,(%) = ((1 +nv,,
(1+ &)u,) when collision commences. Each body also has an
initial angular velocity w;(%,). :

Although the total collision period is very small, changes in
motion during a collision can be separated into an initial phase
of compression followed immediately by a phase of restitution.
The notion of this separation was originally due to Poisson
(1817): here it is used to consider changes in motion for col-
liding rigid bodies as a function of the normal component of
impulse. In this analysis, impulses for separate phases of the
collision process are determined in comparison with the
compression phase impulse for unidirectional slip in the initial
slip direction. The direction of initial slip relative to the in-
clination of the colliding bodies turns out to be an important
discriminator for different possible slip processes.

Imitial Slip u,(¢,) >u,(t,): Labeling the bodies such that
u (t,)>uy(t,), the changes in velocity components ;, 4;, w;
for laminae i = 1, 2 depend on the normal component of
impulse P () =] Pdt':

0:(8) = 0:(1,) = (= 1)'P/M;
4;(8) ~ di(t,) = (— 1YpP/M;
wit) = wilty) = (= V(wy;— x;)) P/ Mk} (1

where k; is the radius of gyration of body i/ for CM,. Corre-
sponding changes in velocity components at the contact points
CP; can be expressed as:

vi(t) =vi(t,) + (— 1)'P/m;
ui(t) =ui(to) + (= Y'uP/n; )

where effective masses m; and n; for normal and tangential
accelerations of CP; are defined as:

my= MK+ 33— pxiy]) ™'y ni= MK +yi—xy/m] ™" (3)

for u;(z,) > uy(t,). The rates of change for velocity com-
ponents at CP; are proportional to m; ! and n7'; notice that
the sign of each effective mass depends on the orientation of
the body and the coefficient of friction u. Effective mass n;
can be negative if friction is small; this indicates that slip speed
increases despite small friction.

_ We define a characteristic normal impulse for compression
P and a ratio 5 for rate of change of velocity of CP; that bring
normal components of relative velocity for contact points of
both bodies to a common speed at the end of the compression
period, v, (f.) = v,(t,). The relative rate of approach 5 for
the initial phase of slip yields v;(¢.) = 0 if slip does not stop
during compression; hence, during any initial period of slip,

Up(1 +1)

=, N=m/m,

R
m; “+m,

for uy>u, 4)
and P = mv,. The characteristic reaction P and the effective
masses m;, n; all depend on the sense of slip at CP.

Reversed Shp u,(?) > u,(¢) After Slip Stops t>1t,: If slip of
one CP relative to the other has the opposite sense, the previous
expressions for effective masses and characteristic normal
compression impulse are altered by changing the sign of pu.
Hence, the effective masses m;, n;, after reversal are:

M = M{T] + 2+ pxip) ™', i = MKHKE + YF + xoi/m]!

(5)
while the characteristic normal impulse P, is given by:
T Uo(1 + 7)
P =7, for u,>uy. 6
® m,*l+m{*' 2~ Uy (6)

If there is friction and CM; is not on the common normal,
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Fig.2 Normal and tangential effective masses for the mass distribution

of dumbbell (k} = x? + y?) depend on angie of inclination, friction, and
direction of slip

uxy;#0 so effective masses depend on the direction of slip.
Figure 2 illustrates the effect of slip direction on effective
masses for a simple body with a large radius of gyration k;.

With these characteristic impulses, the velocity components
(1) and (2) can be expressed as functions of impulse ratio P/
P rather than time; e.g., the contact velocity components dur-
ing the period before slip stops are given by,

Yot <1—£>

U m; P

u; _ug0) ;pmy P

0 b, +(-1) n B )
These changes in velocity for contact points CP; are succinctly
illustrated in Fig. 3. In this diagram the impulse ratio on the
abscissa changes with the direction of slip; hence, the normal
velocity components for CP; are simply lines that intersect
where compression terminates at either P/P = 1 or P/P, =
1 — v + v P/P. depending on whether slip stops during
restitution or compression. These lines kink at the impulse that
stops slip if P« # P but this does not alter the rate of con-
vergence. This scaling of impulse ratio P/P,; results in the same
rate of change of relative velocity v, — v, before and after slip
reverses. Note that initially P/P = 0. By using impulse ratio
as an independent variable rather than time, details associated
with compliance at CP; have been eliminated.

Slip Stops at Impulse Ratio y = P(¢,)/P: We calculate slip
u(P/P) of CP, relative to CP, when compression terminates
by supposing for a moment that initial slip does not stop during
compression:

u(l)=u(1) = (1) = u(1 + &) — pogm (i 403 h). (8)

The impulse ratio y stops slip; this impulse ratio can be de-
termined by recognizing that slip is a linear function of P/P

Journal of Applied Mechanics

compression

|_restitution

TS RP R =R
_
1 A7)
e

relative impulse P/ P

Fig. 3 Variation of normal and tangential relative velocity components
for CPs during collision with slip reversal at relative impulse vy during
compression. The characteristic impulse P, changes with slip direction.

before slip stops. Hence, independent of whether slip stops
during restitution or compression,
u(0) U (1+5)
Y= = 1 “Iyt ®)
u(0)—u(l) pvem(ny +ny")

The impulse ratio vy is a key parameter for identifying collision
processes. We find that slip only reverses if it stops during
compression (i.e., 0<y<1) so stopping and reversal depend
on the orientation of the bodies when collision commences.

During the initial phase of slip, the ratio £ for rate of change
of slip speed for CP, compared with CP, is established by
requiring that v is symmetric; i.e., independent of the desig-
nation of the bodies. Hence,

E=n=m/m. (10

Note that relative changes in speed for the two bodies 7, &
depend on the sense of slip and the angles of inclination for
CM; during the collision. These relative changes in speed at
CP are translated directly to the centers of mass only if x; =
0 or y; = 0 for normal or tangential components, respectively;
i.e., if changes in motion induced by normal and tangential
components of impulse are not coupled. If the collision is
noncollinear with friction, the center of mass is generally not
stationary in the reference frame where v;(P) = 0.

After impulse v, when slip stops the velocity components at
CM; are:

131('y)=1+x1w|(0)_ ’Y(il'"ﬂ) —
Uo v Mi(my +my)
di(y) _up yion©  yu(l+m)
v U, U My(mi'+my')
kiwi (v) _kiwi(0) Y =uy) (L+7) (11)
Vo v,  kMi(mi'+m')
Oa(y) _ x305(0) v(1+m)
vo v,  My(mi'+m')
da(v) _ g U Y202(0) vl +m)
2 v, v, My(mi'+ms')
kzwz(‘Y):kzwz(o)_’)’(xz—#}’z)(1+ﬂ) 12)

= S
Vo U, k2M2(m1 + my
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u(ry=u(r) —uy(r)=| 0,

= uUo(1 'i'n)(T_'Y)(nlv*t+n{*l)/(m;*l+m{*l): O<y<«l
I<y<r 20)
Uo(1+8) = poo(L+m)r(nr '+ 0y /(mi 4+ my ), 1<y

Reversal of Slip Direction

After slip stops the direction of slip for CP; can reverse.
Slip reversal introduces changes in the effective masses m;, #;
and changes in the characteristic normal component of impulse
for the compression period P. The ratio of characteristic im-
pulses for periods after and before slip reversal can be expressed
as a ratio of effective masses m;;

P./P=(mi' +my"y/(mil+m3) (13)

This ratio depends upon masses M; and angles of inclination
6; for both bodies and also friction u. The ratio describes a
change at reversal in the rate that impulse is applied to the
colliding bodies. It will be shown that if slip reverses, this
characteristic impulse ratio is larger than unity.

For each body, all velocity changes are linear functions of
the reaction impulse during each phase of slip. Although re-
action forces change when slip reverses, the changes in velocity
are always directly proportional to either P/P or (P—+vyP)/P,
depending on the direction of slip. If slip stops the tangential
velocity components show a change in slope at +y since m;/n;
# Mix /n,‘* .

Final Velocities at Terminal Impulse P;: If slip stops
(0 <y <7), the terminal impulse Pyis the sum of impulses during
periods before and after slip stops; Py = vP + (r—v)P, where
7= 1. In this case the final velocities for CM; can be expressed
in terms of effective masses m;, m;, for each phase of collision.

mo&_1+xwxm__ yd+m) @—yd+n)
vo vo  Mi(mi'+my'y My(mi)+m;))
(14)
Da(7) _ _ X%w0) y(1+7) (r—y)+n)
Vo vo  My(mi'+my') My(miy +my)
(15)
(1) _uy nw(0)  yu(d+m) p(r— )1 +7)
Vo Uo 2 Ml(ml_1+m2_1) Ml(m1*+m2*)
(16)
fy(7) _ ! Up_ypooQ) ypd+m)  p(r—y)(1+n)
v vo Vo My(mi'+mg'y My(mi)+myl)
(17)
ki (1) k1w1(0)+ vy =)+ 1)
o Vo kM (mi +mp
(71=y) Ca+py) (1+1) (18)
kM (mit+m3h
kzwz(T)zkzwz(O)__’Y(xz—uyz)(1+71)
Vo v  kMy(mi'+my!
_ =y at+ws)(i+n) (19)

koM (mid + myyh)

The corresponding final normal relative velocities for CP;
at impulse ratio 7 when collision terminates are:

(- 1)(1"'77)”11“1”07 (‘1)(1“’77)’”1* UO(T 'Y)
+m2 ml* +m2*

v(r)=v(0) +

When collision termmates, this results in the following sepa-
ration velocity components at CP.

V(1) =0 (1) =0 (7) = —v(L +m)(7—1)
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The negative sign for expressions on the right indicates that
the sense of both components of relative velocity has changed
during collision if (a7, + nyd) >0. In (20), the three ranges of
~ correspond to slip reversal, slip stick, and unidirectional slip,
respectively.

Dissipation During Collision: Dissipation is the negative
of work done by contact forces during a collision, and it can
be evaluated by integrating the rate-of-work by impulse during
0< P< Py Dissipation naturally separates into compressive and
frictional parts; if tangential compliance is negligible, these
parts are equivalent to the product of the appropriate char-
acteristic impulse P (or P,) and the area in Fig. 3 between
lines representing components of contact velocity for the two
bodies (Stronge, 1990). The irreversible deformation dissipa-
tion D, and frictional dissipation D, for slip that reverses at
relative impulse 0 <y <1 are given by:

Dy =P, (1+ )y (2—7)/2+ Prvo(L+ (1 ~7)* = (7= 1)1/2

D, = pPuy(1 + E)y/2— pPottf(1—7) /2
2D

where u; = u(7) is evaluated from (20)%. If (9) yields y<0 or
¥>1 + e, this indicates that slip does not stop during collision.
In this case,
D,=Py(1 +)l - (= 1)1/2
D,=pPlu,(1+ &) +udr/2. 22)
Total dissipation D is equivalent to the change in kinetic energy
during collision, D = D, + D, = K, — K.

Consistent and Inconsistent Collision Theories

At this point it is necessary to introduce a hypothesis that
relates restitution and compression reactions. The hypothesis
determines the relative durations of restitution and compres-
sion phases of collision. Since the dynamics of colliding bodies
are linear relations between impulse and rates-of-change for
velocity components, the normal dissipation D, associated with
internal irreversible deformation during restitution and
compression phases is also directly determined by this hy-
pothesis. In a consistent theory, this part of energy dissipation
during restitution cannot be larger than the corresponding part
during compression. Also we require D, = 0 for elastic col-
lisions. Theories that do not satisfy these constraints are termed
inconsistent.

One consistent collision theory has been proposed. Stronge
(1990) formulated a theory based on the normal dissipation
D,. This proposition and the corresponding terminal impulse
ratio 7 are given below:

(a) Internal Dissipation Hypothesis: The square of coeffi-
cient of restitution €” is the ratio of elastic strain ernergy
released at CP during restitution to the energy absorbed
by internal deformation during compression.

For negligible tangential compliance, an equivalent form of
this hypothesis expresses that negative work by the normal

*These expressions are obtained also from a theorem for energy loss in col-
lisions (Stronge, 1987). The theorem must be applied separately to each phase
of motion if slip stops or reverses.
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component of reaction entirely represents nonfrictional dis-

sipative effects. Hence, ¢® equals work of the normal com-

ponent of reaction during restitution divided by negative work

of the normal component of reaction during compression.
For slip reversal, u;(0)> 0> u,(7):

_ (r—1)

(=) +yQ2~y)P/P,
or=1+e[(1-7)?+vQ2-yP/P"? (23)

» (=)= (y=1(1 =P/P,)

- PB/B,

y<l1:

I<y<l+e e

or=1+{(y—1’(1-P/P,) +&P/P,}'*. (24)
For unidirectional slip, #,(0)>u,(7)>0:
l+e<y: e=(r—1?% o 7=1+e. (25)

For a coefficient of restitution e = 1, the internal dissipation
hypothesis equates D, for compression and restitution. In Fig.
3, this represents a balance of the areas on either side of the
impulse that terminates compression if the area after slip re-
versal is weighted by the characteristic impulse ratio P, /P.

There are at least two inconsistent collision theories.

(b) Impulse Hypothesis: The coefficient of restitution e is
the normal reaction impulse during restitution divided
by normal reaction impulse during compression.

For slip reversal, u,(0)>0> u,(7):
(r—-1)

<1: =
TST ST Uy P/,
o7 = l4+e(l-y+yP/P,) (26)
(r—v)+@—1DP/P,
1< l1+e: e= =
y<l+e:e /.
o r=y+(1+e—v)P/P.. (27)
For unidirectional slip, #,(0) > u,(7)>0:
l+e<yie=7—1, o r=1+e. (28)

Poisson proposed this hypothesis which yields the usual im-
pact law for collinear collisions or unidirectional slip. How-
ever, if the bodies are noncollinear and slip stops, P, # P,
and this theory yields predictions of normal dissipation D, that
do not vanish for elastic collisions.

Newton’s impact law also results in an inconsistent theory.

(¢) Kinematic Hypothesis: The coefficient of restitution e
is the negative of normal component of relative velocity
between contact points CP; at separation divided by nor-
mal component of relative velocity at incidence.

For all slip conditions:

l1+e. (29)

With this hypothesis, Eq. (20) yields a simple proportionality
between normal components of contact velocity for incidence
and separation (Newton’s impact law). However, if e and u
are presumed to be independent, hypothesis (c) yields normal
dissipation D, recovered during restitution that can exceed the
normal dissipation during compression if slip stops and P, > P
as a consequence of the collision configuration; i.e., this theory
is energetically inconsistent. The inconsistency is an indication
that with the hypothesis, e depends on friction and the slip
process. Consequently, this hypothesis and the impact law are
not useful for noncollinear collisions with friction if initial slip
stops or reverses during the collision.

e=7—1 o 7=
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Fig. 4 Friction bounds for slip stick ;. and jamb p;5 of body with
dumbbell mass distribution (K¢ = x} + y?)

The three theories have the same terminal impulse 7 if slip
does not stop during collision or if the collision is collinear so
P, = P.If slip stops and P, # P, the dissipation and impulse
theories have a slightly smaller relative impulse during resti-
tution 7— 1 than is specified by hypothesis (¢); i.e., they have
7 — 1<e. The terminal impulse ratios for the three theories
are ordered as follows:

1 < 7(Impulse) < r(Dissipation) < r(Impact Law)=1-+e.

Collision Processes With Friction

There are several possible scenarios for collision processes
if friction retards slip. During collision the slip can either
continue without stopping, stop and stick, or stop and then
reverse depending on the magnitudes of coefficient of friction
w and initial slip speed u,/v,. The dynamics equations are used
to find the boundaries of regions where these slip processes
occur. In addition to friction and slip speed, the processes
depend on the angle-of-inclination §; = tan™' (x;/y;) for CM;
relative to the common normal. Conditions that identify these
processes are:

(i) initial slip slows only if (n;' + ny")/(mi'+m;)>0;
(ii) slip stops after impulse yP if:

u,(1+§) (mf‘+mil)<7,

0 =, (T4 (7 +m5)
i) if slip stops, it reverses only if (nry
(mid+m3t) >0;
(iv) otherwise, slip that stops then sticks.
Bounds on slip processes are most apparent if the impulse
when slip stops v and the final slip velocity u(r) are expressed
in terms of two friction parameters related to slip processes.
If the coefficient of friction is large enough to prevent slip
reversal, the contact points can only roll after slip stops. This
collision process wherein slip vanishes before contact ceases is
termed slip stick. Even larger friction can prevent slip alto-
gether; i.e., the contact points jamb. The process of jamb
results in discontinuous relative velocities for CP; at initial
contact. Jamb is present if the characteristic impulse in (4) is
indefinitely large due to mi' + my' = 0; this process is
equivalent to a dynamic constraint on sliding of rough bodies
(Lotstedt, 1981). Each body has friction bounds for stick u;«
and jamb u;; that depend on the angle of inclination.

pie =X/ K2+ YD), win = (kF +x3) /x;; (30
These bounds are illustrated in Fig. 4 for a simple body. The
effective masses (3) can be expressed in terms of the bounds,
my/My=[(1+ Y2 /KD i (i — )17
ni/ My=[(1+Y2/k) (1= pin/ ]~ €))
where ;. and u; have the same sign as the angle of inclination,
6;. Examples of slip processes are now determinegl for three
orientations of colliding bodies with M k2/(k? + y1) = Mok3/
(K + ).

+ nd)/
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Fig.5 Active regions for each slip process depend on collision param-
eters and initial conditions: (a) antisymmetric configuration, ¢, = 6, =
xl4; (b) symmetric configuration, —8, = 8, = /4. Collisions between
two identical dumbbells exhibit the following processes: (a) continuous
slip in initial direction, (b} slip with reversal during contact, and (c) slip
stick.

Case 1, 6; <0, 6,<0—n;>m;>0 if p>0: In this configu-
ration the initial slip of CP;is in the direction of a component
of r;; i.e., initial slip of CP;is towards CM;. Changes in contact
point velocities for this case are illustrated in Fig. 3. Equations
(9) and (10) show that slip stops at impulse ratio v,

_ Slpa s (o —#) + p2s (pon — )]
20— pix — Hox
where p;x <0, wn < 0and S = u, (1+£)/v,(1+%). To stop

slip, friction must be large enough to overcome p;, and the
initial momentum during collision;

+ + + S
I‘->(M* Hox)T (l‘-l*ﬂ«ll] MZ*I‘«ZD) ' (32)
27+ (s + f124)S
Slip that stops does so during compression if g < p;» and during
restitution if u> p«. After slip stops it reverses if p;< lp
since m;, > 0 and n; > 0; i.e., from (20),

u(r) = — pvo(l + M) — (i + 030y / (mid + m3)) <0.
(33)
Thus, if u is sufficiently large so ny. L+ nsd <0, slip stops and

sticks®. On the other hand if the initial slip speed is large,'

3If one body is massive in comparison with the other only n;. of the light
body determines whether slip reverses or sticks after stopping.
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Dissipation, D/K,

Coeffictent friction, u

Fig.6 Dissipation of initial energy for antisymmetric collision between
two dumbbells with w/{t;) = 0, 8, = 8, = z/4. The impact law, impuise
hypothesis, and internal dissipation hypothesis are given by the dashed
curve, chained curve, and continuous curve, respectively. Shaded region
has continuous slip during collision. The coefficient of restitution is
designated as follows: 0, e = 0; A, e = 0.5, and (0, e = 1.0.

S>T(2p— pra — pas)/ [ s pyo + pospan — wlpts « + p24)],

then unidirectional slip continues without stopping. Figure
5(a) shows slip processes for this case.

Case 2, 0,<0<8,—n>0>n;, my>m>0if 0<p<pn: In
this case the rate of change for the tangential velocity of CP,
is negative. Hence, the limiting friction that stops slip is the
same as that of the previous case (33). After slip stops it reverses
if and only if nj, + n3y' >0. Otherwise, slip stops and sticks.
Slip processes for this case are shown in Fig. 5(b).

Case 3, 01 >0, 02>0—>n,->m,->0 if Rix <p<pios This con-
figuration has initial slip of each contact point away from the
corresponding CM;. If u < pi«, ;<0< m;; hence, the initial slip
speed. increases and does not stop. If u> p;, slip stops during
restitution, 1 <+ < 7. The maximum initial slip speed that stops
during collision only stops at separation:

- T(20 = fyw — fi2x)
B0 s pior) — p(y« + p2s)

After slip stops the effective masses satisfy inequalities
N« <0< m;, so there is no reversal; i.e., in this case slip stops
and sticks if and only if

prx + pas <2p<pyg+ pep and

(34
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Fig.7 Dissipation of initial energy for symmetric collision between two
dumbbells with w;(t;) = 0, —6; = 6, = =/4. The impact law, impulse
hypothesis, and internal dissipation hypothesis are given by the dashed
curve, chained curve, and continuous curve, respectively. Shaded region
has continuous slip and outer bands have slip stick behavior. The coef-
ficient of restitution is designated as follows: 0, e = 0; A, ¢ = 0.5 and
O,e = 1.0.
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Active regions for each slip process are shown in Fig. 5 for
antisymmetric and symmetric configurations at collision of
identical symmetric bodies. In this figure, positive and negative
initial tangential velocities u,/v, correspond to the illustrated
configuration and its mirror image (reflected about the com-
mon normal), respectively. Identical bodies that collide in an
antisymmetric configuration 6; = 6, have equal but opposite
accelerations for each body during collision; hence, contact
forces on each body are equivalent to those in a collision with
a very massive body.

Comparison of Consistent and Inconsistent Theories

Energy dissipation during collision is the scalar measure of
collision dynamics that has pointed to an inherent defect in
Newton’s impact law. Both Kane (1984) and Brach (1989)
examined dissipation during collisions between inclined elon-
gated bodies and commented on paradoxical energy gains which
occurred with friction and small initial slip that is halted during
collision. This effect is observable in Fig. 6 which shows dis-
sipation during a collision between two identical inclined
dumbbells for a range of friction and initial slip speed. This
figure shows that the impact law yields negative dissipation if
friction is large, the collision is at least partially elastic, and
we presume that eis independent of friction. Energy dissipation
obtained with the impulse and internal dissipation hypotheses
are never smaller than that of the restitution period hypothesis;
more important, dissipation obtained with the internal dissi-
pation theory is always positive.

Figures 6 and 7 show that the three theories are identical if
slip does not halt during collision (the cross-hatched region).
If slip stops but friction then prevents reversal, (slip-stick)
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frictional dissipation ceases before collision terminates. Slip
that reverses after stopping is present only if the configuration
is not symmetric with respect to the common tangent plane
(Fig. 6) and initial slip of CP; is towards CMj; i.e., u,/v,<0.
With reversal there is a difference between the results of the
impulse and internal dissipation hypotheses if e>0. This dif-
ference is only obvious in this example if the collision is nearly
elastic and slip reversal occurs near the transition from
compression to restitution,

The example of a symmetric collision configuration illus-
trated in Fig. 7 stops and sticks if there is sufficient friction;
the slip direction cannot reverse. Velocity changes for this
configuration are not symmetric because of friction.

Conclusion

The impact law is an empirical relation for normal com-
ponents of incident and rebound velocities at CP. The law
provides a kinematic definition of coefficient of restitution e;
however, if the collision is noncollinear then this definition
results in a coefficient e that depends on friction and slip
processes. This dependence results from coupling between the
effects of normal and tangential contact forces. Consequently,
if slip reverses during collision the kinematic definition of
coefficient of restitution is not useful; any measurement of
this coefficient is only applicable in a vanishingly small range
of incident velocities. Furthermore, it is energetically incon-
sistent to assume that this definition yields a coefficient e that
is independent of friction; this assumption leads to paradoxical
calculations of increases in energy during impact.

A dynamic collision theory proposed by Stronge (1990) de-
termines energy losses from the work done by contact forces;
moreover, it imposes no constraints on slip. This internal dis-
sipation hypothesis defines a coefficient of restitution that is
independent of friction; for partly elastic collisions (e< 1) this
theory always dissipates energy. It produces a kinetic energy
loss due to irreversible internal deformation that is propor-
tional to 1 — &* irrespective of slip. If the contact point slips,
there is also an energy loss due to friction. The internal dis-
sipation hypothesis, the impact law, and Poisson’s hypothesis
are equivalent if slip does not halt during collision or if both
CM; are on the common normal line through CP (i.e, colli-
near). However, the theories are distinct for rough bodies if
at least one center of mass is noncollinear and there is small
initial slip that halts during collision; in this case only the
internal dissipation hypothesis is energetically consistent.
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